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Abstract: Nitrogen (N) and phosphorus (P) are primary indicators of soil nutrients in agriculture.
Accurate management of these nutrients is essential for ensuring food security. High-resolution,
multi-spectral remote sensing images can provide crucial information for mapping soil nutrients
at the field scale. This study compares the capabilities of ZH-1 and Sentinel-2 satellite data, along
with different spectral indices, in mapping soil nutrients (total N and Olsen-P) using two machine
learning algorithms, random forest (RF) and XGBoost (XGB). Two agricultural fields in Suihua
City were selected as the study areas for this investigation. The results showed that Sentinel-
2 data performed best in computing the total N content in soil using the RF model (R2 = 0.74,
RMSE = 0.10 g/kg). However, for the soil Olsen-P content, the XGBoost model performed better
with ZH-1 data (R2 = 0.75, RMSE = 9.79 mg/kg) than the RF model. This study demonstrates that
both ZH-1 and Sentinel-2 satellite data perform well in terms of accurately mapping soil total N and
Olsen-P contents using machine learning. Due to its higher spectral and spatial resolution, ZH-1
remote sensing data provides more detailed information on soil nutrient content during Olsen-P
inversion and exhibits comparable accuracy.

Keywords: Sentinel-2; ZH-1; random forest; extreme gradient boosting; soil fertility; digital mapping

1. Introduction

In modern agricultural practices, guiding precision agriculture development and
ensuring food security are of paramount importance [1–3]. Digital soil nutrient mapping
plays a crucial role in achieving these objectives as it provides essential information about
the soil properties that directly influence crop growth and development [4,5]. Among
various soil nutrients, total nitrogen and available phosphorus are key indicators of soil
fertility and plant nutrition [6,7]. Accurate mapping of the spatial distribution of total
nitrogen and available phosphorus through precise mapping techniques is critical for
optimizing agricultural productivity and resource management [8].

Traditional digital soil nutrient mapping methods typically rely on interpolation of
ground survey data, resulting in coarse spatial resolution and limited guidance for precision
agriculture [9–11]. Alternatively, using ground spectrometers combined with spectral infor-
mation on nutrients for estimation may face challenges in broad-scale applications [12,13].
In large-scale farmlands or extensive regions, traditional approaches may encounter issues
such as high data acquisition costs, time-consuming processes, and reliance on ground field
surveys. These limiting factors hinder the application of nutrient mapping techniques in
guiding precision agriculture and achieving sustainable agricultural development [14,15].
Sentinel-2, with a revisit period of 5–10 days and a spatial resolution of 10 m, captures
13 image bands, including visible light, near-infrared, and short-wave infrared, providing
valuable spectral information for inferring the soil nutrient content [16,17]. Additionally,
the ZH-1 hyperspectral satellite has a revisit period of six days for a single satellite and
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an extended revisit period of approximately one day for eight hyperspectral satellites. It
possesses a spatial resolution of 10 m, a spectral resolution of 2.5 nanometers, and a wave-
length range of 400–1000 nanometers, enabling detailed high-spectral data to be gathered
for a more accurate characterization of soil properties [18,19].

In recent years, with the development of emerging technologies, digital soil mapping
has been applied using various techniques. Commonly used models include multiple
linear regression [20], principal component analysis regression [21], the generalized addi-
tive model [22], and kriging interpolation [23]. Moreover, machine learning algorithms
(e.g., support vector machines, decision trees, random forests, artificial neural networks)
have been widely employed in remote sensing studies [24–27]. These algorithms offer
advantages by learning from limited data and reducing errors through adaptive learning
processes [24]. However, research on soil total nitrogen and available phosphorus mapping
at higher spatial resolutions is still lacking [28]. Machine learning algorithms may not be
universally applicable in different environments. Therefore, it is necessary to evaluate the
applicability of different machine learning algorithms in our own context to understand
the distribution of soil total nitrogen and available phosphorus content.

Hence, this study adopts the random forest (RF) and extreme gradient boosting (XGB)
regression methods and introduces Zhuhai-1 (ZH-1) hyperspectral data for the first time
on a field scale to explore their potential and effectiveness in mapping total nitrogen
(total N) and available phosphorus (Olsen-P), providing valuable insights for soil nutrient
estimation.

2. Materials and Methods

The technical workflow of this study is illustrated in Figure 1. It is primarily divided
into three parts: data preprocessing, model training and validation, and model application.
In the data preprocessing stage, both Sentinel-2 and ZH-1 data underwent radiometric
calibration, followed by atmospheric correction using the Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes (FLAASH) method to ensure the accuracy of surface
reflectance [29,30]. Subsequently, the coarse spatial resolution bands of Sentinel-2 were
resampled to 10 m using the nearest neighbor interpolation method, aligning the spatial
resolution of both Sentinel-2 and ZH-1. Finally, specific bands from Sentinel-2 and ZH-1
were selected to calculate the vegetation and soil indices.

