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Abstract: This study introduces the fuzzy theory approach as an enhancement to the traditional
failure mode, effect, and criticality analysis (FMECA) method in order to address its limitations,
which primarily stem from subjectivity and a lack of quantitative analysis. The proposed method,
referred to as FMECA improvement based on fuzzy comprehensive evaluation, aims to quantify
the qualitative aspect of the analysis and provides a detailed outline of the analysis procedure. By
applying the enhanced FMECA method to assess the reliability of an intelligent profiling progressive
automatic rubber cutter, the hazard ranking for each failure mode of the cutter can be determined,
thereby identifying areas that require reliability improvement. The analysis outcomes demonstrate
that this method establishes a theoretical foundation for subsequent cutter improvement designs,
enables early identification of potential failures, and consequently leads to a reduced failure rate and
an enhanced reliability level for the intelligent profiling progressive automatic cutter. Furthermore,
this innovative agricultural equipment reliability analysis and testing approach holds significant
value in elevating the reliability standards of agricultural equipment as a whole and can be explored
and implemented in other agricultural machinery contexts.

Keywords: natural rubber; intelligent profiling progressive automatic glue cutter; FMECA method;
fuzzy comprehensive evaluation; reliability analysis

1. Introduction

The intelligent profiling step-by-step automatic rubber cutting machine offers several
advantages, including addressing the shortage of rubber workers, revolutionizing the
rubber work process, high automation levels, and independence from environmental
constraints. These benefits effectively reduce the reliance on manual labor for rubber
cutting, lower labor costs, and increase natural rubber output. Moreover, the machine’s
reliability directly influences the yield and quality of natural rubber. Currently, rubber
cutting machines experience a significant failure rate, which greatly diminishes the quality
of the cut rubber and can even damage the rubber trees, thereby adversely affecting the
income of rubber farmers. Therefore, it is imperative to conduct a reliability analysis of
rubber cutting machines. Failure is a disruptive event that can cause production delays and
compromise the overall reliability of a system [1–3]. In order to cope with various failure
modes that may occur, appropriate decisions based on the multicriteria decision-making
(MCDM) process are made at different stages such as design, manufacturing, and operation
to improve system reliability [4].

FMECA (failure modes, effect, and criticality analysis) mainly consists of two parts:
failure mode and effect analysis (FMEA) and criticality analysis (CA). It is commonly used
to find and solve various known or potential failures in equipment systems, which plays
a crucial role in improving the reliability and service life of equipment. However, when
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using the traditional FMECA method to analyze the reliability of equipment, there is too
much subjectivity, when determining the order of hazard level only qualitative analysis
can be performed (not quantitative analysis) and it is difficult to find out the weak links in
the system accurately by calculating the objective results, and it cannot provide technical
support for the daily maintenance of various equipment systems. In recent decades,
significant efforts have been made by scholars and researchers to enhance the FMECA
methodology [5]. Several improved methods have emerged, focusing on the following
areas. Bozdag et al. proposed a novel fuzzy FMECA method based on fuzzy sets [6]. This
approach considered the optimal weights of risk factors and integrated them using an
ordered weighted average operator based on the cut concept. Liu et al. [7] introduced
fuzzy directed graph and matrix methods into FMECA, developing a new FMECA model
that considered the relative weights of risk factors expressed linguistically. These weights
were transformed into fuzzy numbers and risk priority indices for failure modes were
calculated using corresponding fuzzy risk matrices. Zhou et al. [8] proposed a generalized
evidence FMECA model (GEFMECA) to handle uncertain risk factors encompassing both
conventional and incomplete risk factors. By utilizing the generalized evidence theory, the
issue of relative weights among risk factors was effectively resolved. Additionally, Liu
et al. [9] introduced an integrated FMECA method based on interval intuitionistic fuzzy
sets (IVIFS) and multi-attribute boundary approximation region comparison (MABAC)
methods. This approach established a linear programming model for obtaining weight
information among risk factors when complete weight information was not available,
thereby determining the optimal weights for these factors. Yang et al. [10] proposed a
fuzzy rule-based Bayesian inference method for prioritizing failure modes. Jee et al. [11]
introduced a new fuzzy inference system (FIS)-based risk assessment model for FMECA,
employing a two-stage approach to reduce the collection of fuzzy rules. Gajanand et al. [12]
combined FMECA with a fuzzy linguistic scaling method, presenting a novel reliability-
centered maintenance strategy that utilizes weighted Euclidean distance and fuzzy logic-
based center-of-mass defuzzification to rank failure modes. Sayyadi et al. [13] developed a
new FMECA model based on an intuitionistic fuzzy approach, enabling the evaluation of
failure modes in the presence of fuzzy concepts and limited data. Jian et al. [14] combined
intuitionistic fuzzy sets (IFSS) with evidence theory, proposing a novel FMECA failure
mode risk assessment method. Jiang et al. [15] utilized fuzzy affiliation in the proposed
FMECA fuzzy evidence method to evaluate the risk factors of failure modes, ranking
them using the Dempster–Shafer evidence theory to consolidate characteristic information.
Aydogan [16] proposed a method that combines the rough hierarchical analysis and fuzzy
TOPSIS methods for organizational performance analysis in a fuzzy environment. Liu
et al. [17] introduced an intuitive fuzzy hybrid TOPSIS method to determine the risk priority
of failure modes in FMECA. Silvia et al. [18] proposed an optimization method for the
maintenance activities of complex systems by integrating reliability analysis and MCDM
methods. They used AHP for weight assessment and fuzzy TOPSIS for risk prioritization.
Zhou et al. [19] introduced gray theory and fuzzy theory into FMECA for tanker equipment
failure prediction. They determined the risk priority of failure modes using the fuzzy risk
priority number (FRPN) obtained from fuzzy set theory and the gray correlation coefficient
from gray theory. Liu et al. [20] developed an FMECA framework by integrating the cloud
model and PROMETHEE method to handle diverse risk assessments from FMECA team
members and prioritize failure mode risks. Mandal et al. [21] proposed a method to rank
human errors using the VIKOR method. Baloch et al. [22] integrated the fuzzy VIKOR
method and data envelopment analysis into FMECA to determine the ranking of potential
modalities and select the most important damage modalities. Liu et al. [23] proposed
an improved approach for FMECA using fuzzy evidential reasoning (FER) theory. This
approach addresses two limitations of traditional FMECA: the acquisition and aggregation
of evaluations from different experts and the determination of the risk priorities for failure
modes. Liu et al. [24] further proposed a new FMECA failure mode prioritization risk
assessment model based on FER and belief rule base (BRB) methods. In this model,
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the diverse and uncertain evaluations provided by experts are captured and aggregated
using FER, whereas the nonlinear and uncertain relationships between risk factors and
corresponding risk levels are modeled using the BRB. Du et al. [25] presented a fuzzy
FMECA method based on evidential reasoning (ER) and TOPSIS to accurately identify
and aggregate risk factors. Su et al. [26] proposed an improved method for dealing with
conflicting evidence combinations by employing an uncertain inference method based on
the Gaussian distribution to reconstruct the basic belief assignment (BBA) while considering
the weight of each expert. Jiang et al. [27] proposed an improved application of the theory of
evidence to FMECA, which redistributes the underlying belief assignments by considering
the credibility coefficients obtained based on the distance of the evidence to minimize
conflicts between expert opinions. The applied research conducted by these experts and
scholars, focusing on enhancing the FMECA method in the reliability analysis of different
equipment systems, establishes a theoretical foundation for analyzing the reliability of the
intelligent profiling progressive automatic rubber cutter discussed in this paper.

