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Abstract: Plastic shopping bags are often discarded as litter and can be carried away from roadsides 

and become tangled on cotton plants in farm fields. This rubbish plastic can end up in the cotton at 

the gin if not removed before harvest. These bags may not only cause problems in the ginning pro-

cess but might also become embedded in cotton fibers, reducing the quality and marketable value. 

Therefore, detecting, locating, and removing the bags before the cotton is harvested is required. 

Manually detecting and locating these bags in cotton fields is a tedious, time-consuming, and costly 

process. To solve this, this paper shows the application of YOLOv5 to detect white and brown col-

ored plastic bags tangled at three different heights in cotton plants (bottom, middle, top) using Un-

manned Aircraft Systems (UAS)-acquired Red, Green, Blue (RGB) images. It was found that an av-

erage white and brown bag could be detected at 92.35% and 77.87% accuracies and a mean average 

precision (mAP) of 87.68%. Similarly, the trained YOLOv5 model, on average, could detect 94.25% 

of the top, 49.58% of the middle, and only 5% of the bottom bags. It was also found that both the 

color of the bags (p < 0.001) and their height on cotton plants (p < 0.0001) had a significant effect on 

detection accuracy. The findings reported in this paper can help in the autonomous detection of 

plastic contaminants in cotton fields and potentially speed up the mitigation efforts, thereby reduc-

ing the amount of contaminants in cotton gins. 

Keywords: plastic contamination; cotton field; YOLOv5; unmanned aircraft systems (UAS) 

 

1. Introduction 

Plastic contamination in U.S. cotton is a prevalent issue and a matter of concern for 

both ginners and the entire supply chain of the cotton industry. Considering the severity 

of the problem, the U.S. Department of Agriculture’s Agricultural Marketing Service 

(USDA-AMS) began implementing new extraneous matter codes (71 and 72) for cotton 

classification in 2018 [1]. Plastic contaminants in cotton significantly reduce the fiber’s 

marketable value, lowering the price paid by yarn spinners to growers [2–4]. Plastic con-

taminants in cotton can come from various sources like plastic wraps on round cotton 

modules, plastic mulch used in crop production, and from other sources at various stages 

of the supply chain starting in the field [5,6]. Contaminants may come from plastic rub-

bish, commonly plastic shopping bags, that are carried by the wind from roadsides and 

then become entangled with cotton plants across cotton fields [7]. During harvesting, 
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mechanical cotton pickers and strippers do not separate this material from the cotton, and 

it becomes embedded in seed cotton modules. Plastic contaminants often find their way 

into the processing machinery of cotton gins [2] and become embedded in cotton bales 

that are ultimately shipped to spinners. Efforts are being made to design a machine vision 

(MV)-based automated control system at cotton gins to detect and remove plastic contam-

inants [2]. However, detecting, locating, and removing plastic contaminants in the field 

before harvest can minimize the amount that ends up at the gin, thereby reducing the 

requirement for MV detection at that point. The only current option for field removal is 

human observation, which is too time-consuming, costly, and inefficient to be a viable 

process. To solve this problem, earlier studies used unmanned aircraft systems (UAS) with 

a multispectral camera to detect and locate shopping bags in cotton fields [6,8]. A classifier 

based on a classical machine learning (ML) algorithm was trained with image-based spec-

tral and textural features of plastic shopping bags [6]. The method resulted in a detection 

accuracy of over 64% in a cotton field before defoliation. In addition to having inadequate 

detection accuracy (90% or better is desirable), this method was time-consuming, requir-

ing field data collection and offline image processing, meaning the plastic bags could only 

be located after a day or so when the images had been processed with the developed al-

gorithm. 