For the model training and validation stage, the surface reflectance of the two remote
sensing datasets, along with vegetation and soil index values at their respective sampling
points, were utilized as feature values, with total nitrogen (total N) and Olsen-P serving as
label values. The pixel values for the mentioned sampling points were extracted using the
rasterio library in Python. Due to different feature combinations, eight different datasets
were formed while training two nutrient prediction models. Considering prior relevant
studies on soil nutrient inversion, RF and XGB were selected as prediction models for
machine learning regression [27,31].

To be specific, 90% of each dataset was used as training data, while the remaining 10%
was reserved as a validation set to assess the model’s accuracy. In the model application
portion, the best-performing model was saved. Data consistent with model features is used
as input for soil nutrient inversion at the field scale, resulting in a spatial distribution map
of the soil nutrient content.

2.1. Study Area

The experimental site is located in Suihua City, which is a significant core area of the
black soil zone and an important grain production region in central Heilongjiang Province,
China (Figure 2). It is situated to the east of the Songnen Plain, at the junction of the
Xiaoxing’an Mountains and the Songnen Plain in the middle reaches of the Hulan River
(latitude: 46◦19′ N to 47◦09′ N, longitude: 126◦25′ E to 127◦23′ E) [32]. The forested area in
the north belongs to the semi-humid and semi-arid monsoon climate zone in the northern
temperate zone. Spring is relatively dry, with little rainfall, while summer is humid and
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hot, with more rainfall. Autumn is cool, but the temperature drops quickly. Winter is cold,
with a freezing period of up to six months, as the area belongs to a distinct continental
climate [33]. The average annual temperature is about 2.9 ◦C, and the annual average
precipitation is 552.5 mm, of which 70% is concentrated from June to August [34]. The
annual average sunshine hours are 2395 h, the annual effective accumulated temperature
is 2852.6 ◦C, and the area belongs to the second accumulated temperature zone in the
province [35].
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2.2. Field Data Collection and Laboratory Analysis

This study used soil samples collected from two experimental fields on 17 September
2020 and 22 October 2020. The samples were collected during the non-planting stage of the
field, and the nutrient content in the samples reflects the soil nutrient status of the sampling
site. Soil samples were collected using the systematic sampling method from the top
20 cm of the field surface, with approximately 500 g of samples being introduced into the
sample bag. The sample bags were marked with sample numbers, and the latitude and
longitude coordinates of the sampling points were recorded using GPS. A total of 72 and
49 soil samples were collected from these two experimental fields, respectively.
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The soil samples were collected and sent to the Laboratory of the Institute of Soil
Science, Chinese Academy of Sciences, for physicochemical analysis and processing. The
samples were further dried, and stones, residues, and impurities were removed. The
samples were then ground into a powder for subsequent physical and chemical analysis,
including the determination of total nitrogen and Olsen-P in the soil using the Kelvin diges-
tion method and the colorimetric method. The Kelvin digestion method is a widely used
approach for determining soil total nitrogen content, involving high-temperature digestion
with strong oxidizing agents to convert organic and inorganic nitrogen compounds into
analyzable forms. The determination of Olsen-P using the colorimetric method involved
the conversion of soil samples into phosphate ions within a solution, followed by their
reaction with reagents containing chromogenic agents to generate colored compounds.
Subsequently, the absorbance of these compounds was measured in order to rapidly and
accurately quantify the available phosphorus content in the soil [36]. The statistical results
obtained after testing of the nitrogen and phosphorus content in the soil at each sampling
point are presented in Table 1.

Table 1. Statistical table of physical and chemical data for 121 soil samples.

Total Nitrogen (g/kg) Available Phosphorus (mg/kg)

Mean 1.44 40.14
Maximum 1.91 89.74
Minimum 0.95 11.01
Variance 0.04 264.64
Kurtosis −0.20 0.05

Skewness −0.13 0.61

2.3. Remote Sensing Data Acquisition and Preprocessing

Sentinel-2, as a part of the Copernicus program of the European Space Agency (ESA),
is composed of multiple satellites that acquire medium-resolution images for various
applications, such as forest monitoring, water quality assessment, land cover change
detection, and disaster management [37]. This mission includes two satellites, namely,
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Sentinel-2A and Sentinel-2B, which share similar designs and orbits. Each satellite is
equipped with a multi-spectral instrument (MSI) and utilizes a three-mirror astigmatic
telescope with a 150 mm aperture and 600 mm focal length [16]. It captures 13 image
bands, including different spectral ranges such as visible light, near-infrared, and short-
wave infrared [17]. Using a push-broom method, MSI can achieve high-resolution images
spanning 290 km [38]. Sentinel-2 offers temporal data continuity with a revisiting period
of 5 days, which is accessible to all users [39]. However, their spatial resolution varies as
shown in Table 2: bands 2, 3, 4, and 8 are 10 m, bands 5, 6, 7, 8A, 11, and 12 are 20 m, and
bands 9 and 10 are 60 m [40].

