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Abstract: Currently, optical imaging techniques are extensively employed to automatically sort
agricultural products based on various quality parameters such as size, shape, color, ripeness, sugar
content, and acidity. This methodological review article examined different machine vision techniques,
with a specific focus on exploring the potential of fluorescence imaging for non-destructive assessment
of agricultural product quality attributes. The article discussed the concepts and methodology of
fluorescence, providing a comprehensive understanding of fluorescence spectroscopy and offering a
logical approach to determine the optimal wavelength for constructing an optimized fluorescence
imaging system. Furthermore, the article showcased the application of fluorescence imaging in
detecting peel defects in a diverse range of citrus as an example of this imaging modality. Additionally,
the article outlined potential areas for future investigation into fluorescence imaging applications for
the quality assessment of agricultural products.
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1. Introduction

Awareness about maintaining food safety has risen in the public’s mind, such that it
is now of great concern. As a result, customers have become more discerning about the
quality of the food they consume and more demanding of “just in time” delivery. Therefore,
to ensure the reputation of a supplier’s brand and the supply of quality products to the con-
sumer, agricultural products are now being automatically graded and sorted in commercial
and cooperative facilities of many countries using a machine vision system with image
processing capabilities. This system can inspect products according to different parameters
such as size, shape, color, weight, ripeness, presence of defects, and disease [1–3]. Machine
vision systems in the packing lines perform repetitive tasks quicker, more accurately, and
with greater consistency over time than humans, reduce the labor associated with grading,
and maintain the reputation of supplier brand names, enhancing the supply of high-quality
food to the market. Energy, labor, and materials costs are reduced, and packing is con-
tinuously performed 24 h a day, ultimately increasing the productivity of the packing
house [1,4,5]. Research on machine vision application has become more and more common
place in postharvest product quality evaluation and safety control, field robotic guidance,
automated harvesting, and packing and wrapping [1,6,7].

Optical imaging techniques, in particular machine vision systems, have been widely
utilized in the design of non-destructive biological product inspection equipment. Consid-
ering the recent importance of product quality detection, several techniques were studied
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using machine vision systems equipped with different monochrome, color, multispectral,
and hyperspectral imaging sensors. Monochrome or grayscale imaging-based machine
vision systems are used for the detection of postharvest quality of fruits [8–11] and vegeta-
bles [12], and examining meat quality [13–17]. The application in color imaging, i.e., the
composition of fundamental color components RGB for the detection and grading of agri-
cultural product quality, found vast and extensive applications [18–25], and researchers
mostly used this means of imaging for the image classification process [4].

Spectral imaging is defined as a combination of imaging and spectroscopy, where a
complete spectrum is collected at every location of an image plane. This powerful technique
is known as multispectral (i.e., number of bands) or hyperspectral (i.e., much narrower
bands: 10~20 nm) imaging [26]. Nowadays, there are many applications in the fields
of agriculture, biomedical, ecology, oil and gas, oceanography, and atmospheric studies
where multispectral [27–31] and hyperspectral [16,17,32–35] sensing techniques are being
widely used. Hyperspectral imaging technology is used to acquire both spatial and spec-
tral information on an object over the ultraviolet (UV), visible (VIS), and near-infrared
(NIR) spectral regions at the same time. Due to the limitations of regular machine vision
and spectroscopic techniques, this technology attracted the interest of researchers as a
powerful tool used in a variety of scientific areas, including agriculture, pharmaceutical,
and material science [32,34,36]. The study and research work on the application of hy-
perspectral imaging in reflectance mode has become more and more popular recently in
food quality and safety control, such as the detection of defects [32,37–41], identification of
contaminations [32,42,43], and quantification of meat ingredients [44,45].

