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Abstract: Maize is an important crop to ensure food safety. High-quality seeds can guarantee a good
yield. The maize seed germination rate is the most important information for the maize industry,
which can be obtained through the seed germination test. An essential stage in determining the
germination rate is the planting of the seeds. The current seed planting process is fully manual, which
is labor-intensive and costly, and it requires the development of an autonomous seeding machine.
This research developed an automatic maize seeding machine, consisting of four operations: paving
sand, seed layout, watering, and covering the seed. Among the four procedures, sand paving is a
crucial step, the performance of which is affected by the gate opening size, conveyor speed, and
sensor mounting location. Three performance evaluating factors are the weight of sand in the tray,
the volume of sand left on the conveyor, and sand surface flatness. A full factorial experiment
was designed with three variables and three levels to determine an appropriate factor combination.
RGB-D information was used to calculate the volume of sand left on the conveyor and sand flatness.
An analytic hierarchy process was employed to assign weights to the three evaluation indicators and
score the various combinations of factors. The machine for paving sand achieved a satisfactory result
with an opening size of 10.8 mm, a sensor distance of 9 cm, and a conveyor belt speed of 5.1 cm/s.
With the most satisfactory factors determined, the machine shows superior performance to better
meet practical applications.

Keywords: automatic maize seeding machine; sand-paving device; image processing; analytic
hierarchy process

1. Introduction

Maize production plays a crucial role in ensuring global food security [1], and China
holds the position of the second-largest maize producer worldwide [2]. The germination
rate of seeds holds significant importance as it directly impacts the overall yield, serving as
a vital indicator of seed quality. In China’s seed production industry, Standard GB/T 5243.4
is employed to determine the seed germination rate, encompassing both seed planting and
seedling counting processes. While computer vision has been utilized in various studies
for automated seedling counting [3,4], seed planting remains a fully manual process. The
manual sowing procedure involves several distinct steps. The process starts with the
operator preparing the tray. Firstly, they cover the tray with sand and then flatten it to
create a smooth surface (Step 1). Next, the operator evenly distributes the seeds onto the
sandy surface of the tray. To aid germination, they spray water onto the seeds (Step 2). In
order to ensure optimal conditions for seed growth, another layer of sand is then added
on top of the seeds, providing additional protection and support (Step 3). Finally, the
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prepared tray is placed into an incubator that creates a suitable environment to promote
seed germination (Step 4). The subjective nature of operators can have an impact on
the results of the experiment [5–7]. Moreover, the repetitive and extended tasks of sand
flattening and sowing can pose occupational health risks for workers, including back and
wrist injuries [8]. Therefore, there is a need for the development of an autonomous maize
seeding machine.

This study designed and developed a maize seed sowing machine to automatize
the seeding process, which encompasses four modules: sand-paving tray, seed release
mechanism, water spraying, and covering the seed with sand. The initial step involves
paving the tray with sand, followed by the crucial task of leveling or flattening the sand.
Without proper flattening, when seeds are released onto the sand, there is a risk of them
rolling away from their intended position, disrupting the predetermined uniform pattern.
This disruption can lead to challenges in accurately counting and assessing the stand,
as multiple seeds may germinate in close proximity. Therefore, maintaining a flat sand
surface is essential, as it ensures the desired uniformity for successful seed distribution and
germination.

The levelness of the sand surface directly influences seed germination. In a study by
researchers [9], different soil-covering and compacting devices were compared, and factors
such as soil morphology and compaction were evaluated. Xu et al. (2021) developed a
mathematical model to describe the relationship between soil output, mulch disc depth, and
mulch disc helical blades [10]. To overcome the subjectivity and inaccuracy associated with
manual observation, this experiment employs an RGB-D camera to quantitatively assess
sand volume and flatness [11]. It has been demonstrated by Zhou et al. (2021) that RGB-D
cameras can effectively capture RGB and depth data [12]. These cameras have gained wide
adoption in agriculture and have shown favorable results in various practical applications,
including plant phenotyping [13], 3D segmentation of plants, and obstacle detection for
agricultural robots [14,15]. Therefore, utilizing an RGB-D camera for evaluating the sand
surface represents a promising option.