This paper focuses on conducting reliability research on an intelligent profiling pro-
gressive automatic rubber cutter. The research utilizes an improved FMECA method as
the research tool. The primary objective is to assess and enhance the reliability level of
the rubber cutter. The application of the improved FMECA methodology innovatively
combines expert knowledge and engineering experience to provide a quantitative analysis
solution for the reliability of rubber cutting equipment through improved fuzzy theory.
The study aims to identify key areas for improving the reliability of the rubber cutter. The
findings of this research will provide theoretical guidance for subsequent improvement
designs and the daily maintenance of rubber cutters.

2. Materials and Methods
2.1. Basic Theory of the Traditional FMECA Method

The fundamental principle of the traditional FMECA is to systematically examine the
structure of the system, identify potential failure modes, analyze the underlying causes
of failures, and use statistical methods to estimate the severity (S), occurrence (O), and
detection (D) of the failure consequences based on technical specifications, historical data,
and user requirements. Subsequently, the risk priority number (RPN) is calculated, and the
failure modes are prioritized according to their RPN values. Appropriate improvement or
maintenance measures can then implemented to reduce the RPN and ensure the reliability
of the system.

The typical steps involved in conducting FMECA analysis are as follows, as illustrated
in Figure 1:

(1) Product Definition: Provide a description of the product’s composition, environ-
mental conditions during operation, functional aspects, and operational procedures;

(2) FMECA Method Selection: Choose the appropriate FMECA method based on
the analysis objective and the product’s development stage and develop a corresponding
FMECA analysis table;

(3) FMEA Analysis Implementation: Identify potential failure modes, describe their
effects, investigate the contributing causes for each mode, assess failure detection methods,
and analyze potential compensatory measures;

(4) Hazard Analysis: Evaluate the hazards associated with the identified failure modes.
In traditional FMECA, each failure mode identified within a system is evaluated using

three risk factors: severity (S), occurrence (O), and detectability (D). The RPN is calculated
by multiplying the values of S, O, and D, providing a ranking for the failure modes [28].
Typically, experts assign scores ranging from 1 to 10 to the risk factors S, O, and D, with
higher values indicating more severe situations. The RPN value is utilized to determine the
risk priority of each failure mode, allowing analysts to identify inherent vulnerabilities in
the system. A higher RPN indicates greater importance [29], suggesting a more significant
impact on the system and a higher risk priority. To ensure safety and reliability, preventive
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and improvement measures should give priority to higher-risk failure modes in order to
prevent their occurrence.
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However, the conventional crisp value of the RPN has faced criticism for several
reasons, [30–35] as explained below:

1. The relative importance of the three risk factors is often not considered or assumed
to be equal, which may not reflect the actual situation in many cases;

2. Multiplying the values of S, O, and D across different groups may result in the same
RPN values but the risk hazards in each group could be completely different. This can
lead to an unreasonable allocation of limited resources and time, or worse, the neglect of
high-risk failure modes;