Alternatively, apart from categorizing machine vision systems based on the electro-
magnetic wavelength they operate on, we can also utilize imaging systems that employ
different modes or principles of measurement. While reflectance is the most commonly
used in machine vision, another principle called fluorescence can be employed. Fluores-
cence imaging is an optical imaging methodology that is widely accepted and has been
proven to be one of the most powerful techniques used in a variety of scientific areas,
including environmental, industrial, and biotechnology applications. In particular, fluores-
cence imaging emerged as a promising adjunctive nondestructive technique for postharvest
quality research for agricultural and food products and has been demonstrated to be a
very useful technique for building generic inspection systems that can meet the speed re-
quirements of commercial production lines [46,47]. Since fluorescence imaging can provide
spatial information about fluorescence emission from a product item, it may offer a new
opportunity for assessing the postharvest quality of horticultural products [48]. However,
the application of fluorescence imaging to this date has not been fully explored to assess
food quality and safety.

Recent research involved fluorescence imaging for measuring the quality and safety
of food and agricultural products. A study was conducted to identify the optimum wave-
lengths for fluorescence excitation and the resulting fluorescence wavelengths in the range
of 300–700 nm with citrus peels, which was concerned with the detection of surface defects
of citrus fruits [46]. The physical causes for the fluorescent signatures that caused the citrus
fruits to be rejected by the commercial packing house, even though their external appear-
ance was fresh or normal to the naked eye under visible light, were examined. The study
showed that UV-induced fluorescence imaging could detect unseen injuries or defects in
undamaged-appearing citrus fruits and cull them from the packing line [49]. UV-induced
fluorescence imaging could also reveal different image features that could not be seen
in reflectance-based imaging, including color and texture. Both techniques also could be
combined to improve the accuracy of prediction or classification [50,51]. Hyperspectral
fluorescence imaging techniques were used to detect early bruises on pears [52], inspect
fungal infection of stored apples [53], and measure laser-induced fluorescence scattering
to assess the postharvest quality of apples [48]. To measure the freshness of rice quickly
and conveniently, a fluorescence imaging method with ultraviolet (UV) excitation was
designed and developed [54]. The feasibility of using light-emitting-diode (LED)-induced
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fluorescence imaging was investigated for rapid inspection of common organic poultry
residues on poultry processing (i.e., chicken fat, blood, and feces) and stainless-steel equip-
ment surfaces [55]. A recent study suggested a sanitation monitoring and management
system using fluorescence imaging techniques to detect fruit residues on the surface of
food processing equipment [56].

In the remainder of the review paper, the fundamental aspects underlying fluorescence
will be described to further understanding of this type of imaging, primarily to determine
the best wavelength for designing and constructing an optimized fluorescence imaging
system. Following this, examples of its use in the evaluation of citrus are provided. It is
hoped that these examples will provide methodologies that would be pertinent for both
citrus and other biological products. Finally, an overview of areas of future investigation of
fluorescence imaging applications for quality assessment of agricultural products is given.
The overall goal of this review is to provide a logical methodology that is commonly used
to apply fluorescence imaging for the quality assessment of agricultural products. This
information will be very useful for researchers, scientists, and commercial packing houses
in understanding, designing, constructing, and demonstrating an optimized fluorescence
imaging system.

2. Fluorescence Concepts and Methodology

Fluorescence is a very useful property of some chemical substances and it is increas-
ingly used in biosciences. Fluorescence is the emission of light by a substance that has
absorbed light or other electromagnetic radiation. It is the molecular absorption of light
energy at one wavelength and its nearly instantaneous re-emission at a longer wavelength
or lower frequency. Some molecules fluoresce naturally, and others can be modified to
make fluorescent compounds.

Fluorescence occurs when a fluorophore (fluorescent molecule, atom, or nanostructure)
relaxes to its ground state after absorbing a photon. Usually, the absorbed photon is in the
UV range, and the emitted light is in the visible range, but this depends on the absorbance
curve and Stokes’s shift of the particular fluorophore. Once a molecule has absorbed
photon energy in its ground state, i.e., the statistically most common energy state for room-
temperature chemical reactions, it will be excited to a higher singlet state and often to a
higher vibrational level in the excited states. Since excited states are unstable, the molecule
will lose its excess energy and return to its ground state via several routes. Figure 1, termed
a Jablonski diagram [57], shows a few of these energy dissipation processes. Following
the absorption of a photon, the molecule will relax to a lower energy level in various
pathways. The most likely is the relaxation to the lowest vibrational energy level of the
first excited singlet states, (e.g., Sn → S1), which is called internal conversion (IC). The
molecule will finally return from the lowest excited energy state to the ground state, i.e., if
the photon emission occurs between states of the same spin state (e.g., S1→ S0), this is
termed fluorescence (line F). If it occurs between different spin states, i.e., from triplet state
to the ground state (e.g., T1→ S0), the process is called phosphorescence (line P) [54,58].
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Figure 1. Jablonski diagram showing energy distribution pathways in organic molecules. Adapted
from [54,57].