With the ultimate objective of achieving practical implementation of the automatic
maize seeding machine, this study aimed to explore the impact of three factors, namely
gate opening size, sensor mounting location, and conveyor speed, on the evaluation of
sand surface flatness. The goal was to determine the optimal combination of parameters
for effective practical application.

2. Materials and Methods
2.1. Brief Introduction to the Automatic Maize Seeding Machine

The automatic maize seeding machine, shown in Figure 1, has been innovatively
designed. It comprises a conveyor belt and four distinct modules operating independently:
(1) sand paving, (2) seed placement, (3) watering, and (4) sand covering. At the beginning
of the process, an empty tray is positioned on one end of the machine (the left-hand side
in Figure 1). As the conveyor belt transports the tray forward, its position is constantly
monitored by sensors (GP2Y0A21, manufactured by Sharp Corporation in Osaka, Japan).
When the tray is detected nearing the sand-paving device, the motor is activated, opening
the gate to commence the sand-paving process. Upon detection of the tray leaving the
sand-paving device, the motor is triggered to close the gate, signaling the end of the sand-
paving process. Following the sand-paving phase, the tray proceeds to the seed placement
mechanism, where seeds are released onto the sand surface. Subsequently, the tray moves
forward into the watering section. Finally, the tray reaches the second sand-filling section,
where the seeds are covered with sand.
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Figure 1. Automatic maize seeding apparatus: (1) Sand-paving device; (2) Seed placement device;
(3) Watering device; (4) Sand-covering device; (5) Conveyor for transporting trays; (6) Watering can;
(7) Roller brush for sweeping the seeds; (8) IR sensor for monitoring tray location; and (9) Empty tray
for seed germination test.

The automatic maize seeding machine was developed by our team to fully replace
the labor for seeding. Among the four key procedures (i.e., sand paving, seed placement,
watering, and sand covering), the first procedure of sand paving is a crucial step, which
functions to pave the tray with sand. The evenness of the sand surface is crucial for
successful sand paving. Uneven surfaces can cause seed displacement and result in seeds
rolling away from their intended landing location. This can lead to inconsistencies in the
final location of the seeds and negatively impact the overall quality of the paving. The
sand-paving device plays a crucial role in determining the machine’s performance. Prior to
the seeds being released onto the sand, they are arranged in a desirable uniform pattern.
Any disruption to this pattern can result in two seeds germinating at the same location,
presenting a challenge when it comes to accurately counting the seedlings. Therefore, the
efficacy of the sand-paving device is critical for ensuring successful seed distribution and
subsequent seedling monitoring.

2.2. Sand-Paving Device

The sand-paving device (Figure 2) has a dimension of 297 mm × 290 mm × 400 mm, and
the bottom plate has a slope of 45◦, which would automatically move the sand downward to
the tray. The gate open and close is controlled by a 24V DC motor with a max 180 mm/s
linear speed and a 100 mm stroke. The control system of the paving device utilizes an
Arduino board (UNO R3, Arduino, Strambino, Italy). The system operates as follows:
the sensor detects the presence of the tray by measuring the distance between the sensor
and the tray. When the tray enters the sensor’s view, the measured distance decreases
from over 10 cm to less than 10 cm. This prompts the Arduino to send a signal to the
relays (JQC-3FF-S-Z 5V D.C.; Shenzhen Weixin, Shenzhen, China) in order to open the gate.
Conversely, when the tray moves out of the sensor’s view, the measured distance increases
from less than 10 cm to over 10 cm, signaling the Arduino to close the gate by triggering
the relays.
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Figure 2. Newly developed sand−paving device: (a) Circuit diagram; (b) Sand-paving device;
(c) gate in closed mode; and (d) gate in open mode.

2.3. Experimental Procedure

A full factorial experiment design was employed to evaluate the significance of factors
and explore all possible combinations of factor levels. This approach enables a comprehen-
sive comparison of the impact of different factor combinations on machine performance.
The first factor examined is the conveyor speed, which influences the duration of the tray’s
movement beneath the sand gate and consequently affects the flatness of the sand surface.
The second factor is the gate opening size, which directly determines the rate at which sand
is filled. Lastly, the relative distance of the sensor to the sand-filling gate is examined as the
third factor.

