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Abstract: Subsurface (or tile) drainage improves land productivity by enhancing soil aeration and
preventing water-logged conditions. However, the continuous expansion of drained agricultural
lands and reliance on synthetic fertilizer in the Midwestern United States have increasingly facilitated
nitrate transport from agricultural fields to surface water bodies. Hence, there is a need to implement
various agricultural best management practices (BMPs) in order to reduce the adverse water quality
impacts resulting from excess nitrate, such as eutrophication and the formation of hypoxic zones. In
this study, we used a SWAT+ model to assess the overall impacts on the riverine nitrate load and crop
yield in the corn–soybean cropping system based on a combination of different management practices.
The corn and soybean yields simulated with the model were found to be in good agreement with
the observed yields for both the calibration and validation periods. The long-term simulation over a
period of 30 years showed a reduction in the nitrate load of up to 32% without impacting the crop
yield. The model results suggest that by reducing the current N application rate by 20% and using a
40:60 split between spring pre-plant and side-dressing N applications combined with cereal rye as a
cover crop in corn–soybean rotation, one can potentially reduce nitrate losses without impacting crop
yields. This study will help researchers, stakeholders, and farmers to explore and adopt alternative
management practices beneficial for offsetting the environmental impacts of agricultural productions
on the watershed scale.

Keywords: BMPs; cover crop; fertilizer management; nitrate; subsurface drainage

1. Introduction

Nutrient loadings from intensively managed agricultural watersheds continue to
deteriorate surface and groundwater quality globally [1]. Even if there is considerable
concern about excessive nutrient loss from agricultural land and its impacts on public health
and the environment, the supply and management of adequate nutrients are still challenges
in ensuring crop productivity [2]. As highlighted by Breitburg et al. [1] and Lal et al. [3],
sustainable agriculture practices can only be effective when their long-term implications
are well understood. In other words, the rational and scientific decision should be based on
an understanding of the long-term effect of the management practices and the components
constituting the natural resource system [3]. Hence, many researchers are working to
examine the long-term scenario with various nutrient management and environmental
protection practices and to seek solutions to this issue for sustainable agriculture.

The nutrients, mainly nitrogen (N) in the form of soluble nitrate, transported from the
Midwest region of the United States, where intensive row crop production is practiced, are
associated with algal blooms in the Gulf of Mexico [4–6]. Approximately 70% of the N load
delivered to the Gulf is from agricultural lands [6,7]. Efforts to reduce nitrate losses from
agricultural fields remain critically important in the United States. As a result, collaborative
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initiatives like the Mississippi River/Gulf of Mexico Hypoxia Task Force were established
to evaluate the progress and recommend short-term and long-term N reduction strategies.
With the goal of reducing N losses by 15% and 45% in the short-term and long-term, the
state of Illinois implemented the Illinois Nutrient Loss Reduction Strategy (Illinois NLRS),
guided by the Illinois Environmental Protection Agency (EPA), Illinois Department of
Agriculture, and University of Illinois [8]. The Illinois NLRS proposed several conservation
management practices to mitigate N losses from agricultural lands. The various conserva-
tion management practices that are considered to influence N losses from agricultural lands
include the management of N application rates, sources, placement, and timing; planting
cover crops; or a combination of N management with cover crops [9–12]. The evaluation of
the effectiveness of these conservation practices and their implementation is increasingly
important due to changing climate and local conditions.

Several field-scale studies on N management (N application rates and timing) have
shown the potential of optimizing N rates and timing to reduce N losses from agricultural
lands without affecting crop yield [13–16]. These studies endorsed the concept of 4R
nutrient stewardship. In this concept, 4R refers to the four fertilizer rights: the right
fertilizer source, the right rate, the right time, and the right place. However, few studies
have been conducted to evaluate the effectiveness of this method on the watershed scale,
and the findings varied across different studies. Gowda et al. [17] reported a 17% N
loss reduction on the watershed scale when the N application rate was reduced by 20%
and the application timing was switched from fall to spring using the ADAPT model.
Jaynes et al. [18] reported a 30% N loss reduction on the watershed scale after reducing the
N application rate within the sub-basin by 23% and switching the application timing from
fall to spring.