3. Calculating the mean RPN is sensitive and contentious when the values of the risk
factors change. Even a slight change in the value of a risk factor can have a significantly
different effect on the RPN, particularly when other risk factor values are large;

4. The evaluation of risk factors S, O, and D usually utilizes discrete ordered metric
scales. As a result, the multiplicative calculations lack meaningfulness since the result-
ing RPN may show discontinuity, with multiple gaps and a wide range from 1 to 1000.
In such situations, the ranking results of failure modes lose their significance and can
potentially mislead;

5. The accurate determination of these three risk factors is often challenging. FMECA
team members express their evaluations using linguistic terms such as high, medium,
or low;

6. Due to variations in expertise and backgrounds, FMECA team members may
evaluate the same risk factors differently and some evaluations may be ambiguous and
uncertain. The traditional FMECA approach lacks comprehensive methods to describe
group judgments and explore the inherent connections between different evaluations. [36].

Although the FMECA method facilitates the timely identification of structural design
flaws, comparison of alternative solutions, and decision-making support for improving
design and maintenance strategies, the analysis process poses challenges due to multiple
evaluation factors, qualitative assessments, and the incommensurability of failure conse-
quences and impacts. As a result, analysts often encounter difficulties in producing precise
and effective analysis results.
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2.2. Enhancing the Fundamentals of the FMECA Method

The fuzzy comprehensive evaluation method is a quantitative approach based on
fuzzy mathematics that converts qualitative assessments into quantitative evaluations using
fuzzy principles. It facilitates the overall evaluation of objects or phenomena influenced by
multiple factors, providing clear and systematic results. This method is especially valuable
for addressing problems involving fuzziness and difficulties in quantification, making it
suitable for a range of non-deterministic scenarios.

The enhanced FMECA method integrates fuzzy theory with the traditional FMECA
method to analyze the reliability of equipment systems. By leveraging the strengths of
both reliability analysis methods, it effectively addresses the limitations of the traditional
FMECA approach. The improved method allows for the quantification of analysis results
and enhances the accuracy and reliability of comprehensive hazard-level rankings for each
failure mode. Figure 2 illustrates the fundamental evaluation process of the enhanced
FMECA method.

Agriculture 2023, 13, x FOR PEER REVIEW 5 of 17 
 

 

uncertain. The traditional FMECA approach lacks comprehensive methods to describe 
group judgments and explore the inherent connections between different evaluations. 
[36]. 

Although the FMECA method facilitates the timely identification of structural design 
flaws, comparison of alternative solutions, and decision-making support for improving 
design and maintenance strategies, the analysis process poses challenges due to multiple 
evaluation factors, qualitative assessments, and the incommensurability of failure conse-
quences and impacts. As a result, analysts often encounter difficulties in producing pre-
cise and effective analysis results. 

2.2. Enhancing the Fundamentals of the FMECA Method 
The fuzzy comprehensive evaluation method is a quantitative approach based on 

fuzzy mathematics that converts qualitative assessments into quantitative evaluations us-
ing fuzzy principles. It facilitates the overall evaluation of objects or phenomena influ-
enced by multiple factors, providing clear and systematic results. This method is espe-
cially valuable for addressing problems involving fuzziness and difficulties in quantifica-
tion, making it suitable for a range of non-deterministic scenarios. 

The enhanced FMECA method integrates fuzzy theory with the traditional FMECA 
method to analyze the reliability of equipment systems. By leveraging the strengths of 
both reliability analysis methods, it effectively addresses the limitations of the traditional 
FMECA approach. The improved method allows for the quantification of analysis results 
and enhances the accuracy and reliability of comprehensive hazard-level rankings for 
each failure mode. Figure 2 illustrates the fundamental evaluation process of the enhanced 
FMECA method. 

 
Figure 2. The fundamental evaluation process of the enhanced FMECA method. 

2.2.1. Defining the Set of Factors 
The factor set, represented by U, encompasses the collection of factors that exert in-

fluence on the evaluation object. 

{ }1 2 3, , , , , ,i mU u u u u u= ⋅⋅⋅ ⋅⋅⋅  (1)

where ui denotes the ith influencing factor, i = 1,2,3, …, m. 

2.2.2. Determining the Evaluation Set 
Defining the evaluation set, represented by S, includes all the evaluation results pro-

vided by experts for the evaluated object. 

{ }1 2 3, , , , , ,j nS s s s s s= ⋅⋅⋅ ⋅⋅ ⋅  (2)

where, sj denotes the jth evaluation result made by the judging expert, j = 1,2,3,…, n. 

2.2.3. Establishing the Fuzzy Evaluation Matrix 

Figure 2. The fundamental evaluation process of the enhanced FMECA method.

2.2.1. Defining the Set of Factors

The factor set, represented by U, encompasses the collection of factors that exert
influence on the evaluation object.

U = {u1, u2, u3, . . . , ui, . . . , um} (1)

where ui denotes the ith influencing factor, i = 1, 2, 3, . . ., m.

2.2.2. Determining the Evaluation Set

Defining the evaluation set, represented by S, includes all the evaluation results
provided by experts for the evaluated object.

S =
{

s1, s2, s3, . . . , sj, . . . , sn
}

(2)

where, sj denotes the jth evaluation result made by the judging expert, j = 1, 2, 3, . . ., n.