The three factors were configured with three levels each: (1) conveyor speeds of 0.13,
0.51, and 0.65 m/s; (2) gate opening sizes of 7.2, 9.0, and 10.8 mm; and (3) sensor positions
relative to the sand control gate of 40.0, 70.0, and 90.0 mm (the relative distances were
determined through preliminary experiments). In total, there were 27 unique settings, with
each setting replicated three times, resulting in a total of 81 runs.

After each run, three parameters were recorded: the weight of the tray, the volume of
sand remaining on the conveyor belt, and the flatness of the sand surface. Additionally,
RGB-D information was collected using an Intel RealSense D435i camera from Santa Clara,
California, U.S. These data were collected for both the tray and the sand on the conveyor
belt. To obtain the tray weight, the tray was carefully moved away from the conveyor and
weighed using a scale (SNJ-50001; SINUOJIE, Shenzhen, China). The image data were
processed using MATLAB R2022a (The Mathworks, Inc., Natick, MA, USA). Origin 2022
(OriginLab, Inc., Northampton, Mass., USA) was used for image plotting, while third-party
libraries such as NumPy and OpenCV were used in Python. Figure 3 shows the overall
procedure for determining the satisfactory combination of factors.



Agriculture 2023, 13, 1538 5 of 16Agriculture 2023, 13, x FOR PEER REVIEW  5  of  16 
 

 

 

Figure 3. The overall procedure of determining the optimal sand-paving parameters of a newly de-

veloped automatic maize seeding machine. 

2.4. Calibration of the RGB-D Data 

2.4.1. Depth Information 

The evenness of the sand surface is one of the more important topics in this research. 

However, directly measuring the sand surface presents challenges. In this study, RGB-D 

information is leveraged to measure the flatness. Before utilizing the depth information to 

evaluate sand evenness, a calibration process is conducted to ensure accurate sensor data. 

A manually built staircase using an A4 sheet with known dimensions was used to 

calibrate the depth data (Figure 4). In this study, the effect of ambient light is not received 

by the calibration effect, as these data were collected in a dark environment. Twenty A4 

sheets were used to construct each step of the stairs, and their thickness was maintained 

at 3 mm after measurement with a caliper.  It was  found  that  the measuring error was 

within 0.1 mm. Figure 4 visually demonstrates the evident staircase pattern, with a notice-

able 3 mm difference in height between steps. This suggests that the depth data resolution 

can achieve a  level of 1 mm, making  it suitable  for assessing  the evenness of  the sand 

surface. 

 

Figure 4. RGB-D camera calibration for depth information using A4 paper staircase. 

2.4.2. RGB Image Calibration 

In addition to calibrating depth information, it is necessary to check the distortion of 

the collected RGB images [16]. An A4 sheet was placed on the conveyor belt, and an RGB 

Figure 3. The overall procedure of determining the optimal sand-paving parameters of a newly
developed automatic maize seeding machine.

2.4. Calibration of the RGB-D Data
2.4.1. Depth Information

The evenness of the sand surface is one of the more important topics in this research.
However, directly measuring the sand surface presents challenges. In this study, RGB-D
information is leveraged to measure the flatness. Before utilizing the depth information to
evaluate sand evenness, a calibration process is conducted to ensure accurate sensor data.

A manually built staircase using an A4 sheet with known dimensions was used to
calibrate the depth data (Figure 4). In this study, the effect of ambient light is not received
by the calibration effect, as these data were collected in a dark environment. Twenty A4
sheets were used to construct each step of the stairs, and their thickness was maintained at
3 mm after measurement with a caliper. It was found that the measuring error was within
0.1 mm. Figure 4 visually demonstrates the evident staircase pattern, with a noticeable
3 mm difference in height between steps. This suggests that the depth data resolution can
achieve a level of 1 mm, making it suitable for assessing the evenness of the sand surface.
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2.4.2. RGB Image Calibration

In addition to calibrating depth information, it is necessary to check the distortion of
the collected RGB images [16]. An A4 sheet was placed on the conveyor belt, and an RGB
image was collected (Figure 5). A MATLAB® tool, color thresholder, was used to separate
the A4 paper and extract the mask image.
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Figure 5. RGB image and segmentation: (a) Original image; (b) corresponding binary image after
thresholding; and (c) four vertices of the binary image connected.

