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Abstract: Canola cultivation at high latitudes is becoming more promising in terms of modern climate
change. Sustainable crop production requires an understanding of yield-limiting factors, which need
to be adjusted in agricultural management first. Therefore, our study was aimed at examining the
effect of climate and soil fertility factors on the canola yield from 2012 to 2015 in northwestern Russia.
Simultaneously, effectiveness of chemical fertilizer (N65P50K50 and N100P75K75) rates was tested.
Studied soils had light texture, high acidity and severe sulfur deficiency. Canola yield (Y) varied from
0.81 to 1.60 t·ha−1 for the observed period. Applied fertilizer increased Y by around 30%, but this
change was not significant. Climate effect testing with the FAO-AquaCrop simulation showed no
noticeable water and heat stresses for the study period (0% to 20% reduction in potential Y). Among
the tested soil properties, the content of organic carbon, available nitrogen and sulfur significantly
correlated with Y (r = 0.58–0.66). Combining these factors together with soil pH in a path model
explained 60% of variability in Y. Importantly, sulfur had the highest and most significant effect in
this model. Thus, this soil parameter is the main yield-limiting factor in the study area, which must
be the first to be adjusted in agricultural practice.

Keywords: Albic Retisol; soil fertility parameters; climate effect; FAO-AquaCrop model; path analysis

1. Introduction

Canola (Brassica napus L.) is an important crop used for both edible oil and biofuel
production [1]. Currently, the global canola harvest reaches 87 million tons [2], making it
the third largest oilseed crop after palm oil and soybeans [3]. The leading canola producers
are the European Union, Canada, China, India and Australia, which together account for
84% of the global harvest [2]. Although canola is adapted to a wide range of growing
environment conditions, it is quite sensitive to heat and drought [4,5]. Therefore, northern
regions can be considered as favorable areas for canola cultivation, especially with regard to
modern climate change [3,6]. In particular, the expected warming and sufficient rainfall in
northwestern Russia make it more promising for canola production compared to southern
regions with frequent droughts [7,8]. Nevertheless, anomalous heat waves and severe
droughts have also been observed in this area [9,10]. Canola is known to be particularly
sensitive to early heat and water stress, resulting in reduced crop quality and quantity [5].
Therefore, assessing the climatic effect on the crop productivity is a relevant issue for the
adaptation and expansion of canola cultivation in northwestern Russia.
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On the other hand, this region is mainly characterized by acidic and nutrient-poor
soils, such as Podzols and Retisols [11]. Canola is known to have higher requirements for
nitrogen (N) and sulfur (S) than small-grain cereals [12–15] and other oilseed crops [16].
Field studies around the world have shown that limited content of available N and S in
the soils can reduce canola yields by approx. 50–190% and 30–840%, respectively [17–19].
Other nutrients such as phosphorus (P) and potassium (K) are also critical for the crop
growth, development and disease resistance [20–25]. In turn, soil pH largely determines
the availability of these nutrients for the plants [26]. Acidic soils (pH < 4.9–5.8) have
been shown to significantly reduce canola productivity [27,28]. Summing up this brief
survey, the soil conditions of northwestern Russia can be considered as unfavorable for
canola cultivation. Therefore, understanding the specific soil factors limiting canola yield is
essential for developing effective agriculture management and sustainable crop production.
However, there is only very scarce information about this subject in the scientific literature,
which underlines the relevance of such studies.

In practice, nutrient deficiency in soils is often corrected by application of chemical
fertilizers [29,30]. Nevertheless, this practice can be ineffective for canola production with-
out maintaining the right balance between soil nutrients, especially the S:N ratio [18,31].
Moreover, in light-textured soils, there is a risk of fertilizer loss caused by leaching [32,33].
Currently, in many regions of Russia, there is an imbalance of nutrients in soils with a
predominance of losses over accumulation [34]. Consequently, there is also a demand to
develop optimal and cost-effective fertilizer systems to ensure sustainable canola yield
and seed quality [35]. Considering all of the above, our study was aimed at assessing the
effects of climate, soil fertility parameters and different levels of NPK fertilizer on canola
productivity in northwestern Russia.