Fluorescent compounds have two characteristic spectra in common: an excitation
spectrum, i.e., the wavelength and amount of light absorbed, and an emission spectrum,
i.e., the wavelength and amount of light emitted, as shown in Figure 2. These spectra are
often referred to as a compound’s fluorescence signature or fingerprint. No two compounds
have the same fluorescence signature. The fluorescence excitation spectrum of a single
fluorophore species in dilute solution is usually identical to its absorption spectrum. The
absorption spectrum can, therefore, be used as a surrogate for the excitation spectrum.
Under the same conditions, the fluorescence emission spectrum is independent of the
excitation wavelength due to rapid internal conversion from a higher initial excited state
to the lowest vibrational energy level in the lowest (S1) excited state. For many common
fluorophores, the vibrational energy level spacing is similar for both the ground and
excited states, which results in a fluorescence spectrum that strongly mirrors the absorption
spectrum. This is because the same transitions are the most favorable for both absorption
and emission. However, in solution (where fluorophores are generally studied), the details
of the vibrational structure are typically lost, and the emission spectrum is a broadband [59].
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Figure 2. A representative excitation in the UV region and emission in the visible region spectrum
of citrus (variety: dekopon) peel extract measured by using a fluoro-spectrophotometer. Adapted
from [60].
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3. Fluorescence Basis and Imaging Configuration

Fluorescence may be excited by X-rays, UV, or visible radiation. The fluorescence’s
spectral distribution may range from the UV to the infrared, and the emitted light is
always at a longer wavelength than the absorbed light due to limited energy loss by the
molecule before emission. The most striking examples of fluorescence occur when the
absorbed radiation is in the UV region of the spectrum, thus invisible to the human eye,
and then emitted in the visible region [61,62]. For instance, most citrus species accumulate
substantial quantities of fluorescent substances, most of which are associated with peel
oil [63–66]. When the oil glands or cells of citrus are damaged or ruptured, the peel oil
is released and migrates closer to the peel surface, allowing it to fluoresce and become
visible when excited by UV light. For example, tangeretin, a component of peel oil, is a
polymethoxylated flavone that fluoresces under UV light and is the likely source of the
yellow fluorescence visible from damaged or decayed oranges [67]. Another example is
heptamethoxy flavone, one of the major fluorescent substances in rotten citrus fruit that
exhibits greenish fluorescence under UV excitation [68]. Except in rare instances, however,
fluorescence from intact or unruptured cells is not observed. The application of fluorescence
to detect surface defects, such as rotten, damaged, decayed, or injured parts, in a wide
variety of citrus is, therefore, made feasible by the presence of these fluorescent substances
that are associated with the rupturing of surface cells.