The corner Harris function, implemented in the OpenCV library, was utilized to
detect the coordinates of the four vertices in the binary image. Upon computation, it
was determined that the length of the upper and lower edges of the A4 paper matched
that of the left and right edges. Additionally, in Figure 5c, the lines connecting the
four vertices closely aligned with the boundaries of the A4 paper in the binary image.
From these observations, it can be inferred that the camera-captured images exhibited
minimal distortion. The actual area corresponding to a pixel can be calculated by counting
the number of white pixels in image N (Figure 5c). The area corresponding to pixels
was utilized in the following study as the actual volume of sand needed to be measured.
The size of an A4 paper is known to be 210 mm × 297 mm. The value of 0.19 mm2, ob-
tained after calculation, represents the area corresponding to one pixel as determined by
Equation (1).

s =
N

210 × 297
(1)

2.5. Data Acquisition for the Experiment

The RGB-D camera was installed 0.51 m above the conveyor, and the illumination was
provided using two LED lights (RS-40; Shenzhen Ruisekeji, Shenzhen, China). Before each
experimental run, the weight m1 of the empty tray was measured, and after the sand was
filled in the tray, it was transported by the conveyor belt to the view of the RGB-D camera
for data acquisition. The tray was then weighed again with the sand to obtain the weight
m2. Thus, the weight of sand is m2 − m1. All captured RGB images and depth information
tables are standardized with a size of 480 × 848 pixels, signifying that each RGB image
pixel corresponds to a specific depth value. Lastly, for each trial, two RGB photos were
taken: one of the trays and one of the conveyor belts (capturing the sand left on the tray),
along with their corresponding depth information.

2.6. Images Preprocessing

In the collected RGB image (Figure 6a), there is significant noise present in the non-
conveyor areas. To facilitate subsequent data processing, the noisy regions of the image
were converted into black areas. In the original image, reflections caused by the conveyor
belt manifest as bright areas in the picture. These white highlights pose a major challenge
for target segmentation, as it becomes difficult to distinguish between the sand and the
reflection in the S channel of the HSV (hue saturation value) color space (Figure 6b). To
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mitigate this interference, an approach was implemented to identify the highlighted areas
and replace them with the color values of the adjacent pixels, effectively eliminating the
highlights in the target region of the image. Figure 6d illustrates the noticeable difference
after the elimination of highlights, where a clear distinction can be observed between
reflection areas and the sand in the S channel. The fast marching method image correction
approach, as developed by Telea (2004) [17], was employed for this purpose. As seen in
Figure 6c, this repair method demonstrates the potential for producing superior results
compared to previous repair algorithms.
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2.7. Evaluation Metrics

In this study, the weight of the sand in the tray, the volume of sand on the conveyor
(outside the tray), and the evenness of the sand surface are the three parameters employed
to determine the optimal combination of factors.

2.7.1. The Weight of Sand in the Tray

The weight of sand plays a crucial role in the sand-filling process and has a significant
impact on seed germination [18]. It is directly measured in the experiment using an
electronic scale. The weight of sand applied in each experiment is determined by weighing
the empty tray and subsequently re-weighing the tray after the sand-paving process is
completed. The difference between the two measurements represents the weight of sand
in the tray. A higher sand weight generally ensures a favorable environment for seed
germination and is therefore preferred.