2. Materials and Methods
2.1. General Characteristics of Experimental Field

Field experiments were conducted at the Menkovo experimental station of the Agro-
physical Research Institute in the Leningrad Region, Russia (59°24′57′′ N 30°02′04′′ E). The
territory belongs to the southern taiga with a mean annual temperature of 4.9 °C and annual
precipitation of 679 mm (1991–2020; data taken from the nearest WMO meteorological
station “26069 Belogorka”). The soil at the Menkovo experimental station was sandy Albic
Retisol. The parent materials were moraine deposits, lacustrine–glacial sands and sandy
loams. Long-term field experiments (since 1982) have been conducted at the station to test
the effect of medium and high rates of NPK fertilizers on different crops in the rotation (i.e.,
winter rye, three mixtures of perennial grasses, potatoes and spring wheat). Since 2012,
spring canola has replaced spring wheat in the crop rotation. Conventional tillage (plowing
to 22–24 cm) was used in the experimental field.

2.2. Experimental Design

The spring canola (Brassica napus L.) of the Oredezh-4 variety was cultivated at the
Agroecological Station in 2012–2015. For this, four experimental plots of 180 m × 90 m
were chosen (one for each canola cultivation season). Each plot was divided into three
equal sites according to the level of applied NPK fertilizers: 1—unfertilized (N0P0K0;
control), 2—N65P50K50, 3—N100P75K75 (Figure 1). Nitroammophosphates (NH4H2PO4-
NH4NO3-KCl) and ammonium nitrate (NH4NO3) were used as chemical fertilizers. During
canola cultivation period, pesticides (herbicides and insecticides) were applied regularly to
minimize the risk of weed or pest infestation. Prior to canola field experiment (autumn
2011), soil samples were taken from the top 0–20 cm layer at all tested sites (total 12 = 4 plots
× 3 fertilization levels) to assess the initial soil fertility conditions. The soil sample of each
site was composed of 30 spatially distributed subsamples. Overall, the experimental design
contributed to the expected variation in canola productivity caused by combination effects
of three main factors: climate (seasonal variation), soil fertility and different NPK levels
(spatial variation).
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Figure 1. Scheme of spatial distribution of the canola tested sites in 2012–2015.

2.3. Assessing Canola Yield and Soil Analysis

Canola yield at each test site was measured from an area of 0.7 m × 0.7 m in triplicate.
Air-dried soil samples were sieved through a 2 mm mesh and used for further chemical
analysis. Soil pH was measured conductometrically in a soil:KCl solution (1:2.5 ratio). Soil
organic carbon (SOC) content was determined by dichromate oxidation followed by col-
orimetry [36]. Available nitrogen (AN) was measured using the dilute sulfuric acid (0.5 M
H2SO4) extraction method, assessing the N sum of NO−3 , NH+

4 and easily hydrolysable
organic compounds [37]. Mobile phosphorus (P) and potassium (K) contents were deter-
mined by soil extraction with dilute hydrochloric acid (0.2 M HCl) and then quantified with
a photoelectric colorimeter/flame photometer. Mobile sulfur (S) content was determined by
soil extraction with potassium chloride solution and subsequent quantification of S-SO2−

4
using the turbidimetric method. The sum of bases (SB) was determined by extracting the
absorbed soil bases with dilute hydrochloric acid (0.1 N HCl).

2.4. FAO-AquaCrop Model Calibration and Input Data

The climate effect (i.e., possible water and heat stress) on variation in canola produc-
tivity for the studied period was tested using the FAO-AquaCrop crop simulation model
version 7.0 [38–40]. This is a water-driven process-based multi-crop simulation model
with a good balance between simplicity, accuracy and robustness [41]. Crop response to
potential water and heat stress occurs through five types of feedback [39]: (1) reduction of
canopy expansion rate, (2) acceleration of senescence, (3) closure of stomata, (4) change in
normalized water productivity and (5) harvest index.