Fluorescence is a spectrochemical phenomenon where the molecules of the analyte
(component) are excited by irradiation at a certain wavelength and emit radiation of a
different wavelength, usually at a longer wavelength. The excitation and fluorescence
spectra represent the relative photon intensity per wavelength interval. The excitation
spectrum is a plot of the luminescence versus excitation wavelength with a constant
emission wavelength. It is used to determine the best excitation wavelength for analysis.
A plot of the luminescence signal versus emission wavelength with a constant excitation
wavelength is denoted an emission spectrum. Fluorescence spectral data are generally
presented as emission spectra [69]. The measurement of optimal excitation wavelength
for the best fluorescent signature of sixteen common and leading varieties of Japanese
citrus was studied by [46] using a fluoro-spectrophotometer (F-4500, Hitachi, Ltd., Tokyo,
Japan). The study found that, except for one variety, fifteen varieties had general or good
trends of fluorescence spectra in the UV and VIS regions with high, medium, and weak
level of fluorescent signatures. The performance of a fluorescence image processing-based
inspection system is highly dependent on the accurate selection of hardware specifically
configured to the fluorescent characteristics such as lighting sources, lighting arrangements
and lighting geometry, and camera resolutions [1]. Figure 3 shows energy flow from a
lighting device to a TV camera [70]. The image obtained has a final energy of ERTLS. By
selecting suitable “E”, “T”, “L”, and “S”, but not “R” reflectance, since it is an optical
property of the target object, we can manipulate the final energy of the image. When a color
camera is used, only “E” can be manipulated, because the optical filters are located on the
color image sensor. Since “E” is the most important parameter, the spectral energy of light,
lighting method, number of lighting devices and other factors should be carefully optimized.
Moreover, the degree of peel defect fluorescence emission differs by variety, the variation
between varieties can be classified as none, slight, medium, strong, and intense. Hence, it
is important to discriminate selectively between the fluorescence emission wavelengths
and the excitation wavelengths for the different varieties in order to identify defects in as
many varieties as possible using the same system.
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Figure 3. Energy flow from lighting device to TV camera, where E: Energy of light source, R:
Reflectance of object, T: Transmittance of filter, L: Transmittance of lens, S: Sensitivity of image sensor.
Adapted from [70].

Therefore, the proper selection of a lighting system and categorization of different
citrus varieties based on fluorescence emission characteristics is the key and critical part for
optimizing a fluorescence imaging technique capable of being applied to a wide variety
of citrus. The fluorescence and excitation spectra information presented in [46] enables
the selection of the optimum hardware configuration for designing the image acquisition
device. Thus, in order to effectively detect the fluorescent components associated with
peel defects on the surface of the citrus fruits, a fluorescence imaging-based machine
vision system with a combination of a normal color camera and an incident light source
emitting rays in between 330 and 380 nm is needed. With the information observed from
spectral study results of the selected citrus varieties, excitation wavelengths of the greenish
fluorescence group are around 365 nm [46]. To acquire the fluorescence images of these
groups of citrus, 365 nm UV LED excitation source could be used for illuminations. In
order to observe the excitation illumination of bluish group citrus, 320~340 nm is required,
or more appropriately at 330 nm. Since greenish and bluish fluorescence are emitted from
peel extracts, it is possible that a color TV camera used for color imaging can also be used
for fluorescence imaging.

4. Fluorescence Imaging Application—An Example

The fluorescence images of intact greenish group citrus were acquired using an image
acquisition system composed of three sets of 365 nm UV LEDs (Figure 4) to compare with
the spectral information results. The VGA format CCD camera (Sony ICX424AQ, Sony
Corporation, Tokyo, Japan) of 8-bit gray levels fitted with a C mount lens of 6 mm focal
length was placed 150 mm above from the fruit surface. To examine fluorescence oil cells,
10 mm × 10 mm area on the fruit skins was intentionally injured. Finally, after adjusted
camera operation parameters such as iris: 1.4, shutter speed: 1/60 s, gain: 12 db, and
gamma correction: 0.6, the target objects were oriented manually towards the camera and
the image was captured.



Agriculture 2023, 13, 1433 7 of 14

Figure 4. Layout of the 365 nm UV–LEDs image acquisition system. Adapted from [60].

The observed fluorescence grade of the citrus is shown in Figure 5, and it is apparent
that the extent of peel defect UV-fluorescence highlighted by the white square was found to
vary substantially. Peel defects for amanatsu, buntan, and dekopon varieties appeared as
strong green fluorescence (top row of Figure 5); hassaku, iyokan, kiyomi, navel, sanpoukan,
sweet springs, and unshu fluoresced moderately (first to second row of Figure 5), while
harumi and setoka fluoresced only slightly (second row of Figure 5). These fluorescence
images of twelve citrus varieties are in good agreement with spectral information described
in [46]. In each image, the fluorescent substance on the surface of the injury part of fruit
was caught as greenish color pixels highlighted by the white square. The purple color
pixels were the halation of light reflection from the glossy surface (cuticular layers). The
machine vision test results revealed that the fluorescence excitation information to select the
wavelength of the incident light for inspecting citrus peel defects worked properly. When
such a system was trialed, greenish type fluorescence was observed from injured areas on
the surface of the peel; consistent with the in vitro fluorescence spectra results obtained.
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5. Comparisons of Different Imaging Options for Quality Assessment

