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Abstract: This study aimed to investigate how the combination of texture information and spectral
index affects the accuracy of the soil salinity inversion model. Taking the Bianwan Farm in Jiuquan
City, Gansu Province, China as the research area, the multi-spectral data and soil salinity data at
0–15 cm, 15–30 cm and 30–50 cm depths in the sampling area under alfalfa coverage were collected,
and spectral reflectance and texture features were obtained from a multispectral image. Moreover,
the red-edge band was introduced to improve the spectral index, and gray correlation analysis was
utilized to screen sensitive features. Five types of alfalfa-covered soil salinity machine learning
inversion models based on random forest (RF) and extreme learning machine (ELM) algorithms
were constructed, using the salinity index (SIs), vegetation index (VIs), salinity index + vegetation
index (SIs + VIs), vegetation index + texture feature (VIs + TFs), and vegetation index + texture index
(VIs + TIs). The determination coefficient R2, root-mean-square error (RMSE) and mean absolute
error (MAE) were used to evaluate each model’s performance. The results show that the VIs model is
more accurate than the SIs and SIs +VIs models. Combining texture information with VIs improves
the inversion accuracy, and the VIs + TIs model has the best inversion effect. From the perspective of
inversion depth, the inversion effect for 0–15 cm soil salinity was significantly better than that for
other depths, and was the best inversion depth under alfalfa cover. The average R2 of the RF model
was 10% higher than that of the ELM. The RF algorithm has high inversion accuracy and stability and
performs better than ELM. These findings can serve as a theoretical basis for the efficient inversion of
soil salinity and management of saline–alkali lands.
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1. Introduction

Soil salinization is one of the most urgent soil problems worldwide, leading to the
degradation of cultivated land and reduced crop yield on a large scale [1]. With a global
saline–alkali soil area of about 833 million hectares, about 1.5 billion people face a significant
challenge to food security [2]. Soil salt content plays a vital role in crop yield and growth [3].
Exploring the rapid inversion of soil salinity at different depths under crop coverage is
of practical significance for developing agriculture and animal husbandry in saline–alkali
areas. However, acquiring soil salt information mainly depends on field sampling and
determination or a portable soil detector, which can be inefficient, involves limited samples,
and requires cumbersome steps [4,5]. However, some researchers have found that soil
salinity exhibits absorption peaks at 416 nm, 487 nm, 671 nm, and 905 nm wavebands [6].
The intensity of these absorption peaks has a significant correlation with the salinity content
in soil, forming the basis for estimating soil salinity using spectral information. Remote
sensing technology, capable of rapidly acquiring spectral information of large areas, has
been widely used in monitoring soil salinization [7,8]. Among these, satellite remote
sensing is often employed for large-scale irrigation area salinity research. Wang F [9]
used Landsat-8 satellite images to predict soil salinity in the Kuqa Oasis, Xinjiang, China.
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Additionally, Abuzaid A.S. [10] tested the ability of Landsat 8 Operational Land Imager
(OLI) data to retrieve soil salinity and sodicity during the wet and dry seasons in an arid
landscape. Although these methods have yielded better results, overall, due to the low
resolution of satellite images and various limiting factors such as climate and cloud cover,
satellite imagery is not suitable for studying soil parameters at the field scale [11,12].

In contrast, unmanned aerial vehicles (UAVs) possess several advantages, including
easy operation, short duration, high throughput, and high spatial and temporal resolu-
tion [13]. These advantages have greatly facilitated the development of precision and
modern agriculture [14,15]. Furthermore, UAVs can be equipped with various imaging
cameras for monitoring soil salinization. Zhu et al. [16] combined UAV-based hyperspec-
tral visible and near-infrared spectra with two feature selection techniques to predict soil
salinity, validating the effectiveness of hyperspectral imagery in estimating and mapping
surface soil salinity. Zhao et al. [17] used a UAV-mounted multispectral camera to develop
a model for quantifying soil salinity based on different vegetation cover, which provides a
good reflection of actual soil salt content. Nevertheless, how to improve the accuracy of the
inversion model remains a hot topic in current research.

The vegetation growth status has a strong correlation with the salinity value of the
soil [18]. From the spectral perspective, this is manifested in two ways: on the one hand,
it is reflected in the differences in spectral reflectance of crop leaves; on the other hand,
the texture features of the spectral images themselves will also significantly differ due to
the variations in soil salinity or leaf differences [19,20]. Existing research results show that
these texture features have been widely used to estimate vegetation parameters [21–23],
and satisfactory results have been obtained. It is considered that the combination of texture
information and spectral information can significantly improve the accuracy of the model.
However, the current process of soil salinity inversion using drones still mainly relies on
spectral indices [24–26], and there are few reports on the inversion of soil salinity combining
spectral information and image texture features.