Table 2. Sentinel-2 band properties.

Payload
Band

Central
Wavelength

(nm)

Spectrum
Width
(nm)

Payload
Band

Central
Wavelength

(nm)

Spectrum
Width
(nm)

Band1 442.7 21 Band8 832.8 106
Band2 492.4 66 Band8A 864.7 21
Band3 559.8 36 Band9 945.1 20
Band4 664.6 31 Band10 1373.5 31
Band5 704.1 15 Band11 1613.7 91
Band6 740.5 15 Band12 2202.4 175
Band7 782.8 20

The ZH-1 hyperspectral satellite (OHS) adopts a push-broom imaging technique with
a spatial resolution of 10 m, a spectral resolution of 2.5 nanometers, and a wavelength range
of 400–1000 nanometers as shown in Table 3. Due to storage limitations and compression
design, it transmits 32 spectral bands and has a weight of 71 kg [41]. Each hyperspectral
satellite can orbit the Earth approximately 15–16 times a day, with a maximum data
acquisition time of about 8 min per orbit. Currently, a single hyperspectral satellite has a
revisit period of six days, while the extended revisit period of eight hyperspectral satellites
is about one day [18].

Table 3. ZH-1 band properties.

Payload
Band

Central
Wavelength

(nm)

Spectrum
Width
(nm)

Payload
Band

Central
Wavelength

(nm)

Spectrum
Width
(nm)

Band1 466 5 Band17 716 7
Band2 480 5 Band18 730 6
Band3 500 4 Band19 746 6
Band4 520 6 Band20 760 6
Band5 536 5 Band21 776 6
Band6 550 5 Band22 790 5
Band7 566 4 Band23 806 6
Band8 580 5 Band24 820 6
Band9 596 5 Band25 836 4

Band10 610 5 Band26 850 4
Band11 626 5 Band27 866 6
Band12 640 6 Band28 880 6
Band13 656 5 Band29 896 3
Band14 670 5 Band30 910 9
Band15 686 6 Band31 926 4
Band16 700 6 Band32 940 4

The experiment aimed to ensure that the surface reflectance of the research area
obtained could faithfully represent the situation regarding soil sample collection. We
acquired the Sentinel-2 image from 15 October 2020 through the Google Earth Engine
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(GEE), which covered the date of field sampling. Considering that the image was free
of clouds, it was highly suitable for our study. Additionally, the ZH-1 image from
19 October 2020 was obtained from the ZH-1 Remote Sensing Data Service Platform
(https://www.obtdata.com, accessed on 24 April 2022) and was downloaded through an
application specifically designed for educational and research purposes.

Prior to the experiment, both images underwent preprocessing, which included ra-
diometric correction, atmospheric correction, and geometric correction. Furthermore, in
the Sentinel-2 imagery, bands with spatial resolutions other than 10 m were resampled to
achieve a uniform 10 m resolution.

2.4. Spectral Indices

In this study, we derived spectral indices from the bands of Sentinel-2 and ZH-1.
This selection was motivated by various vegetation indices reported in previous studies,
aiming to augment spatial information and enhance regression accuracy to some extent
by incorporating additional vegetation indices. In similar studies conducted by Zinhle,
vegetation indices were carefully screened, and the following indices were considered to
play a significant role in soil nutrient inversion [42]. Accordingly, we continued to utilize
these vegetation indices in our experiments. The vegetation indices based on vegetation
reflectance include normalized difference vegetation indices (NDVIRE1n, NDVIRE2n, ND-
VIRE3n) in the narrow bands, as well as a modified simple ratio (MSRRE). Furthermore,
these indices encompass the plant senescence reflectance index (PSRI), the enhanced vege-
tation index (EVI), and the green normalized difference vegetation index (GNDVI) [28,43].
The final spectral indices derived from Sentinel-2 which were used in this study are sum-
marized in Table 4. Additionally, for this investigation, we selected corresponding bands
from the Sentinel-2 and ZH-1 original data to calculate the same indices, and the results are
presented in Table 5.