The implementation of cover crops improves not only soil quality but also water
quality by reducing soil erosion and N leaching [10,19–22]. Cover crops reduce N leaching
losses by immobilizing N through plant N uptake from the soil during growth [23,24] and
reduce tile flow through increased water loss via evapotranspiration [9,25]. Field-scale
studies showed that cover crops have the potential to reduce N leaching losses from tile-
drained fields by up to 60% compared to fields with non-cover crops [26–28]. However,
limited studies have also been conducted on cover crop effectiveness in reducing N losses
on the watershed scale, mainly in the tile-drain-dominated agricultural watersheds. An
experimental conducted study by Hanrahan et al. [22] reported a median nitrate loss
reduction of 69–90% from fields with cover crops compared to the fields without cover
crops in two small agricultural watersheds in the Midwestern US. Although these studies
showed that cover crops have the potential to decrease nitrate losses, there is a need to
investigate the effectiveness of this practice for N reduction and crop yield in combination
with N management practices in intensively managed systems on the watershed scale.

When exploring the long-term effectiveness of various agricultural BMPs, the model-
ing study is an essential and inseparable part of the process, carried out to support decision
making with efficient if–then–else studies. The Soil and Water Assessment Tool (SWAT) has
been extensively used for analyzing and assessing the effectiveness of various agricultural
BMPs [29–31]. The SWAT+ model is a comprehensive continuous-time semi-distributed
hydrological model and has recently been updated from the SWAT model to provide a more
flexible spatial representation of the interactions and processes within a watershed [32].
According to our understanding, there has been no study that investigated how water qual-
ity BMPs’ implementation in an intensively managed agricultural watershed can impact
hydrology, nitrate, and crop yield using this newly developed SWAT+ model. Hence, the
goal of this study was to assess the long-term impacts (30 years) of three field-implemented
agricultural management practices (conventional, fertilizer management (4R), and a cover
crop combined with fertilizer management (4R)) using the SWAT+ model. We utilized
the updated process-based, semi-spatially distributed model to simulate the hydrological
process, nitrate, and crop yield of an agricultural watershed in Illinois. To our knowledge,
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this is the first study to evaluate the effects of agricultural practices on water quality and
crop production using the SWAT+ model.

2. Materials and Methods
2.1. Study Area Description and Study Flow

The Upper Sangamon River Basin (USRB) is located in east-central Illinois and is part
of the Illinois River basin. The watershed encompasses, partially or wholly, 8 counties and
has a total drainage area of approximately 2400 km2, draining into Lake Decatur. The part
of the USRB considered in this study has its outlet at Monticello and partially encompasses
5 counties (Champaign, Ford, Mclean, De Witt, and Piatt), with a total drainage area of
1425 km2 (Figure 1). The USRB is a predominantly agricultural watershed, and the urban
area covers less than 5% of the watershed. In the last two decades, the USRB has undergone
substantial alterations due to increased human activities, including the transformation
of the prairie and savannah landscape into agricultural cropland and the expansion of
subsurface tile drains. In the present conditions, more than 56% (803 km2) of the study
area is devoted to row crop production, primarily corn and soybean rotation, and the rest
of the agricultural lands form a continuous corn or soybean system. The watershed has
a temperate climate with hot summers and cold, snowy winters and receives an average
annual precipitation of approximately 1048 mm [33].
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Figure 2 shows the overall study flow of the research. In this study, a SWAT+ model
was adopted to explore the long-term effect of the N management strategies combined
with cover crops.
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Figure 2. Flow chart of the methodology used in the study.

2.2. SWAT+ Model Description

SWAT+, an updated version of the Soil and Water Assessment Tool (SWAT) model,
is a comprehensive, continuous-time, semi-distributed hydrological model developed for
simulating streamflow and pollutant transport under different environmental conditions,
land management practices, and climate change scenarios across a wide range of spatial
and temporal scales [34–37]. The SWAT+ model consists of the same basic algorithms used
to compute the processes in the SWAT model; however, the structure and organization of
both the source code and the input files have undergone considerable modification. SWAT+
provides more flexibility compared to SWAT with regard to the spatial representation
of interactions and processes within the watershed. In this model, hydrologic response
units (HRUs), aquifers, channels, reservoirs, and point sources and inlets are separate
spatial objects, whose hydrologic interactions can be defined by the user to represent the
physical characteristics of the watershed as realistically as possible. A detailed description
of the watershed configuration in SWAT+ can be found in [38]. Briefly, the simulation
of watershed hydrology in SWAT+ is separated into two phases: the land phase and
the in-stream or routing phase. The land phase of the hydrologic cycle is based on the
water balance equation and controls the size of the water, sediment, nutrient, and pesticide
loadings for the main channel in each sub-basin, and the in-stream or routing phase controls
the movement of water, sediments, nutrients, etc., through the channel network of the
watershed to the outlet [35]. Detailed descriptions of these processes are provided in the
SWAT and SWAT+ documentation [32].