Therefore, in order to improve the accuracy of the soil salinity inversion model of
cultivated land and explore the applicability of spectral information and image texture
features in the inversion of soil salinity, the soil at different depths under alfalfa coverage
was taken as the research object, and the spectral index and texture features of UAV multi-
spectral image were extracted to construct the soil salinity inversion model under various
combinations of input. This study was designed to: (1) investigate how the combination
of texture information and spectral index affects the accuracy of the inversion model; (2)
determine the best soil salinity inversion model by assessing the accuracy of each model
and (3) to identify the optimal soil salinity inversion depth beneath alfalfa coverage. The
finding of this study can provide theoretical support for the rapid acquisition of soil salinity
information in cultivated land.

2. Materials and Methods
2.1. Overview of the Study Area

Bianwan Farm, situated in the western region of the Hexi Corridor and belonging to
Jiuquan City, Gansu Province, China (Figure 1a,b), covers an area of approximately 15.6 km2.
The farm center is located at a longitude of 98◦30′36′′ E and latitude of 39◦51′00′′ N. The
area is characterized by an arid continental climate with high solar radiation and a large
disparity between evaporation and precipitation, resulting in perennial aridity. The average
annual rainfall is 87 mm, and the average annual evaporation is 2140 mm. The main crops
are alfalfa, wheat, corn, and onion.
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Figure 1. Study area diagram. (a) Gansu province. (b) Bianwan Farm. (c) Soil sampling points of 
alfalfa plot. 
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mental images were captured using the DJI Phantom 4, which comprises one color sensor 
for visible light imaging and five monochrome sensors (R, G, B, NIR, red edge) for multi-
spectral imaging (Figure 2a). Each individual sensor has an effective pixel count of 2.08 
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of the five monochromatic sensors is shown in Table 1. For instance, “450 nm (±16)” indi-
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Figure 1. Study area diagram. (a) Gansu province. (b) Bianwan Farm. (c) Soil sampling points of
alfalfa plot.

2.2. Data Collection and Processing
2.2.1. UAV Multispectral Image

Alfalfa is a forage crop typically grown in arid saline–alkali areas, owing to its remark-
able ability to withstand drought, barren conditions, and high salinity levels. Its short
growth cycle and high yield make it essential to crop farmers and herdsmen in certain
regions. In June 2022, at Bianwan Farm, UAV data were collected under sunny weather
conditions with no rainfall and an average temperature of 33 ◦C. The experimental images
were captured using the DJI Phantom 4, which comprises one color sensor for visible light
imaging and five monochrome sensors (R, G, B, NIR, red edge) for multispectral imaging
(Figure 2a). Each individual sensor has an effective pixel count of 2.08 million. The ISO
range for the color sensor is 200–800. The specific wavelength information of the five
monochromatic sensors is shown in Table 1. For instance, “450 nm (±16)” indicates that
the blue spectral sensor’s filtering wavelength range is 434–466 nm. Finally, the photos
obtained by the UAV are imported into DJI Terra for image correction, stitching and other
preprocessing, and the multi-spectral image map for this study is obtained.
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Figure 2. Data collection and processing. (a) DJI Phantom 4 collects multi-spectral data. (b) Collect
alfalfa-covered soil. (c) Measure the salt content of soil samples. (d) Alfalfa.

2.2.2. Field Soil Salinity Data

Soil sampling was carried out in the alfalfa planting region at Bianwan Farm (Figure 2b).
Sampling was conducted during a period where there was neither irrigation nor rainfall.
During this time, the alfalfa in the sample area was fully flowering, with a height ranging
from 40 to 80 cm (Figure 2d). A total of 62 sampling points were evenly distributed in the
alfalfa plot, as demonstrated in Figure 1c. Soil samples were taken from three different
depths, namely, 0–15 cm, 15–30 cm, and 30–50 cm, and location information for each point
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was recorded. Each soil sample, weighing 30 g, was placed in an aluminum box, dried,
ground, and sieved with an aperture of 2 mm. To stir the sieved soil samples, 150 mL
of distilled water was added [27]. After standing for 12 h, the conductivity of the soil
solution (EC1:5, ms/cm) was determined using DJS-1C, and the soil salt content (SSC, %)
was calculated using an empirical formula conversion [28] (Figure 2c).

Table 1. Multispectral camera parameters and UAV parameters.