Table 4. Spectral indices used in this study with Sentinel-2 data: The table consists of seven vegetation
indices and five soil indices. From left to right, the columns represent the names of the spectral indices,
their corresponding calculation formulas, the meanings of the spectral indices, and the reference
numbers for the literature sources that utilized these spectral indices.

Vegetation Index Equation Purpose Source

PSRI (B4 − B3)
B8A

Senescence-induced
reflectance changes [44]

NDVIRE1n (B8A − B5)
(B8A + B5)

Sparse biomass [45]

NDVIRE2n (B8A − B6)
(B8A + B6)

Sparse biomass [45]

NDVIRE3n (B8A − B7)
(B8A + B7)

Sparse biomass [45]

MSRRE (B8/B8A) − 1√
(B8/B8A) + 1

Correction for leaf
specular reflection [46]

EVI 2.5× (B8 − B4)
(B8 + 6 × B4−7.5 × B2) + 1

Chlorophyll-sensitive [47]

GNDVI (B8 − B3)
(B8 + B3)

Chlorophyll-sensitive [48]

Soil index Equation Property Source

BI ( (B42 + B32 + B22)
3 )0.5 Average reflectance

magnitude [49]

CI (B4 − B3)
(B4 + B3)

Soil color [49]

HI (2 × B4 − B3 − B2)
(B3 − B2)

Primary colors [49]

RI B42

(B2 × B33)
Hematite content [50]

SI (B4 − B2)
(B4 + B2)

Spectral slope [49]

https://www.obtdata.com
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Table 5. Spectral indices used in this study with ZH-1 data: The table consists of seven vegetation
indices and five soil indices. From left to right, the columns represent the names of the spectral indices,
their corresponding calculation formulas, the meanings of the spectral indices, and the reference
numbers for the literature sources that utilized these spectral indices.

Vegetation Index Equation Property Source

PSRI (B13 − B8)
B27

Senescence-induced
reflectance changes [44]

NDVIRE1n (B27 − B16)
(B27 + B16)

Sparse biomass [45]

NDVIRE2n (B27 − B19)
(B27 + B19)

Sparse biomass [45]

NDVIRE3n (B27 − B22)
(B27 + B22)

Sparse biomass [45]

MSRRE (B25/B27) − 1√
(B26/B27) + 1

Correction for leaf
specular reflection [46]

EVI 2.5× (B25 − B13)
(B25 + 6 × B13 − 7.5 × B3) + 1

Chlorophyll-sensitive [47]

GNDVI (B25 − B8)
(B25 + B8)

Chlorophyll-sensitive [48]

Soil index Equation Property Source

BI ( (B132 + B82 + B32)
3 )0.5 Average reflectance

magnitude [49]

CI (B13 − B8)
(B13 + B8)

Soil color [49]

HI (2 × B13 − B8 − B3)
(B8 − B3)

Primary colors [49]

RI B132

(B3 × B83)
Hematite content [50]

SI (B13 − B3)
(B13 + B3)

Spectral slope [49]

2.5. Machine Learning Regression Models
2.5.1. Random Forest Regression

Random forest is a supervised ensemble learning method that operates based on the
principles of decision trees as shown in Figure 3. This versatile algorithm is capable of
effectively handling both classification and regression problems [51,52]. The fundamental
concept underlying random forest involves creating a forest comprising multiple decision
trees, where each tree serves as a base learner and the entire ensemble embodies the concept
of ensemble learning [53,54]. The final model is generated by aggregating the average
output of each tree in the forest. Additionally, the algorithm utilizes out-of-bag samples,
representing unused data points that can be leveraged for model evaluation and assessing
variable importance [55,56]. Notably, random forest exhibits the ability to handle high-
dimensional feature data without necessitating feature selection. Scholar John employed a
set of machine learning algorithms, including an artificial neural network (ANN), a support
vector machine (SVM), cubist regression, random forest (RF), and multiple linear regression
(MLR), to predict SOC levels. Among these models, RF demonstrated the best performance,
with an R-squared value of 0.68 [27]. Furthermore, the algorithm boasts a concise set of
parameters, including the number of decision trees (n_estimators), the maximum depth
of each decision tree (max_depth), and the minimum number of samples required for
a node to split (min_samples_split) [57,58]. For this investigation, we conducted our
analysis utilizing the Scikit-Learn module within the Python environment. Employing
a grid search approach, we ascertained the optimal parameters and established a robust
model to accurately predict soil nutrient content.
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2.5.2. Extreme Gradient Boosting Regression