2.2.3. Establishing the Fuzzy Evaluation Matrix

A fuzzy mapping f : U→ S is needed to establish the relationship between the evalua-
tion results and the influence factors. This mapping is denoted as f : U→ F (S), where each
influence factor ui is mapped to its respective fuzzy evaluation result f (ui). Applying this
mapping allows us to determine the degree of affiliation aij between an influence factor ui
and an evaluation result sj.

f (ui) = Ai =
(
ai1, ai2, ai3, . . . , aij, . . . , ain

)
(3)

The set Ai represents the evaluation results for the individual influence factor, ui.
These individual evaluation results are organized as rows in the evaluation matrix and
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then transposed to form an m-by-n matrix. The resulting matrix, denoted as A, represents
the fuzzy evaluation of the influence factors.

A = [A1, A2, · · · , An]
T =


a11 a12 . . . a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

 (4)

An evaluation team, comprising r experts, is formed, and each expert is responsible for
providing their evaluation result sj for each influence factor ui. If there are rij experts who
evaluate ui as sj, the evaluation set for ui can be obtained using the following procedure:

Ai =
{

ri1
r , ri2

r , ri3
r , · · · ,

rij
r , · · · , rin

r

}
=
{

ai1, ai2, ai3, · · · , aij, · · · , ain
} (5)

where
n
∑

j=1
aij = 1.

2.2.4. Determine the Weights for the Set of Influence Factors

Given the significant variations in the degree of harm caused by different influencing
factors on each failure mode, it is crucial to prioritize and rank the factors according to
their impact. Prior to conducting the comprehensive evaluation by experts, the weights
are determined in a specific order. These weights collectively constitute the weight set of
influencing factors, denoted as L.

L = {l1, l2, l3, · · · , li, · · · , ln} (6)

where 0 < li < 1, i ∈ [1, n], and
n
∑

i=1
li = 1.

Several methods are available for determining the weight set of influencing factors,
including survey statistics, expert scoring methods, and the analytic hierarchy process
(AHP). Among these methods, the survey statistics method involves analyzing a significant
amount of data through empirical research to determine the weights. However, this
method is labor intensive and time consuming, making it impractical in many situations.
The expert scoring method determines the weights through expert evaluations. Although
this method saves time and effort, it is subjective and prone to errors, posing challenges in
obtaining the ideal and precise weights. In contrast, the analytic hierarchy process method
can address the limitations of the expert scoring method by mitigating human biases in
the weight determination process. This method ensures the attainment of objective and
effective weights. In this study, the 1–9 scale model of the analytic hierarchy process is
used to determine the weight set of influencing factors [8]. The following steps outline
the procedure:

(1) The relative significance of the influencing factors ui and uj is conveyed by using
bij, resulting in the formation of a judgment matrix B.

B =


b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

...
...

bn1 bn2 · · · bnn

 (7)

where the values of bi are referred to in Table 1. It is evident that bii = 1 and bij = 1/bji;
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Table 1. AHP analysis of the relative importance degree of the influencing factors.

Implications bij

ui is as important as uj 1
ui is slightly more important than uj 3

ui is significantly more important than uj 5
ui is strongly more important than uj 7

ui is definitely more important than uj 9
The importance of ui over uj is between the

above two scale values 2, 4, 6, 8

(2) A consistency test is conducted on the judgment matrix B by determining the
consistency ratio KC. To begin, the maximum characteristic root λmax associated with the
judgment matrix B and the consistency index IC are calculated as follows:

IC =
λmax − n

n− 1
(8)

Subsequently, the value of IT, representing the average random consistency index of
the judgment matrix, is determined. The specific values of IT for the judgment matrices of
order 1–13 can be obtained from Table 2.

Table 2. Values 1–13 of IT judgment matrix.

n 1 2 3 4 5 6 7 8 9 10 11 12 13

IT 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.52 1.54 1.56

Based on the calculated values of IC and IT, the consistency ratio KC is computed,
which is defined as follows:

KC =
IC
IT

(9)

when KC < 0.1, it can be concluded that the consistency of judgment matrix B meets
the required criteria. However, if KC exceeds 0.1, adjustments to the judgment matrix B
are necessary;

(3) The weights of each factor are determined using the square root method. The
weighting term for the ith factor of the analyzed failure mode is calculated as follows:

li =

n

√
n
∏
j=1

bij

n
∑

i=1
n

√
n
∏
j=1

bij

(10)

Subsequently, the set of factor weights for this specific failure mode is obtained as L1 =
{l1, l2, . . ., li, . . ., ln} where 0 < li < 1, ensuring the fulfillment of the normalization condition:

n

∑
i=1

li = 1 (11)
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2.2.5. The Calculation of the Fuzzy Comprehensive Evaluation Vector

By multiplying the previously derived fuzzy evaluation matrix A of influence factors
with the set of influence factor weights L, we can obtain the fuzzy comprehensive evaluation
vector, denoted as D, which can be expressed as follows:

D = L×A= [l1, l2, · · · , ln]×


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

 (12)

2.2.6. Determining the Comprehensive Hazard Level

To enable a clearer comparison of the hazard levels associated with each failure
mode in relation to the evaluation object, it is essential to calculate a specific value by
applying weighted averaging to the fuzzy comprehensive evaluation vector D. This value,
represented as R, indicates the ranking of the hazard levels for each failure mode with
respect to the evaluation object.