Band Parameter

Blue 450 nm (±16) Sensor pixels 2.08 million
Green 560 nm (±16) ISO 200–800
Red 650 nm (±16) Route overlap rate 70%
NIR 840 nm (±26) Side image overlap rate 65%

Red edge 730 nm (±16) Average speed 4 m/s

2.3. Construct Spectral Index

The salinity index (SIs) is commonly used for the rapid assessment and inversion of
soil salinization [29], and is highly correlated with soil salinity. There are 15 salinity indexes,
including SI, SI1, SI2, SI3, S1, S2, S3, S4, S5, S6, SI-T, BI, NDSI, Int1, and Int2. The vegetation
index (VIs), on the other hand, is used for qualitative and quantitative evaluations of
vegetation growth and coverage [30]. A total of 17 common vegetation indexes are used,
including RVI, NLI, IPVI, GLI, NDVI, NNIR, DVI, EVI, RVI, GCI, GSAVI, GRVI, GOSAVI,
GNDVI, GDVI, LAI, and CI. For saline–alkali farmland covered with crops, the UAV
multispectral camera cannot directly acquire the spectral reflectance of the soil surface. To
enhance the accuracy of the inversion model, research suggests introducing the red-edge
band, closely related to various physical and chemical parameters of the vegetation [31–33]
and replacing the red band with the red-edge band to improve each index.

The grey relation analysis (GRA) is a method used to measure the correlation between
elements. It is based on the similarity or dissimilarity of the development trend between the
two elements. Specifically, the grey correlation degree is calculated based on the relationship
between the trends of the two factors. If the trends are consistent, the correlation value
is higher, and if they are inconsistent, it is lower [34]. Table 2 provides the order of grey
correlation degree between the SIs and VIs. The Table clearly shows that the correlation
degree of the improved index of the red-edge band and the measured salt content of the soil
is particularly high. In order to minimize the influence of the number of screening indexes
on the model, the first five indexes of correlation degree of each soil layer are selected to
participate in the model construction. The calculation formula for the index is provided in
Table 3, and the selected indexes of soil layers at different depths are basically the same.

Table 2. Grey correlation value and ranking of soil salt content and SIs, VIs at different depths.

Ranking
0–15 cm 15–30 cm 30–50 cm

SIs VIs SIs VIs SIs VIs

1 SI-T-reg 0.9280 NLI 0.9159 SI-T-reg 0.9255 NLI-reg 0.9121 SI-T-reg 0.9222 NLI-reg 0.9155
2 SI 0.9215 GLI-reg 0.9076 S4-reg 0.9205 GLI-reg 0.9078 Int2 0.9188 GLI-reg 0.9120
3 SI1-reg 0.9204 IPVI 0.8956 SI1-reg 0.9193 RVI-reg 0.8918 Int1-reg 0.9164 RVI-reg 0.8965
4 S4-reg 0.9188 NNIR-reg 0.8948 Int2 0.9183 NNIR-reg 0.8910 SI-reg 0.9145 NNIR-reg 0.8952
5 Int1-reg 0.9145 RVI-reg 0.8930 Int1-reg 0.9177 IPVI 0.8894 S4-reg 0.9143 IPVI 0.8944

“-reg” is the red-edge band improvement index.
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Table 3. Calculation formula of spectral index.

Salinity Index (SIs) Vegetation Index (VIs)

Salinity index SI SI = (b1 + b3)0.5 Ratio vegetation index RVI RVI = b4/b3
Salinity index1 SI1 SI1 = (b2 × b3)0.5 Non-linear index NLI NLI = (b4

2 − b3)/(b4
2 + b3)

Salinity index-T SI-T SI-T = 100(b3/b4) Infrared percentage vegetation
index IPVI IPVI = b4/(b4 + b2)

Salinity index S4 S4 S4 = (b1 × b3)0.5 Green leaf index GLI GLI = [(b2 − b3) + (b2 − b1)]/2b2 + b3 + b1
Intensity index1 Int1 Int1 = (b2 + b3)/2 Normalized near-infrared index NNIR NNIR = b4/(b4 + b3 + b2)
Intensity index2 Int2 Int2 = (b2 + b3 + b4)/2

b1, b2, b3 and b4 represent blue, green, red, and near-infrared band reflectance, respectively.