2.7.2. The Volume of Sand Leaked onto the Conveyor Belt

The amount of sand that spills onto the conveyor belt can vary depending on the
timing of the gate opening and the speed at which the conveyor moves during the sand-
paving process. Any sand that falls outside the tray is considered a loss and cannot be
reused. An increase in the volume of sand outside the tray leads to a proportional increase
in the magnitude of loss. Therefore, when dealing with different levels of the selected
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factors, measures should be taken to minimize these losses, particularly by reducing the
volume of sand that falls outside the tray. The sand on the conveyor belt needs to be
separated from the image, and then the heights of each pixel corresponding to the sand
should be summed to calculate the amount of sand that has spilled outside the tray.

Color thresholding was applied after removing the highlights to isolate specific colors
in the image (Figure 7). In this study, the HSV format was used for color thresholding. The
HSV color space is more aligned with human visual perception than the RGB color space
because it effectively separates intensity from hue (H) [19]. However, due to slight varia-
tions in lighting conditions within the experimental environment, there were disparities in
color between the images, leading to suboptimal results in color thresholding as depicted
in Figure 7(b2). Upon careful examination of sand characteristics, it was discovered that
the sand could still be successfully distinguished and separated from the background.
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In contrast, the poorly separated areas occupy a relatively large area, as shown in
Figure 7(b2). Therefore, the pixel values of the non-masked areas in all segmented images
were counted. The area of all non-masked regions in the pictures was binary classified using
K-means [20] to discriminate between the two segmentation situations (Figure 7(b1,b2)).
The remaining 14 images were labeled low quantity and segmented using the YCbCr color
space to produce binary images (Figure 7(c2)). A total of 76 images were directly converted
into binary images (Figure 7(c1)), while the remaining 14 images were segmented directly
into binary images (Figure 7(c2)). The reason for selecting this color space for segmentation
is that the images clearly show uneven illumination, and the YCbCr color space is more
suitable for image segmentation based on chromaticity and intensity [21]. Two sets of
binary images with improved segmentation results were obtained after each set of images
was processed separately, and the parameters were adjusted through continuous trial
and error (Figure 7(c1,c2)). The following steps were taken to remove noise from the
segmented binary images: (1) filling the ‘holes’ in the white areas using the built-in function
in MATLAB® to fill the binary image and (2) setting all regions in the image with fewer
than 500 pixels to black. Finally, the area of sand that leaked outside the tray was obtained
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(Figure 7(d1,d2)) after these steps were taken. The area of each pixel in the processed images
was determined during the preprocessing steps described in previous sections. Counting
the number N of images with white pixels (with a value of 1) is essential to determine the
area s of sand that has leaked outside the tray and passed (Equation (2)).

S = 0.19 · N (2)

To generate the depth information table (referred to as BWD) with a mask, the binary
image (BW) representing the sand that spilled outside the tray after processing needs to
undergo a dot product with the depth information table (D). Additionally, it is crucial
to calculate the distance between the depth camera and the conveyor belt. Due to slight
vibrations in the movement of the conveyor belt and the equipment during each experiment,
there may be minor variations in the distance between the depth camera and the conveyor
belt. In this process, the average depth information of the black region in the center of the
binary image, measuring 100 × 100 pixels, is considered the distance between the depth
camera and the conveyor belt. By subtracting the height (h) from the non-zero elements
of the matrix (BWD), a corresponding height matrix (H) is obtained for each pixel block.
Finally, the volume (V) of the sand that leaked outside the tray can be calculated using
Equation (3).

H � S = V (3)

2.7.3. Sand Surface Flatness

To calculate the flatness of the sand, it is necessary to localize the region of the sand.
However, localizing this region can be a challenging task, mainly due to the mirror effect
caused by the metal tray wall. This effect creates noise that closely resembles the appearance
of the sand itself. In order to overcome this challenge, this study employed a combination of
edge detection and color thresholding techniques. This approach enabled the segmentation
of the sand region located in the middle of the tray with greater accuracy and precision.

First, RGB images (Figure 8a) are segmented using color thresholding. It is visible
that the plate and the sand are brighter than other areas. This is because the HSV color
space is more closely related to human perception of color than the RGB color space and
can effectively distinguish the brightness and saturation levels of colors. Therefore, this
study performed segmentation in the HSV color space and generated a mask image. After
masking out the non-target areas at the edges accordingly, the plate’s and sand’s overall
region can be obtained. The built-in function in MATLAB® was used to fill the binary
image and remove the regions with fewer than 500 pixels (Figure 8c).