Traditional approaches of object detection [6,9] involve feature extraction based on 

either histogram analysis—such as Histogram of Oriented Gradient (HOG) [10,11] and 

Edge Orientation Histograms (EOH) [12]—or on image textures [13]. Both HOG and EOH 

count occurrences of gradient orientation in a localized space of an image, while texture-

based approaches calculate the spatial variation of image tones depending on statistics 

like contrast and entropy [14]. Various methods have been tested to detect and identify 

foreign matter in cotton. For instance, Himmelsbach et al. [4] used Fourier transform in-

frared spectroscopy to detect contaminants in cotton fibers. Foreign particles in cotton fi-

ber were identified based on differences in absorbance over a range of wavelengths. This 

kind of approach is practical for laboratory settings but not in the field because detection 

with this method requires controlled conditions and is slow and expensive. 

Deep learning (DL), on the other hand, can detect objects quickly in the field with 

good accuracy, which is desirable for efficient contamination removal in the field [15,16]. 

DL based on remotely sensed images is an attractive approach to achieve near real-time 

detection and location of plastic bags in cotton fields with improved detection accuracy. 

DL-based algorithms have been successively used for object detection tasks in many agri-

cultural applications [15–19]. Among many DL-based algorithms, You Only Look Once 

version 5 (YOLOv5) is a state-of-the-art CNN architecture for real-time object detection. 

Similar to its earlier versions, YOLOv5 is a one-stage detector in which regression is used 

for detection and localization, but it is much faster and more accurate than previous ver-

sions, with inference speeds of up to 110 frames per second (FPS) [20,21] and 142 FPS [22] 

as compared to the older versions’ average inference speed of 33 FPS [23,24]. Inference 

speed varies depending on hardware, image quality, and the size and number of objects 

present in the images. The end goal of this research is to deploy a trained model for real-

time plastic bag detection, which requires high inference speeds; therefore, YOLOv5 was 

selected for this study. Until the release of YOLOX in 2021 [25], YOLOv5 was the latest 

version of the YOLO family of object detection algorithms. It has four variants: YOLOv5s, 

YOLOv5m, YOLOv5l, and YOLOv5x, where s, m, l, and x represent small, medium, large, 

and extra-large versions, respectively, in terms of network depth and number of parame-

ters. The values for the original and scaled-down versions are shown in Table 1. 
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Table 1. Original and scaled-down variants of YOLOv5. 

 YOLOv5-Original YOLOv5-Scaled-Down 

 Layers Parameters Layers Parameters 

Small (s) 283 7,066,239 224 7,056,607 

Medium (m) 391 21,060,447 308 21,041,679 

Large (l) 499 46,636,735 392 46,605,951 

Extra Large (x) 607 87,251,103 476 87,210,542 

In the current study, the four scaled-down versions were used. The objectives of this 

study are as follows: (i) to determine how well YOLOv5 can be used to detect plastic shop-

ping bags in a cotton field; (ii) to determine how the color of plastic shopping bags affects 

average precision (AP) and accuracy; (iii) to determine how YOLOv5-variant (s, m, l, and 

x) affects AP, accuracy, mean average precision (mAP@50), and inference speed for differ-

ent color bags; (iv) to identify an optimal YOLOv5-variant based on a desirability function 

dependent upon AP for brown and white bags, mAP@50, accuracy, and inference speed; 

(v) to determine the effect of height of plastic bags on cotton plants on the overall detection 

accuracy of the most desirable YOLOv5-variant. 

2. Materials and Methods 

2.1. Experiment Site 

To mimic the natural occurrence of grocery store plastic shopping bags in cotton 

fields, we manually tied a total of 180 plastic bags, 90 white and 90 brown, on cotton plants 

in a cotton field (26°9’51.62” N, 97°56’29.66” W) located near Weslaco in Hidalgo County, 

Texas (Figure 1). The bags were tied at three different heights (top, middle, and bottom) 

on the plants before defoliation. The order in which the bags were tied to plants followed 

a randomized sequence generated by Microsoft Excel software (Microsoft Corporation, 

Redmond, Washington, DC, USA). The field had been planted with cotton seed of the 

Phytogen 350 W3FE variety (CORTEVA agriscience, Wilmington, DE, USA). The soil at 

the experimental site includes two types: Hidalgo sandy clay loam and Raymondville clay 

loam [26]. 