2.4. Multispectral Image Texture Analysis
2.4.1. Texture Feature Extraction

The gray-level co-occurrence matrix (GLCM) is an image texture feature extraction
method widely used in remote sensing [35–37]. However, due to the large amount of data
in the matrix, it is not directly used to distinguish textures. Instead, some statistics based
on it are used as texture classification features. This study used the co-occurrence measures
window of ENVI 5.3.1 to extract the mean, variance, homogeneity, contrast, dissimilarity,
entropy, second moment, and correlation of each band of the UAV multispectral image.
The texture features of the visible light image are depicted in Figure 3.
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2.4.2. Construct Texture Index

Figure 4 illustrates the analysis of the correlation between soil at different depths under
alfalfa coverage and eight texture features of each spectral band. The correlations between
the measured salt content at different depths and the texture features of each spectral
band are low, with a correlation coefficient |r| < 0.39, making direct model construction
impractical. On the other hand, the red and blue bands have a high response to soil
salinization, with |r| above 0.50. Therefore, it is feasible to construct a texture index using
16 texture features of red and blue bands.
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Figure 4. Correlation between measured values of soil salinity at different depths and texture features
of each spectral band. Note: (a–e) shows the correlation heat maps between the measured values of
soil salinity at different depths and the texture features of red, green, blue, near-infrared and red-edge
bands, respectively.

Non-linear index (NLI) and ratio vegetation index (RVI) are significantly correlated
with soil salt content under alfalfa cover (Table 2). This study constructs non-linear texture
indexes (NTI) and ratio texture indexes (RTI) based on the idea of vegetation index. The
influence of the texture index on the accuracy of the soil salinity inversion model at different
depths is also examined. The texture index is constructed by randomly selecting two of the
16 texture features in the red and blue bands, resulting in a total of 240 indexes calculated
using MATLAB R2017b. The texture index calculation formulas are as follows:

NTI = (T1
2 − T2)/(T1

2 + T2) (1)

RTI = T1/T2 (2)

In the formula, T1 and T2 represent the texture features of UAV multispectral red and
blue bands.

2.5. Model Construction and Accuracy Evaluation

The salt inversion model was constructed using the RF and ELM machine learning
algorithms. The modeling set consisted of 70% soil samples, and the remaining 30% was
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designed as the prediction set. The accuracy of the model was assessed for both the
modeling set and the prediction set using several metrics, including the determination
coefficient R2, the root-mean-square error (RMSE), and the mean absolute error (MAE). The
closer R2 value is to 1, and the closer RMSE value is to 0, the higher the accuracy of the
model. The MAE value evaluates the prediction accuracy of the model, with a smaller MAE
value indicating a higher prediction accuracy. The calculation formulas are as follows:

R2 =
∑n

i=1(ŷl − y)2

∑n
i=1(yi − y)2 (3)

RMSE =

√
∑n

i=1(ŷl − yi)
2

n
(4)

MAE =
1
n∑n

i=1|ŷl − yi| (5)

yi is used for the measured soil salt content, %; ŷl to predict soil salt content, %; y the
average soil salt content, %; and n is the number of samples.

3. Results
3.1. Soil Salt Content Statistics

Saline–alkali soils were sampled from 62 sampling points in the alfalfa plot, including
depths of 0–15 cm, 15–30 cm, and 30–50 cm. These samples were subjected to salinity
statistics, and the results are depicted in Figure 5. The soil salt content decreased from
one soil layer to the next, with mean values of 0.267%, 0.245%, and 0.234%, for 0–15 cm,
15–30 cm, and 30–50 cm depths, respectively. This phenomenon is due to the accumulation
of salt in the lower layer of the soil that moves to the surface layer via capillary water.
Soil salt content was categorized as heavy-saline–alkali soil (0.5–1%), moderately saline–
alkali soil (0.2–0.5%), and light-saline–alkali soil (<0.2%), with corresponding statistics
provided in Table 4. The table reveals a low degree of variation among collected soil
samples, with mostly moderately saline–alkali soil. The survey results revealed that the
degree of salinization in the alfalfa plot is lower than that of other vegetation-covered soils,
with average soil salinity of 0.549% and 0.391% for corn and wheat, respectively [16,38].
This difference is largely attributed to the excellent saline–alkali tolerance of alfalfa, as
documented in various studies where alfalfa has been shown to absorb soil salinity during
growth [39–41].
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Table 4. Statistics of soil salinity in field sampling.