The RGB image is first subjected to a Gaussian filter using a 7 × 5 convolution filter,
and the blurred image is then processed using the Canny operator for edge detection. Two
different thresholds were set to detect edges in the image. The first threshold (set to 5)
detects obvious edges, while the second threshold (set to 50) connects these edges. The
convolution kernel is iteratively selected by trial and error to achieve the best results. This
operation is performed three times using a 9 × 9 convolution kernel, each iteration using
the same kernel size. After processing, a final binary image, the edge map, is obtained
(Figure 8d). However, edge discontinuity is a common phenomenon in edge detection
algorithms, and the Canny algorithm does not perform well in noise. After obtaining the
edge map, this experiment also performed dilation and erosion operations. The dilation
operation mainly increases the area of pixels with a value of 1 (white pixels). In contrast,
the erosion operation mainly increases the size of pixels with a value of 0 (black pixels).

• By observing the image of the results, it can be seen that the unconnected parts of the
edges are mainly concentrated in the lower part and the four corners. Therefore, it
requires appropriately modifying the convolution kernel of the dilation operation to
link the edges. After testing, a convolution kernel with a size of 9 × 7 was selected.
This convolution kernel can dilate more in the horizontal direction and less in the



Agriculture 2023, 13, 1538 10 of 16

vertical direction while maintaining connectedness among all horizontal lower edges
and achieving the highest possible boundary accuracy.

• To ensure the edge is as precise as possible, it is necessary to perform an erosion
procedure after the dilation operation to reduce its expansion. After extensive testing,
a convolution kernel with a size of 7 × 6 was eventually chosen for the erosion
procedure. The reason for selecting an asymmetric convolution kernel with unequal
sides is to correspondingly reduce the width of the edge caused by the dilation and
to follow the dilation convolution kernel after trial and error (Figure 8e). Next, the
binary image of the overall region of the plate and sand mentioned above is added
using matrix addition. The image segmentation detects areas where pixel values are
not equal to 1 and sets them to 0. The corresponding area of sand in the tray can
be obtained by directly finding the largest connected region in the extracted image
(Figure 8f). Then, denoising and edge smoothing operations are performed to obtain
the image with the mask, as shown in (Figure 8g).

• In the last step, the sand region’s binary image can be obtained. Then, the correspond-
ing depth information of the sand in the tray can be obtained by taking the dot product
of the binary image and depth point cloud information (Equation (4)). After denoising
the point cloud information, the standard deviation is calculated to determine the
flatness of the sand in the tray from the corresponding image.

I � D = SD (4)
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2.8. Determining the Satisfactory Factor Combination

This experiment used the analytic hierarchy process (AHP) to discover a good combi-
nation of the three factors (i.e., sand weight in the tray, sand volume left on the conveyor,
and sand surface flatness). AHP is a technique that may prioritize decisions based on
pairwise comparisons and expert assessment [22]. The primary process of using AHP
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is as follows: (1) data normalization; (2) establishing a judgment matrix; (3) consistency
analysis; (4) calculating weights; and (5) calculating scores for each factor level combination.
Normalization must be conducted as the first step to account for the significant difference
in data magnitude between the three evaluation indicators. However, as weight serves
as a positive indicator (where higher values indicate better performance), it is necessary
to perform positive indicator normalization using Equation (5). Conversely, as volume
and standard deviation act as negative indicators (where lower values indicate better per-
formance), a negative indicator normalization using Equation (6) is required. Finally, the
normalized values of the three indicators (weight, volume, and flatness) are obtained.