2.3. SWAT+ Model Input Data

The data used to develop the SWAT+ model for this study area are summarized in
Table S1 (Supplementary Materials). A total of 11 sub-basins were delineated based on
the Digital Elevation Model (DEM). An HRU definition threshold was selected to include
only agricultural HRUs in the study area. Crop rotation was identified for each HRU
using four years of crop data layers from [39]. The crop data layers were combined to
determine the crop rotation pattern (for example, 1515 for corn–soybean–corn–soybean
rotation and 5151 for soybean–corn–soybean–corn rotation) using the raster calculator tool
in ArcGIS. After creating the crop rotation layer for the watershed, the zonal statistics
tool in ArcGIS was used to determine the crop rotation on the HRU level by overlapping
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the HRU shapefile and crop rotation layer. The HRUs with potential tile drainage were
identified based on the soil drainage class obtained from the NRCS web soil survey. The
HRUs with a soil drainage class of very poorly drained to somewhat poorly drained and a
soil slope <5% were considered as the HRUs with potential tile drainage. A total of 326 out
of 446 agricultural HRUs were found to have potential tile drainage systems.

Daily precipitation, maximum and minimum temperature, solar radiation, wind
speed, and relative humidity data were obtained from gridMET [40]. GRIDMET is a
dataset of daily high-spatial-resolution (~4 km, 1/24th degree) surface meteorological data
covering the contiguous US from 1979 to the present day. This dataset is generated by
blending Parameter-elevation Regressions on Independent Slopes Model (PRISM) data with
North American Land Data Assimilation System (NLDAS-2) reanalysis data, applying a
climatically aided interpolation technique. GRIDMET data are also validated using weather
station data from Remote Automatic Weather Stations (RAWS), AgriMet, AgWeatherNet
(AWN), and the US Historical Climatology Network (USHCN).

2.4. SWAT+ Model Calibration and Validation

The input parameters of hydrological models like SWAT+ are process-based, and
thus, calibration is required to maintain the input parameters within a realistic uncertainty
range [31]. The calibration and validation of SWAT+ follow a similar approach to SWAT.
The first step in the calibration process is to determine the most sensitive parameters for
a given watershed or sub-watershed. The user can use their self-judgment to determine
which parameter needs to be adjusted or conduct a parameter sensitivity analysis. In
this study, a parameter sensitivity analysis was performed using the Sobol method [41] in
SWATplusR [42] to determine the key parameters and the precision required for calibration.

In the second step of the calibration process, the model input parameters were ad-
justed to reduce the prediction uncertainty by comparing the simulated values with the
observed values. The hydrologic component (streamflow) was calibrated first, followed by
nutrients (riverine nitrate), and, finally, crop yield calibration. The model validation was
performed using the parameters determined during the calibration process and comparing
the model simulations with the observed data not used in the calibration. The calibration
and validation of the model for the hydrologic and nitrate components were performed
using SWATplusR [42], whereas crop yield calibration and validation were performed
manually by adjusting the plant parameters (harvest index and potential leaf area index).
The model calibration period was from 1994 to 2000 and the validation period was from
2001 to 2007.