Soil
Depth
/cm

Dataset Sample
Size

Heavy-Saline–
Alkali
Soil

Moderately
Saline–Alkali
Soil

Light-Saline–
Alkali
Soil

Max/% Min/% Mean/% Coefficient
of Variation

0–15
Modeling set 43 1 33 9 0.560 0.155 0.275 0.317
Prediction set 19 0 19 0 0.399 0.142 0.249 0.258
Total sample 62 1 52 9 0.560 0.142 0.267 0.304

15–30
Modeling set 43 0 36 7 0.429 0.144 0.246 0.259
Prediction set 19 0 16 3 0.352 0.162 0.243 0.187
Total sample 62 0 52 10 0.429 0.144 0.245 0.238

30–50
Modeling set 43 0 28 15 0.385 0.152 0.232 0.268
Prediction set 19 0 17 2 0.378 0.195 0.239 0.201
Total sample 62 0 45 17 0.385 0.152 0.234 0.247

3.2. Based on the Spectral Index Inversion Model
3.2.1. Salinity Index (SIs) Construction Model

SIs were screened using grey correlation analysis. An inversion model for soil salinity
at varying depths was developed using RF and ELM algorithms. The findings of the study
are presented in Table 5. The RF model demonstrated an R2 value of 0.59–0.64, an RMSE
of 0.029–0.039, and an MAE of 0.025–0.029, while the ELM model reflected an R2 value
of 0.47–0.56, an RMSE of 0.030–0.035, and an MAE of 0.025–0.028. Overall, the RF model
showed greater inversion accuracy than the ELM model. Moreover, both RF and ELM
models exhibited the best inversion effect on soil salinity within depths of 0–15 cm, with R2

of 0.64 and 0.56, respectively, and small RMSE and MAE values.

Table 5. Soil inversion models at different depths, based on SIs.

Soil Depth
/cm

Input Model
Modeling Set Prediction Set

R2 RMSE MAE R2 RMSE MAE

0–15 SI, Int1-reg, SI1-reg, SI-T-reg, S4-reg RF 0.68 0.049 0.036 0.64 0.030 0.025
ELM 0.57 0.052 0.045 0.56 0.031 0.025

15–30 Int2, Int1-reg, SI1-reg, SI-T-reg, S4-reg RF 0.63 0.042 0.030 0.62 0.029 0.025
ELM 0.56 0.042 0.033 0.51 0.030 0.025

30–50 Int2, Int1-reg, SI-reg, SI-T-reg, S4-reg RF 0.56 0.046 0.036 0.59 0.039 0.029
ELM 0.40 0.048 0.035 0.47 0.035 0.028

3.2.2. Vegetation Index (VIs) Construction Model

The top five most highly correlated VIs were selected to construct the inversion model.
The resulting model performance metrics are presented in Table 6. The RF model achieved
an R2 of 0.63–0.68, an RMSE of 0.026–0.034, and an MAE of 0.022–0.025. On the other
hand, the ELM model achieved an R2 of 0.55–0.64, an RMSE of 0.028–0.039, and an MAE of
0.024–0.028. The accuracy of the RF inversion model was higher than that of the ELM model.
Additionally, compared to a model constructed using SIs, the inversion model constructed
with VIs as the input group exhibited significantly improved accuracy. Moreover, the
inversion effect of the 0–15 cm soil layer remains the best.

3.2.3. Salinity Index + Vegetation Index (SIs + VIs) Construction Model

To ensure the inversion accuracy of the model is not affected by too many input factors,
the SIs and VIs correlation degrees in Table 2 were analyzed, and the first three indexes
were selected to create the SIs + VIs input group. The accuracy evaluation of the model
input and the construction of the inversion model is given in Table 7. The RF model R2

of the SIs + VIs construction model ranges from 0.58 to 0.66, while its RMSE lies within
0.028–0.034 and MAE within 0.023–0.027. The ELM model R2 ranges from 0.49 to 0.62,
with RMSE and MAE ranging from 0.034–0.038 and 0.027–0.030, respectively. Although
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the inversion accuracy of both RF and ELM is lower than that of the VIs input model, it is
higher than that of the SIs input model.

Table 6. Soil inversion models at different depths, based on VIs.

Soil Depth
/cm

Input Model
Modeling Set Prediction Set

R2 RMSE MAE R2 RMSE MAE

0–15 IPVI, NNIR-reg, GLI-reg, NLI, RVI-reg RF 0.63 0.050 0.037 0.68 0.027 0.022
ELM 0.63 0.048 0.040 0.64 0.039 0.026

15–30
IPVI, RVI-reg, GLI-reg, NNIR-reg,
NLI-reg

RF 0.62 0.041 0.031 0.63 0.026 0.022
ELM 0.53 0.043 0.034 0.57 0.028 0.024

30–50
IPVI, RVI-reg, GLI-reg, NNIR-reg,
NLI-reg

RF 0.70 0.038 1.333 0.67 0.034 0.025
ELM 0.31 0.051 0.039 0.55 0.034 0.028

Table 7. Soil inversion models at different depths, based on SIs + VIs.