Xnormal =
X − Xmin

Xmax − Xmin
(5)

Xnormal =
Xmax − X

Xmax − Xmin
(6)

A judgment matrix was created using Saaty’s scoring method to compare each pair of
indicators, and the corresponding scoring criteria are presented in Table 1. Saaty’s scoring
criteria offer a clear and accurate evaluation of the level of different factors, and they are
widely adopted because of their ease of comprehension. Based on the scores given by three
experts and taking the median value, it was determined that the importance of flatness
to weight and volume are 7 and 4, respectively. On a scale of 1 to 9, the importance of
volume to weight is rated at 3, while flatness is rated at 1/4. Also, the importance of weight
to volume and flatness are rated 1/3 and 1/7, respectively. The judgment matrix can be
constructed as follows.

A =

1 0.33 0.14
3 1 0.25
7 4 1

 (7)

Table 1. Saaty’s scoring scale and its explanation.

Score Explanation

1 Equal importance
3 Moderate importance
5 Very strong importance
7 Intermediate between extreme and very strong importance
9 Intermediate between very strong and strong importance

2, 4, 6, 8 The importance is somewhere in between

The maximum eigenvalue of the judgment matrix is λmax = 3.032. RI can be found to
be 0.58, provided by Saaty’s AHP method. Using Equation (8), the consistency index (CI)
can be calculated using Equation (9), and the consistency ratio (CR) can be calculated.

CI =
λmax − n

n − 1
(8)

CR =
CI
RI

(9)

CR = 0.0311 < 0.1 (10)

If CR is less than 0.1, it is considered to have passed the consistency check (Equation
(10)) in this experiment. Then, the weights can be calculated using the arithmetic mean
method, and the weights are shown in Table 2.
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Table 2. Indicators and their corresponding weights.

Indicators Weights

Weight 0.086
Volume 0.213
Flatness 0.701

By utilizing the weights derived from the AHP method, Equation (11) can be employed
to compute the scores for all possible combinations of conditions.

score = 0.086 × W + 0.213 × V + 0.701 × F (11)

The experiment repeated the same factor level combination three times to prevent
data randomness. The average values of weight, volume, and flatness indicators from three
repetitions were used for those indicators in that factor level combination. Table 3 shows
the experimental factors and levels.

Table 3. Factors and levels of the experiment.

Level Factor A: Gate Opening Size
(mm)

Factor B: Sensor Location
(mm)

Factor C: Conveyor Speed
(mm/s)

1 7.2 40.0 13.0
2 9.0 70.0 51.0
3 10.8 90.0 65.0

3. Results and Discussion
3.1. Weight of Sand in the Tray

Figure 9 shows the weight of sand in the tray under different factor combinations. It
can be seen that when Factor A (gate opening size) and Factor C (conveyor speed) remain
constant, the change in Factor B does not result in a significant weight variation, which
means that the distance of the sensor has little effect on the weight of the sand in the tray.
We calculate the standard deviation of Factor B under the same conditions as Factor A and
Factor C. The standard deviations, relative to the mean of Factor B, are generally lower
than 15%. The size of the opening plays a crucial role, particularly when it reaches the
maximum opening size (A3). At this point, there is a significant difference in the weight of
sand present in the tray compared to the two other opening sizes (A1 and A2). Additionally,
the speed of the conveyor belt has a notable effect on the sand in the tray. As the conveyor
belt speed increases, the weight of the sand in the tray decreases.
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3.2. The Volume of Sand Outside the Tray

Figure 10 shows the volume of sand under different factor combinations. The volume
of sand outside the tray (left on the conveyor) increases when the conveyor belt speed
increases. When the conveyor belt speed is fast, the tray moves quickly and may exit the
gate area before the gate is fully closed, causing sand to be left on the belt. Furthermore,
the positioning of the sensor is also a significant factor affecting the performance. Placing
the sensor closer to the device greatly reduces the volume of sand leaked outside the tray,
while placing it farther away results in more sand leakage. When the gate opened before
trays are delivered under the device, a large amount of sand will fall on the conveyor. If
the device aperture is tiny and the sensor is located near the device, a large amount of sand
will be wasted. This can occur even when the conveyor belt speed remains constant. On
the other hand, the amount of sand lost is less if the device hole is wide and the sensor is
positioned further away.
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3.3. Flatness of Sand Surface in the Tray