The extreme gradient boosting (XGB) algorithm, introduced by Chen and Guestrin
in 2016, is a novel machine learning approach as shown in Figure 4. It has demonstrated
remarkable performance in numerous international data mining competitions, surpass-
ing even deep learning algorithms. XGB falls under the category of gradient boosting
algorithms for classification and regression ensembles, making it applicable to both classifi-
cation and regression tasks [59,60]. The XGB training process involves two stages: fitting
the input training dataset and fitting the residuals. The main hyperparameters of XGBoost
include the number of decision trees, the learning rate, the maximum depth of trees, the
minimum sample weight, the subsample ratio used in each iteration, and the weight of the
L1 regularization term [57,61]. This training method significantly enhances the performance
of weakly supervised learning. Scholar Miao employed three machine learning models,
i.e., XGBoost, RF, and LightGBM, based on Sentinel-2 images for the purpose of estimating
leaf nutrient levels. The results demonstrated that XGBoost outperformed the other models
in terms of estimating leaf C, (with R2 values of 0.655, 0.799, and 0.829 for spring, summer,
and winter, respectively), N (with R2 values of 0.668, 0.743, and 0.704), and P (with R2

values of 0.539, 0.622, and 0.596) [62]. The fitting process underwent multiple iterations
until it met the convergence criterion. In this study, the XGB algorithm was adopted due
to its ability to mitigate overfitting issues and its superior performance [63]. The Xgboost
library in the Python environment was utilized for modeling purposes in this research.
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2.5.3. Experiments

In this study, we conducted research on characteristic variable images to simulate
different soil nutrient contents (total nitrogen and Olsen-P). In order to enhance the accuracy
and generalization capability of the model and to achieve a more stable performance, we
employed a larger set of samples for training, allowing the model to better learn the
features and patterns within the data. The dataset was divided into 90% training and 10%
testing subsets. Drawing inspiration from previous research, our aim was to compare the
effectiveness of different feature combinations to capture spectral information related to
vegetation and soil, thereby enhancing feature representation for the purpose of obtaining
more accurate and effective soil parameter estimation models. To achieve this, we employed
two models, random forest (RF) and XGBoost (XGB), along with two types of remote
sensing data with various combinations of variables, which are summarized in Table 6.

Table 6. The different data configurations for the machine learning regression experiments.

Experiment Number of Variables Data Configuration

1 12 Sentinel-2 raw bands
2 19 Sentinel-2 raw bands + vegetation indices
3 17 Sentinel-2 raw bands + soil indices
4 24 Sentinel-2 raw bands + vegetation indices + soil indices
5 32 ZH-1 raw bands
6 39 ZH-1 raw bands + vegetation indices
7 37 ZH-1 raw bands + soil indices
8 44 ZH-1 raw bands + vegetation indices + soil indices

For the two soil nutrients (total nitrogen and Olsen-P), the experimental setups in-
cluded the following combinations: (1) Sentinel-2 raw bands, (2) Sentinel-2 raw
bands + vegetation indices, (3) Sentinel-2 raw bands + soil indices, (4) Sentinel-2 raw
bands + vegetation indices + soil indices, and (5) Sentinel-2 raw bands + soil indices.
Additionally, the experimental setups comprised: (5) ZH-1 raw bands, (6) ZH-1 raw
bands + vegetation indices, (7) ZH-1 raw bands + soil indices, and (8) ZH-1 raw bands + vegeta-
tion indices + soil indices.



Agriculture 2023, 13, 1592 10 of 19

In this research, we employed a grid search as the method for model tuning. Grid
search is a widely used parameter optimization technique aimed at determining the opti-
mal hyperparameter combinations for machine learning models. It involves traversing a
predefined grid of parameter values, exploring different combinations, and evaluating the
performance of each combination to identify the best parameter settings [64].

2.6. Model Evaluation

This study used common machine learning verification indices to evaluate the pre-
diction performances of the RF and XGB models. These included mean absolute error
(MAE), root mean square error (RMSE), percent bias (PBIAS), and r-squared(R2), as shown
in Equations (1)–(4):

R2 = 1−

n
∑

i=1
(Oi − Pi)

2

n
∑

i=1
(Oi − Pi)

2
(1)

MAE =
1
n

n

∑
i=1
|Pi −Oi| (2)

RMSE =

√√√√ 1
n

n

∑
i=1

(Pi −Oi)
2

(3)

PBIAS =


n
∑

i=1
(Oi − Pi) ∗ 100

n
∑

i=1
Oi

 (4)

where n represents the number of sample points, Pi is the predicted soil content, and Oi is
the observed soil content at site i.