Soil Depth
/cm

Input Model
Modeling Set Prediction Set

R2 RMSE MAE R2 RMSE MAE

0–15 NLI, GLI-reg, IPVI, SI, SI1-reg, SI-T-reg RF 0.58 0.053 0.038 0.66 0.028 0.023
ELM 0.64 0.048 0.038 0.62 0.038 0.028

15–30
NLI-reg, GLI-reg, RVI-reg, SI1-reg,
SI-T-reg, S4-reg

RF 0.62 0.041 0.031 0.58 0.028 0.023
ELM 0.52 0.044 0.035 0.57 0.035 0.030

30–50
NLI-reg, GLI-reg, RVI-reg, Int2, Int1-reg,
SI-T-reg

RF 0.65 0.039 0.030 0.65 0.034 0.027
ELM 0.34 0.050 0.039 0.49 0.034 0.027

3.3. Inversion Model Based on the Spectral Index and Texture Information
3.3.1. Vegetation Index + Texture Feature (VIs + TFs) Construction Model

Comparing Tables 5–7, it has been concluded that the inversion model constructed
using VIs is superior to the models based on SIs and their combinations. The red and
blue bands exhibit a significant response to soil salinity. Among the 16 texture features,
the grey correlation degree between R-Cor, B-Cor, B-Ent, and the measured salt content is
above 0.92, making them the top three features for each soil layer, as shown in Figure 6.
The combination of VIs + TFs, including R-Cor, B-Cor, B-Ent, and VIs, is used as input to
explore the effectiveness of UAV multispectral texture features in soil salinity inversion at
different depths.
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Table 8 indicates that the RF model R2 ranges from 0.64 to 0.70, the RMSE ranges from
0.025 to 0.034, and the MAE ranges from 0.022–0.026. The ELM model R2 has an 0.62 to
0.67, an RMSE of 0.030–0.045, and an MAE of 0.023–0.034. In terms of inversion accuracy,
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the RF model performs better than ELM in the 0–15 cm and 30–50 cm soil layers, whereas
the ELM model outperforms RF in the 15–30 cm layer. Overall, the model constructed by
the VIs + TFs combination yields higher inversion accuracy than the model using VIs alone.
The R2 of the RF model increases by 2.0%, the R2 of the ELM model increases by 11.1%, and
the best inversion effect occurs in the 0–15 cm soil layer.

Table 8. Soil inversion models at different depths, based on VIs + TFs.

Soil Depth
/cm

Input Model
Modeling Set Prediction Set

R2 RMSE MAE R2 RMSE MAE

0–15
R-Cor, B-Cor, B-Ent, IPVI, NNIR-reg,
GLI-reg, NLI, RVI-reg

RF 0.73 0.045 0.034 0.70 0.026 0.023
ELM 0.60 0.050 0.041 0.66 0.041 0.031

15–30
R-Cor, B-Cor, B-Ent, IPVI, RVI-reg,
GLI-reg, NNIR-reg, NLI-reg

RF 0.61 0.042 0.032 0.64 0.025 0.022
ELM 0.66 0.037 0.030 0.67 0.045 0.034

30–50
R-Cor, B-Cor, B-Ent, IPVI, RVI-reg,
GLI-reg, NNIR-reg, NLI-reg

RF 0.64 0.040 0.032 0.68 0.034 0.026
ELM 0.45 0.046 0.038 0.62 0.030 0.023

3.3.2. Vegetation Index + Texture Index (VIs + TIs) Construction Model

The influence of texture index on the accuracy of the soil salt content inversion model
at different depths was examined by constructing 480 RTIs and NTIs using 16 texture
features from red and blue bands. The two types of texture indexes were sorted using grey
correlation analysis, and the top three TIs and VIs were selected to construct the model
(see Table 9). The results showed that the VIs + TIs combination model produced a better
inversion model than other input groups, and was the best performer. The RF model R2

ranged from 0.67 to 0.75, and the RMSE was between 0.023 and 0.034, whereas the MAE
ranged from 0.019 to 0.026. The ELM model R2 was between 0.65 and 0.69, with the RMSE
ranging from 0.027 to 0.045, and the MAE between 0.022 and 0.039. Compared to the VIs
construction model, the RF model R2 and ELM model R2 increased by 8.5% and 15.8%,
respectively, and the best inversion effect was observed in the 0–15 cm soil layer.

Table 9. Soil inversion models at different depths, based on VIs + TIs.