The model performance evaluation was performed using both statistical and graphical
analyses. The model evaluation criteria follow the guidelines suggested in [43,44]. The model
performance was assessed using Nash–Sutcliffe efficiency (NSE) [45], R-square (R2), and the
percent bias (PBIAS). In general, the performance of a watershed-scale model on a monthly
time scale is considered satisfactory if 0.50 < NSE ≤ 0.70, 0.60 < R2 ≤ 0.75, and ±10 < NSE
≤ ±15 for flow and 0.35 < NSE ≤ 0.50, 0.30 < R2 ≤ 0.60, and ±20 < NSE ≤ ±30 for N or P,
respectively [44]. Likewise, the model performance is considered good if 0.70 < NSE ≤ 0.80,
0.75 < R2 ≤ 0.85, and ±5 < NSE ≤ ±10 for flow and 0.50 < NSE ≤ 0.65, 0.60 < R2 ≤ 0.70, and
±15 < NSE ≤ ±20 for N or P, respectively. The PBIAS and normalized root mean square error
(n-RMSE) are commonly used to evaluate model performance in predicting crop yield [46].
In general, the model’s performance is considered excellent if nRMSE <10%; good if 10% ≤
nRMSE < 20%; satisfactory if 20% ≤ nRMSE < 30%; and poor if nRMSE ≥ 30% [47]. The
graphical technique for model behavior validation used in this study includes time series and
scatter plots of the simulated and observed values.

2.5. SWAT+ Model Long-Term Simulation Scenarios

After successful calibration and validation, the model was used to evaluate the long-
term impacts of the N management strategies combined with cover crops using 30 years of
weather data. To assess the effects of the N application rates and timing combined with a
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cover crop, nine simulation scenarios were developed (Table 1). In this study, the 100% pre-
plant N application timing corresponds to the conventional method, and the 40:60 split N
application refers to 40% pre-plant N application and 60% N as a side-dressing application
in spring in the corn years. No N fertilizers were applied in the soybean years. Furthermore,
the N application rates of 224 kg N ha−1, 202 kg N ha−1, and 179 kg N ha−1 correspond to
the maximum, average, and minimum N application rates calculated using the Nitrogen
Rate Calculator based on the maximum return to N (MRTN) approach for Central Illinois.
The details of the Nitrogen Rate Calculator can be found at http://cnrc.agron.iastate.edu/
accessed on 8 July 2023. Anhydrous ammonia, the most commonly used N fertilizer in
this region, was used in this study. The winter cover crop was implemented in the corn
years alone and in both the corn and soybean years when combined with the 4R practice
(cereal rye was used as the cover crop in this study). The conventional N application rate of
224 kg N ha−1 applied as a 100% spring pre-plant application in the corn year was consid-
ered as a baseline for comparing all the other scenarios and evaluating their effectiveness
in reducing nitrate losses and increasing crop production.

Table 1. Long-term simulation scenarios.

Methods Scenario N Application
Rates

Crop
Rotation Description

Conventional C-CS 224, 202, 179 Corn–soybean 100% spring pre-plant N
application

40:60 split N
application S-CS 202, 179 Corn–soybean 40% spring pre-plant application

and 60%
as side-dressing40:60 split N

application S-CRS 202, 179 Corn–rye–soybean

40:60 split N
application S-CRSR 202, 179 Corn–rye–soybean–rye

3. Results and Discussion
3.1. Hydrologic Calibration and Validation

The hydrologic parameters of the model were calibrated for a period of 7 years from
1994 to 2000 and validated over a period of 7 years from 2001 to 2007. To accurately quantify
the overland and subsurface flow components, several model parameters, including the
curve number (CN), available soil water capacity (AWC), saturated hydraulic conductivity
(k), and percolation coefficient (PERCO), were calibrated. In the process, 21 model parame-
ters were adjusted to improve the model’s ability to simulate the hydrologic components
and simulate the observed flow at the watershed outlet (Table S2).

During the model’s evaluation period (1994–2007), the watershed received an average
annual precipitation of 1027 mm, of which around 95 mm was snowfall. Using the Har-
greaves method [48], the model simulated an average annual actual evapotranspiration
(ET) of 666 mm, which accounted for 64% of the total annual rainfall. The simulated ET
value was found to be within the reported ET range of 60–69% for Central Illinois [49].
Various field-scale modeling studies have also reported an ET range of 60–65% for nearby
sites [15,16]. The model simulated an average annual potential evapotranspiration (PET) of
1050 mm, which was also found to be within the expected range.