Figure 11 illustrates the variation in flatness across different factor combinations. The
flatness of the sand within the tray is observed to be poor in cases where the opening
size is either the smallest or the largest. This may be attributed to the uneven distribution
of sand when the opening is small, and a higher quantity of sand falling simultaneously
when the opening is wide. Moreover, the contact force between sand particles and the
subtle vibrations resulting from the motor movement can also influence the final flatness
of the sand within the tray. The experimental data indicate that, on average, the flatness
level is better when using a moderate opening size (A2) compared to the other two sizes.
Additionally, it is observed that a slower conveyor belt speed can yield a relatively flat sand
surface when the opening is small. Conversely, a faster conveyor belt speed is required
when dealing with a larger opening size to achieve a relatively flat sand surface in the
tray. When the sensor is placed closer, the flatness of the sand in the tray tends to decrease.
Conversely, when the sensor is positioned farther away, the flatness improves. This occurs
because when the sensor is in close proximity to the sand outlet, the tray enters beneath the
outlet before the device reaches the desired size, resulting in uneven sand distribution in
front of the tray.
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3.4. Satisfactory Combination

Two combinations, A3B3C2 and A2B1C3, both yield scores above 0.8 when calculated
using Equation (11). The combination A3B3C2 corresponds to an opening size of 10.8 mm, a
sensor distance of 9.0 cm, and a conveyor belt speed of 5.1 cm/s. Similarly, the combination
A2B1C3 represents an opening size of 9.0 mm, a sensor distance of 4 cm, and a conveyor
belt speed of 6.5 cm/s. Various score values were tested based on the expert-assigned
importance rules (where flatness is deemed more important than volume, and volume
is considered more critical than weight). However, even with different score values, the
combinations A3B3C2 and A2B1C3 consistently achieved the highest scores. According to
our scoring calculation method, this experiment identifies A3B3C2 as the best combination
while acknowledging that A2B1C3 is also a favorable choice. During the experiment, it
was noticed that the flatness of the sand surface is affected by the sand-filling rate and the
speed at which the tray moves (conveyor speed). The sand-filling rate is controlled by the
gate opening size. Thus, regarding the sand surface flatness, the gate opening size and the
speed of the conveyor are the two factors requiring investigation. Sand that falls onto the
belt, not in the tray, is wasted. Adjusting the timing of the device’s opening and closing can
help reduce the amount of wasted sand. Since the time adjustment is related to the location
of the sensor, the sensor installation place is another factor requiring investigation. Thus,
the effects of three factors (i.e., gate opening size, conveyor speed, and sensor mounting
location) on the machine performance should be studied.

4. Conclusions

This study focused on the development of an automated seeding machine, which
involved four distinct phases: sand paving, seed positioning, watering, and sand covering.
The performance of the machine was influenced by three factors: conveyor belt speed,
gate opening size, and sensor horizontal distance from the sand gate. To evaluate its
performance, three parameters were considered: the weight of sand in the tray, the volume
of sand outside the tray, and the flatness of the sand. The analytic hierarchy process was
employed to determine the optimal combination by exploring the relationship between
these three assessment indicators.

The evaluation process placed significant emphasis on flatness due to its negative im-
pact on the early germination rate detection of maize seeds. Considering the experiment’s
outcomes and utilizing the AHP approach, the following combination of factors is recom-
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mended for achieving the most satisfactory performance: a gate opening size of 10.8 mm, a
horizontal sensor distance of 9 cm from the gate, and a conveyor speed of 5.1 cm/s. This
particular combination proves to be optimal for the automated seeding machine, ensuring
the uniform distribution of a substantial volume of sand and maintaining desirable flatness.

The sand-spreading device examined in this experiment is a self-contained module
with the potential for application in various related fields. This cost-effective and straight-
forward device offers the possibility of reducing expenses and enhancing profitability
for companies. As a result, it holds promise for diverse industries that necessitate accu-
rate and uniform sand or granular material distribution. Furthermore, the methods and
evaluation apparatus employed in this study can be extrapolated to larger, more intricate
sand-spreading machinery, offering valuable reference values for advancing precision
agriculture’s development.
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