Soil Depth
/cm

Input Model
Modeling Set Prediction Set

R2 RMSE MAE R2 RMSE MAE

0–15
RTI(R-Mean, B-Mean), RTI(B-Con, B-Ent), NTI(R-Cor,
B-Mean), IPVI, NNIR-reg, GLI-reg, NLI, RVI-reg

RF 0.72 0.045 0.034 0.75 0.023 0.019
ELM 0.57 0.052 0.042 0.69 0.031 0.027

15–30
RTI(R-Var, R-Sec), NTI(R-Cor, B-Var), NTI(R-Cor,
B-Mean), IPVI, RVI-reg, GLI-reg, NNIR-reg, NLI-reg

RF 0.64 0.040 0.030 0.67 0.026 0.022
ELM 0.63 0.038 0.030 0.65 0.045 0.039

30–50
RTI(R-Var, R-Sec), RTI(B-Con, B-Ent), NTI(R-Cor,
B-Var), IPVI, RVI-reg, GLI-reg, NNIR-reg, NLI-reg

RF 0.68 0.039 0.031 0.73 0.034 0.026
ELM 0.53 0.042 0.032 0.69 0.027 0.022

3.4. Comprehensive Analysis

In order to explore the best inversion model and depth for soil salinity under alfalfa
at varying depths, we conducted a comprehensive analysis of the inversion results of
five inputs. Figure 7 presents the inversion accuracy evaluation of each model, while
Figure 8 illustrates the comparison between the inversion results and the measured soil
salinity. In terms of the input group, the VIs + TIs construction model showed higher R2

values compared to other input groups in the inversion study in the 0–15 cm, 15–30 cm,
and 30–50 cm layers. The average R2 for the three depths in the RF model was 0.72,
while the average R2 for the ELM model was 0.68. The RMSE and MAE were small,
indicating better inversion results, with VIs + TFs, VIs, SIs + VIs, and SIs construction
models following a descending order. Combining spectral index and texture information
significantly improved the accuracy of the inversion model.
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Figure 7. Accuracy evaluation of each inversion model. (a) 0–15 cm. (b) 15–30 cm. (c) 30–50 cm.

From the perspective of the model algorithm, the RF construction model performed
better than ELM. Figure 7 shows that, except for VIs + TFs in the 15–30 cm layer, the R2

of RF was higher than that of ELM. The R2 of the RF construction model ranged from
0.59–0.75, RMSE from 0.023–0.39, and MAE from 0.019–0.029. On the other hand, the R2

for the ELM construction model was 0.47–0.69, RMSE was 0.027–0.045, and MAE was
0.022–0.039. The RF model had higher inversion accuracy and better stability than ELM,
with an average R2 10% higher than ELM.

From the perspective of inversion depth, it was observed that the inversion results of
the RF and ELM algorithms varied. For RF, the inversion results of the 0–15 cm soil depth
are better than 30–50 cm, and 15–30 cm is the worst, while for ELM, the inversion results
of 0–15 cm soil depth are better than 15–30 cm, and 30–50 cm is the worst. The overall
inversion effect of 0–15 cm soil salinity was found to be better, as compared to other depths.
The average R2 for the five types of models constructed by RF was 0.69, with an RMSE of
0.027 and MAE of 0.022, while the average R2 for the ELM model was 0.63, with an RMSE
of 0.036 and MAE of 0.027.
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Figure 8. Comparison of measured and predicted values of each model. (a) 0–15 cm (SIs).
(b) 15–30 cm (SIs). (c) 30–50 cm (SIs). (d) 0–15 cm (VIs). (e) 15–30 cm (VIs). (f) 30–50 cm (VIs).
(g) 0–15 cm (SIs + VIs). (h) 15–30 cm (SIs + VIs). (i) 30–50 cm (SIs + VIs). (j) 0–15 cm (VIs + TFs).
(k) 15–30 cm (VIs + TFs). (l) 30–50 cm (VIs + TFs). (m) 0–15 cm (VIs + TIs). (n) 15–30 cm (VIs + TIs).
(o) 30–50 cm (VIs + TIs).

4. Discussion

Remote sensing images rely on image texture to convey important information. The
spectral reflectance of a crop canopy has shown sensitivity towards soil salt content. Veg-
etation index, salt index, and texture information can be used to establish a correlation
with soil salt content measured at varying depths, so as to realize multi-depth soil salt
inversion [38]. To accomplish this, the research focuses on the soil at different depths
under alfalfa coverage and employs various input groups, including salinity index (SIs),
vegetation index (VIs), salinity index + vegetation index (SIs + VIs), vegetation index +
texture feature (VIs + TFs), and vegetation index + texture index (VIs + TIs), to construct a
machine learning inversion model based on RE and ELM.