The model’s default tile drainage configuration (tile depth of 1.1 m and spacing of
20 m) was used in this study. The other tile drainage parameters, such as the multiplication
factor for tile lateral saturated hydraulic conductivity (tile_latk) and tile lag time (tile_lag),
were adjusted during the calibration process. The model simulated an average tile flow
of 189 mm over a period of 14 years (1994–2007). This accounts for approximately 18%
of the average annual precipitation. The model-simulated tile drain flow was found to
be within the reasonable range for tile-dominated agricultural watersheds. Past field and
watershed-scale studies of this region have shown partitioning of rainfall to tile drainage
at a level of up to 39% [13,15,16,50]. The other hydrologic components simulated with the

http://cnrc.agron.iastate.edu/
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model, such as overland surface runoff and lateral flow, account for only a small percentage
of the average annual rainfall. A summary of the model-simulated hydrologic components
and water balance is presented in Figure 3 and Table S3.
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Figure 3. Model simulated hydrologic water balance for calibration period, 1994–2000, and validation
period, 2001–2007 (Rest of flow = Surface Runoff + Lateral Flow+ Percolation).

In terms of spatial variability, the model simulation results indicated that the surface
flow was lower for the flatter sub-watersheds (in the southern part of the watershed)
than the steeper sub-watersheds (in the northern part of the watershed) during both
the calibration and validation periods. On the contrary, the tile flow was higher for the
flatter sub-watersheds compared to the steeper sub-watersheds. It was observed that
the streamflow was higher during the spring and summer seasons compared to fall and
winter for both the calibration and validation periods. As indicated by the water balance
results (Table S3), the average annual precipitation during the validation period (2001–2007)
was higher than that in the calibration period (1994–2000). This increase in the annual
precipitation resulted in an increase in ET, surface runoff, and tile flow. However, the
increase in tile flow was more substantial (197.90 mm during 2001–2007 compared to
180.51 mm during 1994–2000) than the changes in the other water flow components. This
indicates that tile drainage can critically influence the total flow in the study watershed. It
can also influence the stream water quality more significantly than the other hydrological
components in the study watershed.

The model-simulated monthly streamflow was compared with the observed stream-
flow values during the calibration (1994–2000) and validation (2001–2007) processes. For
a graphical evaluation, a scatterplot was used for the model’s evaluation in the calibra-
tion and validation periods (Figure 4). The comparison of the observed streamflow and
model-simulated streamflow showed that model underpredicted the streamflow during
both the calibration and validation periods. The scatterplot shows that most of the ob-
served and predicted values are along the linear fitted line, with very few outliers in the
validation period. The scatterplot shows that the model was able to capture both low and
high streamflow events well.
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The accuracy of the simulated monthly streamflow for the calibration period of
1994–2000 was found to be very good, with an NSE of 0.87, R2 of 0.88, and PBIAS of
−5.9%. For the validation period of 2001–2007, the model performed well, with an NSE of
0.75, R2 of 0.78, and PBIAS of −10.6%. The model’s performance in simulating the monthly
streamflow for the watershed is summarized in Table 2.
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Table 2. Model’s performance for streamflow.

Components Monthly Statistics

Calibration Period (1994–2000) NSE R-Square PBIAS (%) n-RMSE (%)
Streamflow 0.87 0.88 −5.9 -

Validation Period (2001–2007) NSE R-Square PBIAS (%) n-RMSE (%)
Streamflow 0.75 0.78 −10.6 -

3.2. Nitrate and Crop Yield Calibration and Validation

Following the hydrologic calibration, the model was calibrated simultaneously for
both the riverine nitrate (NO3-N) load and crop yield. The simultaneous calibration
of the crop yield and NO3-N is important because nutrient uptake by plants is one of
the critical components of soil nutrient dynamics, which greatly influences the model’s
performance in simulating NO3-N transport. Four model parameters were adjusted during
the NO3-N calibration process, and three were adjusted during crop yield calibration
(Table S2). The rate factors for the humus mineralization of active organic nutrients (cmn)
and denitrification exponential rate coefficient (cdn) were found to be very sensitive in
the NO3-N simulations. On the monthly scale, the model performed very well during the
calibration period, with as NSE of 0.66, R-square of 0.75, and PBIAS of −14.5%. The model
validation results showed a good model performance, with an NSE of 0.63, R-square of
0.75, and PBIAS of −37.9% (Table 3). The simulated results showed that the majority of the
NO3-N in the water is channeled through the tile drainage route to the stream. Since the
N fertilizers applied to the crops are highly dissolvable in water, tile drainage provides a
preferential pathway for the transport of NO3-N from the soil to the surface water bodies.
The scatterplot for the comparison of the monthly observed and simulated NO3-N for both
the calibration and validation periods showed that the model underpredicted the NO3-N
loads in the stream water (Figure 5). Although the model was able to capture the majority
of the variability in the observed values, this finding suggests that the model was unable to
capture some of the peak events, mainly those in the validation years.