Non-destructive inspection equipment for agricultural products postharvest qual-
ity assessment has extensively employed different optical imaging techniques, including
monochrome, color, and spectral. In cases where color is not a significant factor, monochro-
matic imaging can be utilized, requiring less data storage. In most cases, color imaging is
highly efficient and powerful in extracting visible information of products such as color,
bruise, shape, size, etc. Color imaging, which involves analyzing various color components
(e.g., RGB, HSI, CIELab) to detect and grade agricultural product quality, has widespread
and extensive applications in the commercial packing house [71]. The main drawback of
color imaging is that it is limited to three color bands, providing limited multi-constituent
information and often missing the most relevant surface features completely [72,73], as
shown in Figure 6a,c. Thus, spectral imaging was used to overcome the limitation and
is used extensively for the quality analysis of agricultural products. However, spectral
imaging has some drawbacks, such as requiring expensive hardware for image acquisi-
tion, large data size for the processing step, and a time-consuming algorithm for image
post-processing [74,75]. On the other hand, fluorescence imaging technology has various
advantages, such as being relatively cheap, simple to use, rapid non-destructive mea-
surements, creating high contrast, etc. [49–51]. For example, the acquired color images
(Figure 6a,c) did not show any presence of surface damage. In contrast, the damage
was readily visible in fluorescence imaging with a clear contrast between damaged and
undamaged surfaces (Figure 6b,d).
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6. Areas for Future Investigation

The fluorescence principle-based machine vision has been used for various kinds of
applications in the last couple of decades. There are numerous advantages of fluorescence
machine vision, especially for some cases that could not be solved using normal color
imaging. The implementation of the fluorescence machine vision system varies from defect
detection, antioxidant and freshness evaluation, to authentication of bioproducts [76–78].
Cases which use the exposure of the fluorescence substances on the surface of the object
or the presence of the fluorophore on the surface of an object are commonly solved with
fluorescence machine vision [79,80]. On the other hand, there are also uses related to the
structure of the objects, for example, the existence of a thin cuticle layer on citrus, green bell
pepper, tomato, and tea leaves, or a bran layer of rice, which could also affect the results of
the fluorescence image [81–83]. There are still a lot of bioproducts containing fluorophore
which have not been investigated. The structure of the bioproducts also varies, which will
gives different results of light–object interaction including fluorescence. The investigation
of the fluorescence characteristics of various bioproducts and the making of a database
related to this will be useful for the development of proper fluorescence-based machine
vision design. For instance, synthesizing an extensive database of fluorescence properties
for the unique fresh produce varieties growing worldwide will enable the development of
rapid, simple, and uniform fluorescence imaging systems for the online screening of fresh



Agriculture 2023, 13, 1433 9 of 14

produce quality. Such a database will promote and enhance fluorescence characteristics
research, particularly comparative studies and construction of customized systems and
strengthen networking among fresh produce researchers, producers, policy makers, grading
facilities, company personnel, and practitioners globally by sharing information in the
future agricultural cloud technologies. Most of the applications mentioned before are using
autofluorescence of bioproducts. On the other hand, fluorescence dye development for
bio-molecule markers may also be necessary [84,85].

In terms of the instrumentation devices, lower-cost devices are necessary to implement
the fluorescence techniques widely. More sensitive sensors are required, especially in
the case of fluorescence lifetime imaging to avoid photodamage due to high-intensity
ultraviolet light [86]. Among various sensor materials, the sensor based on the quantum
principle has more potential to be improved especially for detection in the ultraviolet
region [87,88]. For the light source, an ultraviolet range spectrum light source is often
needed. UV LED has already replaced UV lamp for many applications, and it still could
be improved in terms of intensity and efficiency [89]. In addition to the development of
sensors and light sources, other optical devices such as high-quality filters (e.g., visible
cut-band filter) and lenses also need to be improved. Multispectral fluorescence imaging
techniques are another area of research that could be pursued in the future as an aid in the
quality assessment of agricultural products [4].