When the spectral index was used to invert the soil salinity, it was observed that
VIs had higher inversion accuracy than SIs and SIs + VIs modeling. This was due to
the high coverage of alfalfa, making VIs sensitive to vegetation growth [42]. Zhang [18]
explored the impact of different vegetation coverage on the accuracy of the soil salt content
inversion model and found that the VIs construction model was more accurate under high
vegetation coverage. Therefore, the model constructed by VIs can better invert soil salt
content under high vegetation coverage. Based on the VIs array with a better modeling
effect, the combination input of VIs + TFs and VIs + TIs was established. After analysis, the
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texture information of a multispectral image, combined with Vis, significantly improved
the accuracy of soil salinity inversion models at different depths under vegetation cover.
Compared with VIs modeling alone, the VIs + TFs construction model improved the RF
model R2 by 2.0%, and the ELM model R2 by 11.1%, while the VIs + TIs combination
construction model improved the RF model R2 by 8.5%, and the ELM model R2 by 15.8%.
Hang [43] estimated the rice leaf area index (LAI) by combining UAV spectrum, texture
features, and coverage. The multiple stepwise regression model established by combining
VIs and TIs (R2 = 0.668, RMSE = 0.421) was significantly better than the single VIs model
(R2 = 0.563, RMSE = 0.541). Zheng [22] also drew similar conclusions in estimating above-
ground rice biomass, based on UAV image texture and spectral analysis. The integrated
texture and spectral information modeling significantly improved the accuracy of rice
biomass estimation. The texture features of the UAV multispectral image provide extensive
information [44], making it feasible to apply to soil salinity at different depths, significantly
improving the model inversion effect.

Soil models have varying accuracy levels in terms of inversion across different depths.
The accuracy of the RF model for inversion in the 0–15 cm is higher than that in 30–50 cm,
while the performance in the 15–30 cm is poor. However, for the ELM model, the inversion
results in 0–15 cm are better than those in 15–30 cm, while the performance for 30–50 cm
is worst. Overall, the inversion effect of soil salinity is best in 0–15 cm. The RF model has
an average R2 of 0.69, RMSE of 0.027, and MAE of 0.022, whereas the ELM model has an
average R2 of 0.63, RMSE of 0.036, and MAE of 0.027. Wang [7] drew a similar conclusion
in the inversion of soil salinity in the Kuqa Oasis. The highest accuracy was observed in the
0–10 cm model, with an R2 between 0.60 and 0.74. Yang [26] also showed that the 0–20 cm
layer contained the main root system of the crop, and the UAV could capture surface soil
spectral information directly. The correlation between soil salinity and various types of
spectral and texture information gradually decreased with depth.

In this study, the overall performance of the model based on the RF algorithm was
better than that of ELM. The R2 of the RF model ranged from 0.59 to 0.75, RMSE ranged
from 0.023 to 0.39, and MAE ranged from 0.019 to 0.029. The R2 of the ELM model ranged
from 0.47 to 0.69, RMSE ranged from 0.027 to 0.045, and the MAE ranged from 0.022 to
0.039. Many scholars have compared the inversion models of related soil parameters and
concluded that the RF model has greater applicability and stability, and its performance
ability is more prominent than other algorithms [45,46]. Therefore, it can be used for
accurate modeling of soil salt inversion.

5. Conclusions

The research conclusions are summarized as follows:

(1) The VIs construction model showed better inversion accuracy than the SIs and
SIs + VIs models in the spectral index modeling.

(2) The combination of texture information with VIs improved the inversion accuracy.
The VIs + TIs model showed the best inversion effect, and the second-best model
was the VIs + TFs. Compared to the VIs modeling, the RF model R2 of VIs + TIs and
VIs + TFs increased by 8.5% and 2.0%, and the ELM model R2 increased by 15.8% and
11.1%, respectively.

(3) The inversion effect of 0–15 cm soil salinity was significantly better than that of other
depths, and was the best inversion depth of soil salinity under alfalfa cover. The
average R2 for the five types of models constructed by RF was 0.69, while the average
R2 for the ELM model was 0.63.

(4) The RF model performed better than the ELM in soil salinity inversion. The RF
average R2 was 10% higher than the ELM. The R2 of the RF model ranged from
0.59–0.75, while the R2 for the ELM construction model was 0.47–0.69.

The findings of our study will primarily be applied to small-scale soil salinity research
in alfalfa fields with conditions similar to those in northwest China. These results will
contribute to formulating strategies for managing soil salinization and crop growth. Future
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research will involve extrapolating these findings to larger areas and other crop-growing
regions, or corroborating the universality of multispectral texture information in soil salinity
inversion through conjunction with satellite datasets, to subsequently enhance the accuracy
and robustness of soil salinity inversion models under crop cover.
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