For initializing the FAO-AquaCrop model, the crop sowing date, physiological pa-
rameters of crop growth and development, soil hydraulic characteristics, initial soil mois-
ture content and climate data must be specified. Field measurements and variety testing
were used to determine the non-conservative parameters of the model. The conserva-
tive parameters were obtained from the analysis of existing articles on canola modeling
by FAO-AquaCrop [42–46]. Calibrated canola parameters for this model are presented
in Table 1.
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Table 1. Locally calibrated FAO-AquaCrop model parameters for canola.

Parameter Value

Conservative:
Crop water productivity—normalized for climate and CO2 WP∗ (g·m−2) 18.6
Adjustment WP∗for yield formation (%) 100
Base temperature (°C) 0
Upper temperature (°C) 30
Canopy growth coefficient CGC (%·day−1) 8.9
Canopy decline coefficient CDC (%·day−1) 5.2
Soil water depletion factor for canopy expansion, upper limit 0.2
Soil water depletion factor for canopy expansion, lower limit 0.55
Shape factor for water stress coefficient for canopy expansion 3.5
Soil water depletion factor for stomatal closure, upper limit 0.6
Shape factor for water stress coefficient for stomatal closure 5.0
Soil water depletion factor for early canopy senescence, upper limit 0.7
Shape factor for water stress coefficient for early canopy senescence 3.0
Maximum crop transpiration coefficient KcTr 0.95

Non-conservative:
Plant density (plants m−2) 200
Initial canopy cover CC0 (%) 10
Time to emergence (days) 10
Time to flowering (days) 54
Time to maximum rooting depth (days) 59
Time to maximum canopy cover (days) 63
Time to senescence (days) 97
Time to maturity (days) 116
Length building up HI (days) 51
Duration of flowering (days) 19
Minimum effective rooting depth (m) 0.3
Maximum effective rooting depth (m) 1.0
Reference harvest index HI0 (%) 25

The soil hydraulic properties were calculated from pedotransfer functions using soil
texture [47]. The texture was determined according to the weight content of particles of
various sizes measured by pipette method, using the field soil samples taken from the soil
profile (Table S1). The soil hydraulic properties are presented in Table 2. The initial soil
moisture conditions were set based on the ERA5-Land climate reanalysis [48]. The data
were averaged for each soil horizon for each growing season separately (Table 2).

Table 2. Hydraulic properties along soil profile at the study field: horizon depth (Depth, m); total
available water (TAW, mm·m−1); water content at permanent wilting point (PWP, vol%); water
content at field capacity (FC, vol%); water content at saturation (SAT, vol%); saturated hydraulic
conductivity (Ksat, mm·day−1); initial soil moisture content (SMC, vol%).

SH * Depth TAW PWP FC SAT Ksat
Initial SMC

2012 2013 2014 2015

Ap + A/E 0.00–0.47 77 8.5 16.3 47.0 1643 31.8 36.0 33.3 36.2
B 0.47–0.66 41 2.0 6.1 41.0 2685 34.0 39.0 36.0 38.0

C1 0.66–0.72 38 2.3 6.1 41.0 2573 34.0 39.0 36.0 38.0
C2 0.72–1.44 41 4.6 8.7 39.8 1695 37.7 39.6 37.8 38.6
C3 1.44–1.70 31 0.1 3.2 42.8 6456 39.8 39.8 39.0 39.0

* SH, soil horizon according to FAO Guidelines for Soil Description [49]; Ap, surface humus-accumulative
plough mineral horizon; A/E, humus-eluvial mineral horizon with slight loss of silicate clay, iron, aluminium; B,
underlying illuvial mineral horizon; C1, C2 and C3, different layers of parent material represented by moraine
deposit, lacustrine–glacial sands.
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Climate data (maximum and minimum air temperature, precipitation) for the growing
seasons of 2012–2015 were obtained from a meteorological field station located 400 m
from the experimental field. The reference evapotranspiration (ET0) was calculated using
Penman–Monteith equation [50], which requires sunshine duration data. The latter was
calculated using visual observations of the total cloud amount (TCA) [51], which was
obtained from the nearest WMO meteorological station (26069 “Belogorka”). TCA was
visually determined as a portion of sky cloud cover (from 0.0 to 1.0). Eventually, actual
sunshine duration was calculated according to the following equation:

Sa = (1− TCA)× Sx (1)

where Sa is actual sunshine duration (h), TCA is total cloud amount (0–1) and Sx is maxi-
mum possible sunshine duration (h). Sx was calculated depending on geographic location
and time [52].

Detailed climate data used for the simulations are summarized in Figure S1.

2.5. Statistical Analysis

The degree of variability of the studied properties was quantified by the coefficient of
variation (CV, %), which is the ratio of the standard deviation to the mean. The significance
of the effect of different NPK treatments on soil properties and canola yield was checked
by one-factor analysis of variance (ANOVA). Prior to the analysis, variance homogeneity
was tested by Levene’s test. The relationship between the studied soil properties and
canola yield was tested using the Pearson’s correlation. Pathway analysis was used to
explore the direct/indirect effects of possible factors on canola yields, considering the causal
relationships between them. Statistical analysis and results visualization were performed in
the R software system (version 4.1.2) [53] using the following packages: “car” for ANOVA,
“ggcorrplot” for correlation matrix, “lavaan” and “lavaanPlot” for the path analysis.

3. Results
3.1. Soil Fertility Parameters at Studied Sites

Soil conditions at the study sites were strongly acidic and extremely poor in terms of
available S (Table 3). Thus, long-term application of NPK fertilizers had not significantly
changed the soil properties (p > 0.05 for one-way ANOVA). However, this had resulted
in a noticeable spatial variation in soil fertility parameters across the studied sites. The
coefficient of variation (CV) ranged from 14–49% for most properties, except for the less
variable pH (5%) (Table S1).

Table 3. Soil chemical properties (0–20 cm) of the study sites with different NPK rates prior to the
canola cultivation. Values are means with standard errors for n = 4.

Treatment pHKCl
SOC AN P K S SB

% mg·kg−1 cmol·kg−1

Control * 4.5 ± 0.1 1.8 ± 0.1 95 ± 4 53 ± 10 37 ± 1 0.75 ± 0.10 1.90 ± 0.54
N65P50K50 4.6 ± 0.1 2.0 ± 0.2 109 ± 16 63 ± 6 43 ± 5 1.04 ± 0.21 2.85 ± 0.72
N100P75K75 4.7 ± 0.1 2.3 ± 0.1 118 ± 6 58 ± 2 36 ± 1 0.94 ± 0.11 3.10 ± 0.64

* Unfertilized; SOC, total organic carbon; AN, available nitrogen; SB, sum of bases.

3.2. Temporal Dynamics of Canola Yield and Climatic Characteristics

Over the four-year study period (2012–2015), the canola yield with different NPK rates
varied from 0.81 to 1.60 t·ha−1 (Figure 2a). Surprisingly, the patterns of temporal change
in canola yield differed among the NPK treatments. At the same time, the degree of this
variation was almost similar for each fertilizer treatment (CV = 19–21%; Table S2).

Average air temperatures for canola cultivation seasons (May–August) in the study
years ranged from 14.6 to 16.9 °C (Figure 2b). Precipitation (rain) for this period varied
considerably, amounting from 176 to 549 mm. In the first two seasons of canola cultivation,
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the rain exceeded the reference evapotranspiration (ET0) by up to 1.4–2.0 times. However,
the reverse was observed in the following two seasons (rain < ET0 by 1.2–1.7 times), which
could result in lower moisture supply to crops.

Figure 2. Temporal dynamics of canola yield with different NPK treatments (a) and climatic char-
acteristics averaged for the canola growing season May–August (b). Notes: air temperature (Tair),
precipitation (Rain) and reference evapotranspiration (ET0).