Table 3. Model performance for nitrate and crop yield.

Components Monthly Statistics

Calibration Period (1994–2000) NSE R-Square PBIAS (%) n-RMSE (%)
Nitrate Load 0.66 0.75 −14.5 -
Crop Yield

Corn - - 12 16
Soybean - - 5 13

Validation Period (2001–2007) NSE R-Square PBIAS (%) n-RMSE (%)
Nitrate Load 0.63 0.75 −37.9 -
Crop Yield

Corn - - −1 7
Soybean - - −6 19

The crop rotation in each agricultural HRU was approximated using four years of
cropland data layers. The annual crop yield on the county level was averaged for all the
counties encompassed by the watershed. Two statistical goodness of fit measures, the
n-RMSE and PBIAS, were used to evaluate the model performance’s in simulating the
crop yield. For the calibration period, the model’s performance in simulating the corn
and soybean yields was good, with n-RMSE values of 16% and 13% and PBIAS values
of 12% and 5%, respectively. During the validation years, the model performance’s in
simulating the corn yield was very good, with an n-RMSE of 7% and PBIAS of −1%,
and its performance in simulating the soybean yield was also good, with an n-RMSE of
19% and PBIAS of −6%. A bar chart was used to visually compare the simulated crop
yield with the observed yield (Figure 6). The simulated results showed that the model
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over-predicted the corn yield in the period of 1995 to 1998, 2000, and 2003, whereas the
model over-predicted the soybean yield in 1996, 1997, 1998, 2000, and 2003. A significant
difference in the simulated corn and soybean yields was observed in 2000, when the model
over-predicted the corn yield by 32%, and in the year 2003, when the model over-predicted
the soybean yield by 41%. Similarly, the model under-predicted the soybean yield in 2002,
2005, and 2007, with differences ranging from 15% to 20%. The model-simulated crop
yields were found to be sensitive to the N and P application rates and timing.
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Figure 6. Comparison of model-simulated corn and soybean yields for both the calibration and
validation periods, from 1994–2007.

The accuracy of the simulated monthly nitrate load for the calibration period of
1994–2000 was found to be very good, with an NSE of 0.66, R2 of 0.75, and PBIAS of −14.5%.
For the validation period of 2001–2007, the model performed well, with an NSE of 0.63, R2

of 0.75, and PBIAS of −37.9%. The model’s performance in simulating the monthly nitrate
and crop yield for the watershed is summarized in Table 3.

3.3. Effects of the Combined BMPs on Water Quality and Crop Yield

The long-term simulation was performed using 30-year (1990–2019) weather data, and
the effects of different management scenarios were evaluated. The conventional method,
which was defined as a 100% spring pre-plant N application in the corn year at the rate of
224 kg N ha−1 with no N application in the soybean year, was used as a baseline, and all
the other management scenarios were compared with the baseline. Two N application rates
(202 kg N ha−1 and 179 kg N ha−1) and two N application timings (100% spring pre-plant
(the conventional method) and a 40:60 split between spring pre-plant and side-dressing
N applications (the split method)) with and without cover crops were evaluated. The
two N application rates (202 kg N ha−1 and 179 kg N ha−1) correspond to the average
and minimum N application rates, and the baseline N application rate of 224 kg N ha−1