3. Results
3.1. Model Evaluation

In this study, we conducted model performance statistics as shown in Tables 7 and 8
on the testing data (n = 13 samples) and obtained the following results. Regarding the
estimation of the total nitrogen content in soil, the random forest model showed remarkable
performance, especially the RF1 variant (represented by experiment number 1 in Table 6),
which demonstrated outstanding results. This model exhibited the lowest root mean square
error (RMSE) and mean absolute error (MAE), indicating the highest accuracy in estimating
soil nitrogen content (RMSE = 0.10 g/kg, MAE = 0.07 g/kg), and it also achieved the
highest R-squared value (R2 = 0.74). It is noteworthy that, based on the prediction bias
(PBIAS = −2.66), the predicted values of total nitrogen were slightly higher than the
observed values.

Overall, among all models, the XGBoost (XGB) model in Experiment 8 performed
the most poorly. This model incorporated the raw bands, soil indices, and vegetation
indices of ZH-1. It had a higher error rate, as reflected by the higher RMSE and MAE
values (RMSE = 0.16 g/kg, MAE = 0.11 g/kg), and it achieved the lowest R-squared value
(R2 = 0.31). Moreover, this model overestimated the total nitrogen content, as indicated by
the prediction bias (PBIAS = −5.01).
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Table 7. Model evaluation statistics for the total nitrogen in different experiments.

Model R2 MAE RMSE PBIAS

RF1 0.74 0.07 0.10 −2.66
RF2 0.70 0.07 0.11 −2.74
RF3 0.70 0.07 0.11 −3.33
RF4 0.71 0.07 0.10 −2.99
RF5 0.55 0.09 0.13 −4.74
RF6 0.56 0.09 0.13 −4.12
RF7 0.56 0.09 0.13 −4.60
RF8 0.50 0.09 0.14 −4.73

XGB1 0.72 0.07 0.10 −2.03
XGB2 0.71 0.08 0.10 −2.32
XGB3 0.64 0.08 0.12 −2.64
XGB4 0.67 0.09 0.11 −3.32
XGB5 0.48 0.10 0.14 −4.76
XGB6 0.43 0.10 0.15 −3.92
XGB7 0.41 0.12 0.19 −5.35
XGB8 0.31 0.11 0.16 −5.01

Table 8. Model evaluation statistics for the Olsen-P in different experiments.

Model R2 MAE RMSE PBIAS

RF1 0.69 7.87 10.76 3.05
RF2 0.65 8.27 11.40 3.46
RF3 0.70 7.57 10.68 2.12
RF4 0.63 8.26 11.85 3.21
RF5 0.74 7.26 9.95 6.08
RF6 0.70 8.21 10.57 7.81
RF7 0.75 7.29 9.74 7.73
RF8 0.40 11.48 14.98 5.50

XGB1 0.56 9.32 12.95 10.80
XGB2 0.67 9.29 11.23 3.88
XGB3 0.63 8.78 11.82 7.50
XGB4 0.40 11.48 14.98 5.50
XGB5 0.75 6.41 9.79 2.31
XGB6 0.63 8.30 11.82 5.71
XGB7 0.74 7.72 9.83 0.99
XGB8 0.69 8.35 10.76 0.55

In the inversion model for total soil nitrogen, the overestimation of predicted values is
attributed to the presence of features with low correlations in the dataset, which negatively
impact the model. In future research, we will address this issue and work towards mitigat-
ing its influence. It is evident that PBIAS increases (decreases) with the addition of model
features. Considering the characteristics of the model, this trend may be attributed to the
introduction of noise from features with lower correlations in the dataset.

The XGB model from Experiment 5 emerged as the top-performing model for Olsen-
P estimation among all experiments. It demonstrated the highest accuracy in terms of
predicting Olsen-P content, with the lowest root mean square error (RMSE = 9.79 mg/kg)
and mean absolute error (MAE = 6.41 mg/kg), along with the highest R-squared value
(R2 = 0.75). The predicted values were slightly lower than the observed values, as indicated
by the prediction bias (PBIAS = 2.31).

On the other hand, the XGB model from Experiment 4 exhibited the poorest per-
formance. This model involved the original bands of Sentinel-2, soil indices, and veg-
etation indices. It had a higher error rate, which was evident from the elevated RMSE
(14.97 mg/kg) and MAE (11.48 mg/kg), and the lowest R-squared value (R2 = 0.40). Fur-
thermore, this model underestimated the Olsen-P content, as indicated by the percent bias
(PBIAS = 5.50).
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The effectiveness of the inversion models for total nitrogen and Olsen-P was evaluated
using the Taylor diagram shown in Figure 5 (generated using the plotrix package in R).
The Olsen-P inversion model exhibited an outstanding performance, with correlation
coefficients ranging from 0.8 to 0.95, demonstrating a close agreement with the actual
values, as illustrated in the Taylor diagram. For the total nitrogen inversion model, the
correlation coefficients were primarily distributed between 0.8 and 0.9. The inversion
results were consistent with observations from multiple models and demonstrated excellent
performance. According to the Taylor diagram, the best-performing total nitrogen inversion
model was RF1, which corresponds with the model evaluation results presented in Table 7.
RF1 displayed the highest accuracy in terms of estimating the total nitrogen content in the
soil. RF7 emerged as the optimal Olsen-P inversion model. This model exhibited strong
correlation and minimal errors when compared to the actual measured values.
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3.2. Variable Importance