R = D·ST (13)

where S in denotes the evaluation result matrix.

3. Results and Analysis

The quality of rubber cutting plays a crucial role in achieving high yields from natural
rubber trees in agricultural production. Therefore, the performance and reliability of rubber
cutters directly affect the quality of rubber cutting, necessitating a reliability analysis. This
study aims to analyze the reliability of a specific type of rubber cutter, specifically an
intelligent profiling progressive automatic rubber cutter, as an illustrative example.

3.1. Intelligent Profiling Progressive Automatic Gum Cutter

The structure of the intelligent profiling progressive automatic rubber cutter, as de-
picted in Figure 3, mainly comprises several key components, including the adjustable
flexible tooth-belt fixing device, adaptive tree profiling cutting device, circumferential
motion device, vertical motion device, reduction drive device, and a complete set of screws,
motors, and other auxiliary elements.

Before operating the intelligent profiling automatic rubber cutter, careful consider-
ations are taken into account for the variations in the upper and lower bark sizes of the
natural rubber tree, as well as the irregularities on its surface. To address these factors, the
rubber cutter is first secured to the rubber tree using the adjustable flexible tooth-belt fixing
device. This ensures that the center axis of the upper and lower drive teeth stays aligned
with the center axis of the rubber tree during the cutting process, enabling precise and
stable autonomous execution of the rubber cutting task. When the rubber cutter receives
the rubber cutting command, it starts by extending the push rod, which causes the adaptive
tree imitation device to stick to the surface of the rubber bark, thereby entering the cutting
state. Afterwards, the rubber cutting knife performs a spiral movement along the natural
rubber trunk, facilitated by the compound motion transmission device. This movement
imitates the cutting trajectory of humans, facilitating efficient rubber cutting operations.
After the completion of rubber cutting, the stepping motor drives the rubber cutting device
to descend along the screw by a specified distance (tare consumption). This ensures the
appropriate consumption of bark for the subsequent cutting cycle. Ultimately, a complete
rubber cutting operation is achieved. The entire cutting process can be remotely controlled
using an intelligent control module, allowing for the smooth execution of automated
cutting operations.
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3.2. Analysis of the FMEA Method for an Intelligent Profiling Progressive Automatic Glue 
Cutter 

A comprehensive analysis of the failure modes of the intelligent profiling progressive 
automatic rubber cutter was carried out, as depicted in Table 3. 

  

Figure 3. Intelligent profiling step-by-step automatic glue cutter. (a) Three-dimensional structure
picture. (b) Pictures of Gumlin field work. (1) Adjustable flexible belt fixing device; (2) Adaptive
tree-adaptive miter devices; (3) Circular motion device; (4) Vertical motion device; (5) Complete set of
screws; (6) Reduction gearing; (7) Motor.

3.2. Analysis of the FMEA Method for an Intelligent Profiling Progressive Automatic Glue Cutter

A comprehensive analysis of the failure modes of the intelligent profiling progressive
automatic rubber cutter was carried out, as depicted in Table 3.

Table 3. Analysis table of FMEA method for intelligent profiling progressive automatic glue cutter.

Code Failure Mode Failure Analysis Fault Impact Fault Checking
Method

Troubleshooting
Measures

1
Motor shaft

damage; fracture
or deformation

Excessive torque
due to overload

Decreased
functionality

Regular inspection;
instrument testing Motor replacement

2 Tooth-belt slippage

Excessive load
causes the

transmitted force
to be greater than

the limit of the
sum of the

frictional forces
between the belt

and the gear

Decreased
functionality Visual inspection

Increase the belt
width or replace

the belt
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Table 3. Cont.

Code Failure Mode Failure Analysis Fault Impact Fault Checking
Method

Troubleshooting
Measures

3 Blade deformation
or breakage

Insufficient blade
strength;

improper cutting
depth and blade
installation angle

resulting in
excessive load
causing blade

breakage

Loss of function Visual inspection

Replacement of
high strength

blades; correction
of cutting depth

and blade
installation angle

4

Circumferential
and vertical

movement device
rotation is not

flexible, there is a
jamming

phenomenon

The upper and
lower tooth-belt
gap has foreign

matter and
installation is not
parallel to cause
the center axis of
the transmission
teeth and rubber
tree center axis

offset; poor
lubrication

Decreased
functionality

Regular
inspections;

instrument testing

Removal of foreign
objects;

enhance
lubrication

5
Unstable amount

of skin
consumption

The height of the
descending screw
and the distance
from the cutting

knife to the
guiding depth

limiting wheel are
not consistent
when cutting

rubber

Decreased
functionality

Regular
inspections;

instrument testing

Correction of the
height of the

lowering screw
and the distance
from the cutting

knife to the
guiding depth

limit wheel

6 Unstable cutting
depth

Improper
installation and

cutting angle of the
blade; spring

tension failure, etc.,
led to jumping of
the cutting knife

Decreased
functionality

Instrument
inspection;

visual inspection

Correct blade
mounting and
cutting angle;
replace spring

3.3. Analysis of the Traditional FMECA Method for the Intelligent Profiling Progressive Automatic
Glue Cutter

The reliability analysis of the intelligent profiling progressive automatic rubber cutter
was conducted using the conventional FMECA method based on the FMEA table.