corresponds to the maximum N application rate calculated using the MRTN calculator
for Central Illinois. Two cover crop implementations were tested, specifically, corn–cereal
rye–soybean and corn–cereal rye–soybean–cereal rye, combined with two N application
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rates and two N application timings. The impacts of each management scenario on the
NO3-N load and corn yield are presented in Figure 7.
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Based on the long-term simulation, we found that higher N application rates do not
necessarily increase crop yield. The conventional practice of applying more N to improve
crop productivity mainly results in higher losses of NO3-N from agricultural fields, mostly
tile-drained fields. Our analysis showed that both the N application rate and timing play a
critical role in improving corn production and reducing NO3-N losses. We found that there
is room for reducing N application rates by at least 20% without losing part of the corn yield.
Reducing the N application rate by 10% (from 224 kg N ha−1 to 202 kg N ha−1) and using
a 100% pre-plant N application method (C-CS-202) could potentially reduce the N load by
10% without impacting the crop yield. Furthermore, reducing the N application rate by 20%
(from 224 kg N ha−1 to 179 kg N ha−1) and using a 100% pre-plant N application method
(C-CS-179) could potentially reduce the NO3-N load by 17% with a corn yield reduction
of 3%. This finding was found to be consistent with research studies showing that when
the N application rate exceeds a certain amount, the corn yield reaches a plateau [15,51].
However, with the right N application timing, both NO3-N loss reduction and crop yield
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improvement are achievable. The model simulation results showed that using a 40:60 split
N application and a reduced N rate of 10% (S-CS-202) can potentially reduce the NO3-N
load by 10% and increase the corn yield by 6%. A further reduction in the N application
rate by 20% and the use of split N application method (S-CS-179) can reduce the NO3-N
load by 18% without negatively impacting the corn yield, as compared to the conventional
method. The soybean yield does not show any response to changes in the N application
rates or time.

Moreover, the planting of a winter cover crop after corn harvesting and the termination
of the cover crop before the planting of soybean, combined with a 20% N rate reduction
and split N application (S-CRS-179), will further reduce the NO3-N load by 32%, the corn
yield by 1%, and the soybean yield by 4%. The reduction in the crop yield might be
associated with a delay in cover crop termination. The timely termination of the cover crop
is important for minimizing the impact on both the corn and soybean yields. Research
studies have found that the delayed termination of cover crops can potentially reduce crop
yield [52]. The model simulation results also showed that the adoption of a cover crop in
both the corn and soybean years does not further reduce the NO3-N loads compared to the
adoption of a cover crop in the corn year alone.

4. Limitations of This Study

We were not able to calibrate the SWAT model for hydrology and water quality
assessment on the sub-watershed scale due to data limitations. In future studies, the model
could be calibrated and validated for multiple sub-watersheds to improve the reliability
of the predictions. Similarly, we had to calibrate the crop yield on the county level due to
data limitations. A sub-watershed level comparison (modeled vs. observed) of the crop
yield might provide a more reliable estimate of the crop yield. Similarly, the impacts of
implementing other cover crops (radish, legumes) on hydrology and water quality could
be investigated in future studies.

5. Conclusions

This study focused on evaluating the effects of combined management practices on
riverine nitrate loads and crop production on the watershed scale and sought to identify
the effectiveness of these management practices. Our findings suggest that there is room
for a further reduction in the conventional N application rate by 20%, without negatively
impacting crop production. With proper N application timing and rates, the level of riverine
nitrate can be potentially reduced by 18%. The adoption of cover crops in corn–soybean
rotation, combined with N management strategies, could potentially reduce the nitrate load
by 32%. However, the timing of cover crop termination is important for offsetting the effect
on the crop yield. Our model simulation results indicate that the use of cover crops planted
after corn harvesting and terminated before soybean planting (corn–cereal rye–soybean)
in tile-drainage-dominated agricultural watersheds is more beneficial. On the other hand,
cover crop treatment in both the corn and soybean years (corn–cereal rye–soybean–cereal
rye) was not found to be very effective in reducing nitrate losses compared to cover crop
treatment in the corn years alone. The findings presented in this study provide important
information for decision making, aiding in the effective implementation of combined
management practices to reduce N losses without negatively impacting crop production.
From a practical perspective, this study will help farmers and stakeholders to achieve their
agricultural production goals and minimize the off-site environmental impacts of nitrate
transport from agricultural lands.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture13081484/s1, Table S1: Spatial and temporal input
datasets used in the study; Table S2: Final calibrated SWAT+ parameters for hydrology, nutrient
dynamics, and crop yield; Table S3: Model-simulated hydrologic components for calibration period,
1994–2000, and validation period, 2001–2007.
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