In this study, we selected the best-performing RF and XGB models for the inversion of
each soil nutrient content, then compared and analyzed the significance of each feature.
The feature contributions of the soil total nitrogen and Olsen-P content inversion models,
as shown in Figures 6 and 7, varied. In the soil total nitrogen content inversion model,
RF1 demonstrated the best performance, with Sentinel-2′s B3 band contributing over 20%.
Among the four XGB models, XGB1 performed the best, with its highest contributing
feature being the same as RF1 nearly 15%. In the Olsen-P content inversion model, the
top-performing models were RF7 and XGB5. In the RF7 model, the feature with the highest
contribution was ZH-1′s B2 band, which contributed nearly 8%. In the XGB5 model, the
feature with the largest contribution was ZH-1′s B27 band, also contributing nearly 8%.
This indicates that Sentinel-2 data played a significant role in the inversion of soil total
nitrogen, while for the Olsen-P content inversion model, ZH-1 data had a more prominent
contribution. The observed changes in feature importance in the results can be attributed
to the presence of highly correlated features in the input data, which overshadowed the
importance of other features, resulting in variations in their contributions.
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3.3. Mapping Soil Nutrients Content

Zinhle has demonstrated in study that the combination of machine learning methods
with remote sensing data and derived spectral indices can accurately predict soil total
nitrogen content and generate spatial distribution maps [42]. Therefore, in this study,
different models were selected to predict and map the spatial distribution of soil total
nitrogen and Olsen-P content. RF1 and XGB1 models were chosen to predict and map
soil total nitrogen content, as shown in Figure 8a,b. From Figure 8a,b, significant spatial
variations in soil total nitrogen content between the two experimental fields can be observed.
In experimental field 1, the soil total nitrogen content in the southern part was notably
higher than that in the northern part, while in experimental field 2, the overall soil total
nitrogen content was higher in the northern part, ranging from 1.28 to 1.70 g/kg. The
spatial distribution of the soil Olsen-P content shown in Figure 8c,d was generally consistent
with that of soil total nitrogen content, with the Olsen-P content ranging from 16.34 to
68.76 mg/kg. In the scatter plots in Figure 9, it can be clearly observed that the data points
are not highly clustered. Additionally, the spatial distribution of soil nutrient content
predicted by the two models aligns, indicating that the experimental design in this study is
reliable and capable of producing trustworthy results.
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Figure 8. Spatial distribution map of soil nutrient content: (a) The spatial distribution of total nitrogen
was mapped with the random forest model for experiment 1. (b) The spatial distribution of total
nitrogen was mapped with the extreme gradient boosting model for experiment 1. (c) The spatial
distribution of Olsen-P was mapped with the random forest model for experiment 7. (d) The spatial
distribution of Olsen-P was mapped with the extreme gradient boosting model for experiment 5.
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4. Discussion

This study aims to evaluate the applicability of ZH-1 and Sentinel-2 satellite data for
mapping soil nutrients (total nitrogen and Olsen-P) in farmland soil in Suihua City, China.
Two machine learning algorithms, random forest (RF) and XGBoost (XGB), were employed
to assess the predictive capabilities of these data for soil nutrient content.

Regarding the soil total nitrogen content, our results demonstrate that the RF model
performed optimally when using Sentinel-2 data, with an R2 of 0.74 and RMSE of 0.10 g/kg.
Conversely, for the soil Olsen-P content, the XGB model outperformed using ZH-1 data,
showing an R2 of 0.75 and RMSE of 9.79 mg/kg, surpassing the RF model. The superior
performance of the Sentinel-2 data model in predicting soil total nitrogen can be attributed
to its sensitivity in detecting nitrogen compounds in the short-wave infrared range, as
indicated by the prominent contributions of Sentinel-2′s B11 and B12 bands in Figure 6 [65].
In contrast, ZH-1′s spectral range is 400–1000 nm; hence, for soil total nitrogen inversion,
the combination of Sentinel-2 data with machine learning algorithms yields better results.
The inversion of soil total nitrogen has shown a common overestimation phenomenon,
mainly due to the redundancy of features in the dataset. It can be observed that when ZH-1
data appears as a feature in the dataset, the overestimation of soil total nitrogen significantly
increases, likely due to the rapid increase in the number of features. In future research,
this issue will be addressed by optimizing the selection of model features to improve
model accuracy.