The RPN is used as a quantitative measure of the hazard, evaluating the potential
severity associated with each failure mode. By evaluating the levels of fault occurrence
probability, impact severity, and detection difficulty, a comprehensive analysis of the
impact is conducted. A higher RPN value indicates a higher hazard associated with the
corresponding failure mode, which can be expressed as follows:

RPN = ESR×OPR×DDR (14)

where ESR represents the level of impact severity, OPR denotes the level of probability
of occurrence, and DDR signifies the level of detection difficulty. The ESR is established
based on the failure mode, impact, and hazard analysis guide, as well as the maintenance
experience of cutter maintenance engineers. The hazard degree values are assigned as
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follows: I is assigned a value of 5, II is assigned a value of 4, III is assigned a value of
3, IV is assigned a value of 2, and V is assigned a value of 1. The value of the OPR is
determined based on the failure mode, impact, hazard analysis guide, and the available
cutter failure data. The possibility of occurrence for each type of hardware failure of the
cutter is categorized into five intervals. The corresponding probabilities of fault occurrence
P are P > 10−1, 10−2 < P ≤ 10−1, 10−4 < P ≤ 10−2, 10−6 < P ≤ 10−4, and P ≤ 10−6,
and the corresponding OPR values are 5, 4, 3, 2, and 1, respectively. The DDR is defined
based on various factors, including the precision of the current testing equipment, the
expertise of the testing personnel, and the employed testing methods. The assessment
of inspection complexity for each component of the cutter involves categorizing them
into five types: undetectable, difficult to detect, detectable, easy to detect, and directly
identifiable. Correspondingly, the assigned DDR values for these categories are 5, 4, 3, 2,
and 1, respectively.

The RPN values for each failure mode of the intelligent profiling progressive au-
tomatic rubber cutter are obtained based on the value criteria of ESR, OPR, and DDR.
Equation (15) was applied to derive these values and experts from the rubber cutter main-
tenance industry were invited to provide scores, as illustrated in Table 4.

Table 4. Table of RPN values for each failure mode of the intelligent profiling progressive automatic
glue cutter.

Projects ESR OPR DDR RPN

Failure Mode 1 4 2 4 32
Failure Mode 2 3 3 2 18
Failure Mode 3 4 3 2 24
Failure Mode 4 2 3 2 12
Failure Mode 5 3 3 3 27
Failure Mode 6 4 3 2 24

Based on Table 4, the hazard levels for the six failure modes can be determined in
descending order as follows: Failure Mode 1, Failure Mode 5, Failure Mode 3, Failure Mode
6, Failure Mode 2, and Failure Mode 4. Failure Mode 1 and Failure Mode 5 exhibit the
highest RPN values and pose the greatest hazards. Failure Mode 6 and Failure Mode 3
have identical RPN values, indicating the same level of hazard for both failures.

The preparation of the FMEA worksheet, as shown in Table 4, is found to be highly
beneficial during the analysis process. By comparing the RPN values before and after
implementing maintenance measures, the evaluation of maintenance policies is facilitated.
Moreover, a more comprehensive understanding of the failure causes and effects contributes
to a better assessment of risk factors.

However, the RPN approach has several shortcomings that have led to the adoption
of alternative methods in FMEA. The main criticisms include the following:

(1) Potential result unification: The RPN values may be the same for two different
failure modes, despite their values for factors such as ESR, OPR, and DDR being different;

(2) Overlooking significant aspects of failures: In certain cases, failures with high
severity may garner inadequate attention due to the low values of other risk factors,
resulting in a low RPN value;

(3) Lack of clear distribution pattern: RPNs are distributed from 1 to 125, and the
relationship between neighboring numbers at intervals of 5 or 10 relate to each other.

3.4. Analysis of the Improved FMECA Method for the Intelligent Profiling Progressive Automatic
Glue Cutter

The improved FMECA method is employed to quantitatively analyze the FMEA
results and assess the reliability of the intelligent profiling progressive automatic glue
cutter. This analysis provides a comprehensive ranking of the hazard level for each failure
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mode, enabling the implementation of appropriate measures to promptly address failures
and ensure the efficient and reliable operation of the cutter.

The analysis of the intelligent profiling progressive automatic glue cutter within the
framework of the FMEA method focuses on evaluating common failure modes through
fuzzy synthesis. The evaluation process is outlined in the following steps:

(1) Determination of the factor set: The assessment of fault hazard level in the intelli-
gent profiling progressive automatic glue cutter involves the consideration of the following
factors: fault occurrence probability (u1), degree of fault impact (u2), testing difficulty (u3),
and fault repair difficulty (u4). These factors collectively form the set U;

(2) Establishment of the evaluation set: The primary objective of this study is to
identify weaknesses in the intelligent profiling progressive automatic glue cutter and
provide guidance for its improvement and maintenance. Since there is no absolute
“good” or “bad” state for each influencing factor, an intermediate scale comprising three
levels—“better”, “average”, and “worse”—is introduced between the two extremes. The
evaluation levels for the impact factors are categorized into five levels represented by the
set S = {1, 2, 3, 4, 5}. The specific evaluation levels for each influencing factor are presented
in Table 5.

Table 5. Evaluation grade table of each influence factor.