The possible impact of climate on canola productivity (aboveground biomass and
yield) over the studied period was tested using the FAO-AquaCrop simulation model. The
simulation results showed no difference between the potential canola productivity under
the optimal and the observed climatic conditions in the first two seasons (Figure 3). At the
same time, according to the model, there was a slight climatic stress in the following two
seasons, which reduced the potential crop yield by 17–20%. However, the real canola yield
for the study period was 3–4 times lower than the simulated one under climatic stress. This
can indicate that climate played a negligible role in determining canola yield variability for
the study area compared to some other factors, e.g., soil fertility and NPK treatment.

Figure 3. Cont.
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Figure 3. AquaCrop model results showing potential aboveground biomass without and with climate
stress (Bx and Bs) and potential canola yield without and with climate stress (Yx and Ys) for the
growing seasons 2012–2015.

3.3. Effect of NPK Treatment and Soil Fertility on Canola Yield

Fertilization with medium and high NPK rates increased canola yield by an average
of 30% compared to the unfertilized sites (Figure 4). However, given the change over the
observed period, this effect was not stable (Figure 2a) and therefore not significant (p = 0.21
for one-way ANOVA).

Figure 4. Canola yield with different NPK treatments at the studied sites for 2012–2015. Dots with
error bars are mean with standard error for n = 4.
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Correlation analysis has shown that canola yield for the four cultivation seasons was
related to initial soil fertility conditions at the studied sites (Figure 5a). The most significant
relationship of crop productivity was found with S content (r = 0.66). There was also
a positive trend between this parameter and the SOC and AN contents (r = 0.58). The
combined effect of these soil factors on the canola yield, taking into account the possible
causal relationships between them, was examined using path analysis. As the main source
of plant-available S and N is soil organic matter, these nutrients were included in the model
as SOC-dependent variables (endogenous). Additionally, the pH was included in the model
as it can affect the availability of nutrients to plants. In general, the path model explained
60% of canola yield variation for the observed period (Figure 5b). It was found that only
the S content of the Albic Retisol sites was decisive for the canola yield variability.

Figure 5. Pearson correlation matrix (a) and path model (b) between canola yield for 2012–2015 (Y,
t·ha−1) and initial soil fertility conditions in 2011 (n = 12). In the correlation matrix, the crossed out
values are not significant at p ≤ 0.05. In the path model, numbers within double-headed arrows are
correlation coefficients between variables, numbers within one-way arrows are standardized path
coefficients indicating the size effect of the causal relationship among variables (* p ≤ 0.05; *** 0.001).
Model fit indexes: Chi-square = 0.182 (p = 0.98); comparative fit index = 1.0; standardized root mean
square residual = 0.022.

4. Discussion

According to our results, the most important factor in the canola yield variability
was the available S content in the studied soil. This nutrient plays an important role in
plant physiology as a component of amino acids (cysteine and methionine), oligopeptides,
vitamins and secondary metabolites (e.g., glucosinolates) [54,55]. Increased S uptake by
canola is associated with the synthesis of cysteine- and methionine-rich proteins, as well
as glucosinolates being natural attractants for some pest insects [56–58]. Low S levels in
the soils inhibit the development of canola reproductive organs and consequently lead to
reduced yield and oil content [59]. Moreover, the effective uptake of other nutrients by
canola is also related to the soil S content [18,31]. Field studies have shown the crop does
not respond to N fertilization if the soils are deficient in S [31,60]. Possibly, this was one
of the main reasons for the lack of sustained yield increase with NPK fertilization on the
studied sites (Figure 2a). In addition, high rates of N fertilizers can cause rapid depletion
of soil S reserves, nutrient imbalances and subsequent yield losses [59,60]. Such relation
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between S and N in plant nutrition is associated with the inclusion of both elements in
the synthesis of chlorophyll and proteins [61]. Therefore, S requirement of the crop even
increases with N fertilizer application [62]. Thus, a balanced supply of both nutrients is
essential to optimize canola production [57].