This study incorporated vegetation indices and soil indices to construct diverse
datasets for model training, with the aim of enhancing model accuracy and comparing the
performance disparities among models with different input features. Although, overall,
the model performance did not exhibit a significant improvement when using vegetation
indices as partial features, it is noteworthy that the combination of Sentinel-2 vegetation in-
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dices slightly outperformed the model utilizing soil indices for soil total nitrogen modeling,
as indicated in Tables 7 and 8. Furthermore, in the models utilizing vegetation indices, their
contribution was generally greater than that of other spectral bands. These findings are
consistent with the observations made by Zhang in their research, wherein conventional
spectral indices also played a role in nitrogen estimation [25]. Thus, judiciously selecting
vegetation indices and soil indices as model input features can indeed enhance spatial
information and improve regression accuracy.

It is worth noting that both the ZH-1 and Sentinel-2 satellite data performed well
in accurately mapping soil total nitrogen and Olsen-P contents using machine learning
regression models. Due to its higher spectral and spatial resolution, ZH-1 remote sensing
data provided more detailed information on soil nutrient content during Olsen-P inversion,
displaying considerable accuracy. This finding highlights the potential of ZH-1 data to
provide valuable soil nutrient variation information at a finer scale. This aligns with the
viewpoint presented in the studies by Sebastian [66] and Kawamura [67], indicating that
hyperspectral remote sensing images exhibit a certain advantage over multispectral remote
sensing images in terms of capturing key soil parameters. In the context of precise soil
nutrient mapping, the spatial resolution of digital soil mapping products for total nitrogen
and Olsen-P has increased from 250 m to 30 m [31]. During the production of these products,
the inversion accuracy and spatial resolution of nutrient distribution largely rely on the
spatial and spectral resolution of input remote sensing data. This study introduced ZH-1
hyperspectral remote sensing data and demonstrated its excellent potential in soil Olsen-P
content retrieval experiments. The Olsen-P inversion mapping method proposed in this
study contributes to the potential of obtaining the spatial distribution of soil Olsen-P content
in farmland more rapidly and accurately through remote sensing data, thus promoting the
development and implementation of precision agriculture.

Undeniably, our research has certain limitations. The sample collection in the study
was relatively limited, focusing solely on a relatively small geographic area. However, for
larger-scale precision agriculture projects, a more extensive and comprehensive collection
of soil samples becomes crucial. With broader coverage, future research will incorporate
ground-based environmental factors and other data (such as soil type, DEM, slope, and
aspect) as supplementary features into the model, aiming to significantly enhance the
predictive accuracy. This important enhancement will make a substantial contribution to the
refined inference and prediction of soil nutrient contents, thereby providing more reliable
support for decision-making regarding agricultural production. Additionally, greater
attention should be given to feature selection and interpretability of the models. These
considerations are of paramount importance for the advancement of precision agriculture.

5. Conclusions

Based on machine learning regression methods, combined with Sentinel-2 multispec-
tral data and ZH-1 hyperspectral data, this study inversely estimated the total nitrogen
content and Olsen-P content in farmland soils. Through experiments on different combi-
nations of predictive factors, this study found that different factors have different effects
on the prediction of soil parameters, and the best-performing model varies depending on
the different soil parameters. Among them, the RF1 model performed best in the inverse
estimation of the total nitrogen content, reaching R2 = 0.74 and RMSE = 0.10 g/kg, while
the XGB5 model performed best in the inverse estimation of Olsen-P content, reaching
R2 = 0.75 and RMSE = 9.79 mg/kg. In addition, this study also found, through comparative
analysis, that when predicting soil total nitrogen content, the original bands of Sentinel-2
contribute more to the prediction results, proving that Sentinel-2 plays an important role
in predicting soil total nitrogen content. When predicting soil Olsen-P content, the origi-
nal bands of ZH-1 hyperspectral data contribute more to and have a positive impact on
the prediction results. These high-contribution features are the basis for establishing soil
parameter prediction models. Finally, this study has generated spatial distribution maps
of soil total nitrogen and Olsen-P, which can serve as valuable tools to guide agricultural
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production decision-making and aid in formulating field-scale soil nutrient management
plans to increase crop yields and enhance food security. The application of these maps
holds great potential, not only for promoting the development, but also for facilitating the
implementation of precision agriculture.
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