Influencing
Factors

Evaluation Level

1 2 3 4 5

Fault
occurrence
probability

u1

Almost never
happens

Rarely
happens Occasional Sometimes it

happens Frequent

Degree of
fault impact

u2

Almost no
effect Mild faults Moderate

failure
Critical
Failure Fatal Failure

Difficulty of
testing u3

Can be found
directly

Easy to
detect

Not easy to
detect

Hard to
detect Undetectable

Difficulty of
repairing
faults u4

Simple
debugging Reinstallation Replacement

Parts

Replace the
whole

machine
Unrepairable

(3) Determining the fuzzy evaluation matrix involves assigning fuzzy sets to the failure
probability, failure impact degree, detection difficulty, and maintenance difficulty of Failure
Mode 1. Let the fuzzy set for the failure probability be denoted as a1 = {0, 0.2, 0.5, 0.3, 0},
the fuzzy set for the failure impact degree as a2 = {0.1, 0.45, 0.3, 0.15, 0}, the fuzzy set for
the detection difficulty as a3 = {0, 0.15, 0.7, 0.1, 0.05}, and the fuzzy set for the maintenance
difficulty as a4 = {0, 0, 0.5, 0.4, 0.1}. Consequently, the fuzzy evaluation matrix for Failure
Mode 1 can be derived as follows:

A1 =
[
a1 a2 a3 a4

]T
=


0 0.2 0.5 0.3 0

0.1 0.45 0.3 0.15 0
0 0.15 0.7 0.1 0.05
0 0 0.5 0.4 0.1

 (15)

(4) Determining the weight set of influencing factors for Failure Mode 1 involves
evaluating the relative importance of these factors in the decision model based on their
impact on the decision outcomes. By performing the corresponding calculations, the weight
values for each influencing factor are obtained, as presented in Table 6.
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Table 6. Judgment matrix and weight value of each influencing factor of the plugging device.

Influencing
Factors u1 u2 u3 u4

Weighting
Value li

u1 1 5 1/3 5 0.2804
u2 1/5 1 1/7 1 0.0678
u3 3 7 1 7 0.5747
u4 1/3 1 1/7 1 0.0771

The judgment matrix can be obtained from the data provided in Table 6 as follows:

B =


1 5 1/3 5

1/5 1 1/7 1
3 7 1 7

1/3 1 1/7 1

 (16)

The consistency test of the judgment matrix B is conducted based on the value of the
consistency ratio KC. Firstly, the corresponding maximum characteristic root λmax = 4.13 is
calculated from matrix B. Substituting it into Equation (8), the consistency index IC = 0.043
is obtained, and from Table 2, IT = 0.90. By substituting these values into Equation (9),
KC = 0.048 < 0.1, indicating that the consistency of judgment matrix B satisfies the require-
ments. Therefore, the set of factor weights corresponding to Failure Mode 1 can be obtained
as follows:

L1 = {0.2804, 0.0678, 0.5747, 0.0771} (17)

(5) Fuzzy integrated evaluation of the cavity rate overload fault. According to
Equation (12), the fuzzy comprehensive evaluation vector for fault mode 1 is D1 = L1
− A1 = [0.3604 0.2381 0.2962 0.1053]. This indicates that the membership of the cavity rate
overload fault to hazard level 1, 2, 3, and 4 is 0.4410, 0.2425, 0.2672, and 0.0493, respectively;

(6) Determining the comprehensive hazard level of excessive cavitation failure. Ac-
cording to Equation (13), the comprehensive hazard level of the cavity rate fault can be
obtained as follows:

R1 = D1 × [1, 2, 3, 4, 5 ]T = 3.069 (18)

(7) Similarly, the fuzzy evaluation matrices for Failure Modes 2 to 6 are determined
as follows:

A2 =


0 0.6 0.3 0.1 0
0 0.8 0.2 0 0

0.7 0.3 0 0 0
0.1 0.4 0.3 0.1 0.1



A3 =


0.1 0.3 0.3 0.2 0.1
0 0.1 0.2 0.3 0.4

0.6 0.3 0.1 0 0
0.1 0.2 0.7 0 0



A4 =


0 0.3 0.4 0.2 0.1

0.2 0.5 0.3 0 0
0.6 0.3 0.1 0 0
0.5 0.2 0.3 0 0



A5 =


0.3 0.2 0.4 0.1 0
0 0.1 0.5 0.3 0.1
0 0.1 0.4 0.5 0

0.4 0.3 0.3 0 0


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A6 =


0.2 0.1 0.5 0.2 0
0 0.1 0.2 0.3 0.4

0.3 0.6 0.1 0 0
0.2 0.3 0.4 0.1 0


Given that the relative importance of the influencing factors for each failure mode

remains consistent, as indicated in Table 5, the same weight set is employed, which is
denoted as L1 = L2 = L3 = L4 = L5 = L6. Utilizing Equation (12), we can obtain the fuzzy
comprehensive evaluation vector for each failure mode as follows:

D2 = L2 ×A2 = [0.41, 0.4257, 0.1208, 0.0358, 0.0077]

D3 = L3 ×A3 = [0.3806, 0.2787, 0.2091, 0.0764, 0.0552]

D4 = L4 ×A4 = [0.3969, 0.3059, 0.0982, 0.0561, 0.0280]

D5 = L5 ×A5 = [0.1150, 0.1435, 0.3991, 0.3357, 0.0068]

D6 = L6 ×A6 = [0.2439, 0.4028, 0.2421, 0.0841, 0.0271]