The studied light-textured soil was characterized by extreme depletion of the available
S (Table 3). This can be the result of both long-term cultivation of various crops without
sulfur/organic fertilizer application and S leaching out from the soil. Generally, soil S
deficiency is an increasing problem in many agricultural regions of the world, particularly
in canola production areas [63–67]. This is mainly due to not paying enough attention to
the adjustment of this element in agricultural soils with fertilizers [61,68]. Interestingly, soil
S deficiency in European farmland is also associated with a reduction in anthropogenic
supply via atmospheric S deposition [69]. Nevertheless, this problem can be corrected by
the use of S-containing fertilizers, the effectiveness of which for canola has been reviewed
by Grant et al. [57]. Developing an effective fertilizer system should be based on the
concept of the four “rights” (“the 4Rs”), i.e., optimizing the applied nutrient form (source),
rate, timing and placement [70]. Optimal canola productivity requires available S in
the form of sulfate (S-SO2−

4 ) [71]. Consequently, S-SO2−
4 fertilizers have a rapid positive

effect on the crop growth and development [72] by alleviating the symptoms of soil S
deficiency [73]. A long-term positive effect is characterized by fertilizers containing the
elemental S-form (S0), which is gradually oxidized by microorganisms to crop-available
S-SO2−

4 [74]. Such S0 fertilizers can be useful to minimize S-SO2−
4 losses by leaching in

high soil moisture conditions [18]. Additional application of organic fertilizers can also
contribute to the sustainable storage of available S in the soil through both the temporary
immobilization of S-SO2−

4 by organic matter (OM) and the release of organically bound
S via OM microbial decomposition [75]. Choosing the “right” fertilizer rates is primarily
based on the crop-specific removal balance and soil nutrient content [70]. Canola requires
1.5 kg of S to produce 100 kg of seeds [76]. For S-deficient soils, the recommended fertilizer
rate for optimal canola yield is about 15–30 kg of S per hectare [18]. The “right” time
to apply S-containing fertilizers is considered to be the sowing period, which ensures
maximum canola yield [77]. A more appropriate approach for applying S-SO2−

4 fertilizers
is side-banding, and for S0 fertilizer is broadcast-incorporation [18,78]. Notably, “right”
and long-term S fertilization in S-deficient soils can increase soil carbon sequestration [79],
which is important for sustainable use of agricultural land.

FAO-AquaCrop modeling showed no significant water and heat stress that could affect
canola productivity over the observed four growing seasons (Figure 3), despite a significant
variation in weather conditions, with periods of both sufficient and less favorable moisture
supply (Figure 2b). Possibly, the spring moisture storage and the seasonal distribution
of precipitation were sufficient to provide near-optimal climatic conditions for canola
growth and development. However, to thoroughly understand the effect of local climate on
canola productivity, further research is needed over a longer period. Periodically occurring
abnormal heat and droughts in northwestern Russia [9,10] can be extremely detrimental to
canola growth and development [80,81]. Accounting for the effects of such extreme weather
events is also important for the development of locally adapted crop simulation models.
These models, coupled with weather forecasting, can be used in canola management
decision making systems to prevent climate-related plant deaths. In this way, a long-term
study of climate effects, together with the developing effective fertilizer systems, can be
promoted for sustainable canola production in the northwest of Russia.

5. Conclusions

In this study, the effects of different NPK fertilization levels, climatic conditions and
initial soil fertility on four-year canola yields in northwestern Russia were explored. Overall,
the tested medium and high rates of the NPK fertilizers had no sustained positive effect on
canola yield. Among the considered environmental factors, soil available sulfur content
had a more significant effect on the canola productivity. Consequently, sulfur deficiency
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in the studied soils could be the main reason for the ineffectiveness of the applied NPK
fertilizers. Further research should be focused on testing the effect of sulfur fertilizers on
canola productivity in northwestern Russia to justify optimal application forms and rates
to improve nutrient use efficiency and crop yield.
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