Moreover, the X-ray fluorescence technique (XRFT) was recently used in food and
agricultural research, such as evaluating food safety inspection, plant diseases, and Ca-
related disorders in fruits and vegetables. More exhaustive work is needed to increase the
application of XRFT widely and successfully [90,91] for quality evaluation of fruits and
vegetables. Some other potential future investigations of fluorescence imaging applications
for product quality assessment could be machine-learning-based fluorescence lifetime
microscopy imaging [92], low-cost-smartphone-based fluorescence system [93], chlorophyll
fluorescence imaging [94], and fluorescence spectroscopy [95].

In parallel to the hardware, the software is equally important for developing a generic
machine vision system for the quality inspection of agricultural products. Recently, im-
age processing coupled with machine learning algorithms (e.g., ANN, DNN, CNN) was
successfully applied for food quality assessment and contamination detection [96,97]. The
software aspect mainly includes image preprocessing, segmentation, feature extraction,
and classification [71]. The image preprocessing involves color space transformation using
the color space conversion relationships and noise reduction using smoothing, opening,
closing, de-bridging, hole-filling, filtering, etc. Image segmentation is a process of pixel
classification, one of the most difficult initial tasks in image processing. Though there is no
unique standard approach to image segmentation, considerable care should be taken to
select the proper segmentation method based on the source image characteristics, as the
degree of segmentation accuracy affects the eventual success or failure of the overall image
processing results [98,99]. The image segmentation algorithms are mainly categorized
into three techniques namely: thresholding, pattern recognition, and deformable mod-
els [100]. Thresholding is one of the most popular approaches for image segmentation, and
thresholding segmentation aims to search for an optimum grey level threshold value for
distinguishing target objects and image background based on their grey value distribution
patterns. The Otsu global thresholding selection method (proposed by Scholar Nobuyuki
Otsu in 1979) is usually applied because it is a simple and effective idea [101]. CNN-based,
state-of-the-art semantic segmentation approach, such as U-Net, FPN, LinkNet, etc., was
successfully deployed for image segmentation operation [97,102]. After segmenting op-
eration, target objects’ various features (e.g., color, texture, morphological) are calculated
for image perception, interpretation, and classification. Object classification is an essential
feature for evaluating agricultural product quality. Various popular machine learning
algorithms, such as SVM, KNN, ANN, DNN, CNN, decision tree, and random decision
forest, were applied for object classification [71].
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In today’s business world, execution speed is important. Setting up defect sorting lines
optimized for individual varieties would entail high capital expenditure and would lack
the flexibility to rapidly switch a sorting line from one variety to another. An alternative
would be to develop a generic system that can handle a wide range of varieties on the
limited floor space of the packing house, thus maximizing utilization of facilities. This is in
line with one of the current challenges for companies in the fresh produce industry of how
to achieve more flexibility in the line configurations so that the sorting line operations are
not a critical path to new product introductions. Considering the need for flexibility in the
packing line, as well as for economic viability, it is important to develop a detection system
configuration that is capable of detecting surface defects of a wide variety of products with
minimal or quick reconfiguration of hardware and software. It may also be able to sort out
not only product damaged by biotic factors, but also another product that is apparently
undamaged but has in fact sustained damage caused by abiotic reasons.

7. Conclusions

The performance of a fluorescence imaging system for quality assessment is highly
dependent on the accurate selection of hardware specifically configured to the fluores-
cent characteristics of agricultural products, such as the spectral energy of light, lighting
arrangement, and number of lighting devices, camera resolutions, etc. For instance, the
appropriate fluorescence excitation wavelength for optimal fluorescence emission and
the resulting peak fluorescence wavelength was observed in the range 330–380 nm and
400–550 nm, respectively, for citrus peels collected from sixteen varieties. It is apparent
that to effectively detect the fluorescent components associated with citrus peel defects, a
fluorescence imaging system with a combination of a UV light source emitting rays between
330 and 380 nm and a standard RGB camera is needed. We envision that this methodology
for developing a generic and unique system can also be applied to other products with
proper image acquisition adjustment based on the spectra information.
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