The combined hazard level for each failure mode can be determined using
Equation (13):

R2 = D2 × [1, 2, 3, 4, 5]T = 1.8055

R3 = D3 × [1, 2, 3, 4, 5]T = 2.1469

R4 = D4 × [1, 2, 3, 4, 5]T = 1.6677

R5 = D5 × [1, 2, 3, 4, 5]T = 2.9761

R6 = D6 × [1, 2, 3, 4, 5]T= 2.2477

Based on the calculated integrated hazard level for each fault, the descending order
of hazard levels for the six failure modes is as follows: Failure Mode 1, Failure Mode 5,
Failure Mode 6, Failure Mode 3, Failure Mode 2, and Failure Mode 4. After conducting
numerous statistical analyses on data from field cutting tests in the forest, the findings
demonstrate that the evaluation results are consistent with the real-world scenario, with an
accuracy exceeding 95%. Additionally, this method can be applied to analyze the reliability
of other agricultural equipment. Additionally, this method enables the analysis of reliability
for other agricultural equipment, identification of the most critical potential faults, and
implementation of timely measures to mitigate and enhance the design, thus improving
the overall reliability of agricultural equipment.

4. Discussion

Natural rubber, as one of the four major industrial materials in modern society, exhibits
excellent abrasion resistance, impact resistance, elasticity, and heat dissipation. In particular,
at low temperatures it demonstrates ductility and resilience that are incomparable to
synthetic rubber. It has extensive applications in industrial production, national defense
equipment, transportation, medicine, health care, and other fields. Therefore, natural
rubber plays a critical role in the national economy and people’s livelihoods. Natural
rubber is primarily obtained by the semi-spiral ring cutting of rubber trees. In order to
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reduce the intensity of artificial rubber cutting and alleviate labor difficulties, the integration
of agro-mechanical and agronomic approaches has led to the research and development of
intelligent rubber cutting equipment that is replacing the traditional manual rubber cutting.
This transition is an inevitable trend. Intelligent rubber cutting equipment significantly
reduces the dependence on manual labor, lowers the cost of rubber cutting, and improves
the output rate of natural rubber. The reliability of this equipment directly affects the
production and quality of natural rubber. The reliability of rubber cutting equipment
directly impacts the output and quality of natural rubber. Currently, the failure rate of
rubber cutting machines remains significantly high. Once a failure occurs, it greatly reduces
the quality of the rubber cuts and may even lead to serious damage to the rubber trees,
thereby affecting the income of rubber farmers. Currently, no relevant scientific literature
exists on the reliability of intelligent rubber cutters. This paper introduces an innovative
method to analyze the reliability of intelligent profiling step-by-step automatic rubber
cutters. The original contributions of this paper can be summarized as follows:

(1) Research on the FMECA analysis method based on fuzzy comprehensive evaluation
was carried out, and a fuzzy comprehensive evaluation model was established. The model
provides a theoretical basis for the reliability design of agricultural equipment and lays the
foundation for the application of reliability analysis in the field of agricultural machinery;

(2) A qualitative and quantitative analysis of the reliability of the intelligent profiling
progressive automatic glue cutter was carried out by using the improved FMECA method,
and the comprehensive hazard ranking of each failure was obtained. We propose improve-
ment measures and formulate a preventive maintenance outline, which can provide a
theoretical basis for the improved design of the cutter and check the possible failures of the
cutter beforehand, thus reducing the failure rate of the cutter and greatly improving the
reliability level of the intelligent profiling progressive automatic cutter;

(3) Taking the intelligent profiling progressive automatic rubber cutter as an example,
the above model was used to verify and analyze its frequent failure modes; the results
showed that this evaluation result was consistent with the actual situation, indicating that
the evaluation model is an effective method that can make full use of the system’s fuzzy
information for reliability analysis. Furthermore, this innovative agricultural equipment
reliability analysis and testing approach holds significant value in elevating the reliability
standards of agricultural equipment as a whole and can be explored and implemented in
other agricultural machinery contexts.

5. Conclusions

This study applies an improved FMECA method to analyze the reliability of an intelli-
gent profiling step-type automatic rubber cutter. The traditional FMECA method suffers
from subjectivity and a limited ability for quantitative analysis. To address these issues,
we introduced a fuzzy theoretical method in combination with the traditional FMECA
method, thus proposing an improved FMECA method based on fuzzy comprehensive
judgment. Through this approach, we quantified the qualitative analysis problems, calcu-
lated the qualitative analysis results, and analyzed the reliability of the rubber cutter. The
study quantifies the problems, calculates the hazard rankings of each failure mode of the
rubber cutter, and identifies the areas requiring reliability improvement. It addresses the
shortcomings of the original hazard ranking and optimizes the cycle for replacing spare
parts, along with the frequency of maintenance and inspection in the field cutting work
within the natural rubber forest. This method offers a theoretical basis for the subsequent
improvement design of the rubber cutter. Additionally, it enables pre-emptive detection of
the potential failures of the rubber cutter, thereby reducing the incidence of failures and
enhancing the reliability of the intelligent profiling step-by-step automatic rubber cutter.
Moreover, this type of agricultural equipment reliability analysis and detection method
exhibits significant technical innovation and positive implications for enhancing the relia-
bility level of agricultural equipment. Furthermore, its applicability can be explored for
other agricultural equipment as well.
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