 

Figure 1. An orthomosiac aerial image showing the experimental plot where white and brown col-

ored plastic shopping bags were tied on cotton plants, as seen in yellow and green boxes. 
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2.2. Data Acquisition 

A three-band (RGB: red, green, and blue) FC6360 camera (Shenzhen DJI Sciences and 

Technologies Ltd., Shenzhen, Guangdong, China) integrated on a DJI Phantom P4 quad-

copter (Shenzhen DJI Sciences and Technologies Ltd., Shenzhen, Guangdong, China) was 

used to collect aerial images of the test field from an altitude of 18.28 m (60 feet) above 

ground level (AGL). Pix4DCapture (Pix4D S.A., Prilly, Switzerland) software was used on 

a regular smartphone running iOS version 13.5 (Apple Inc., Cupertino, CA, USA) to con-

trol the quadcopter in flight. The camera has an image resolution of 1600 × 1300 pixels. 

The 71 images collected had a ground sampling distance (GSD) of approximately 1 

cm/pixel (0.40 inch/pixel). Five ground control points (GCPs) were used for georeferenc-

ing aerial images by placing four of them at the corners of the field and one in the middle 

(Figure 1). An EMLID Reach RS+ (Emlid, Hong Kong, China) GPS unit was used to collect 

GPS coordinates of the center of the five GCPs. Data were collected on 23 July 2020, be-

tween 10 a.m. and 2 p.m. Central Standard Time (CST). 

2.3. Image Data Preparation 

After the aerial images were collected, they were used to generate an orthomosiac 

with Pix4DMapper 4.3.33 software (Pix4D S.A., Switzerland) which were georeferenced 

using the GPS coordinates of the five GCPs (Figure 1). The orthomosiac was used only as 

an aid in visually locating areas of interest on the ground. Individual RGB images of 1600 

× 1300 pixels were split into 416 × 416 pixels with Python version 3.8.10 (Python Software 

Foundation, DE, USA) script [27]. Image augmentation techniques were subsequently ap-

plied to increase the number of images in the dataset with the Python library developed 

by Bloice et al. [28]. The following operations, along with the corresponding probabilities, 

were used in the augmentation pipeline: rotate with a probability value of 0.7, flip_left_right 

with a probability of 0.4, zoom_random with a probability of 0.4, percentage_area of 0.8, and 

flip_top_bottom with a probability of 0.4. These probability values determined the chance 

of applying the operation each time an image passed through the augmentation pipeline. 

Once an operation was chosen to be applied, parameter values were randomly applied 

from within the set range. A total of 1000 samples were generated in each of the 5 itera-

tions, resulting in a total of 5000 augmented images. However, many of these images did 

not contain either white or brown plastic bags. All such images were discarded, and only 

the images that contained at least one bag were used, resulting in a total of 1410 images. 

Then, 10 sets of image data were allocated, with each set containing 141 images. Each of 

the 10 datasets was divided into training, validation, and testing data in the ratio of 15:3:2. 

The LabelImg V-1.8.0 [29] software tool was used for annotating ground truth bounding 

boxes for the two classes, white bags (wb) and brown bags (bb). All these processes can be 

seen in a workflow pipeline flowchart in Figure 2. 
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Figure 2. Workflow pipeline showing the entire processes involved during the study, from image 

data collection to YOLOv5 model training, validation, and testing. 
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2.4. YOLOv5 Architecture 

All four versions of YOLOv5 have similar architectures that vary in depth and net-

work parameters. To understand the function of YOLOv5, one can consider the architec-

ture of YOLOv5s, shown in Figure 3, as generated by the visualization software, Netron 

version 4.8.1 [30]. The architecture has a total of 25 nodes, also known as modules [31], 

which are named model/0 to model/24. The first 10 modules form the backbone network, 

the next 14 modules form the neck network, and the last module forms the head/detection 

network of the architecture (Figure 3). The backbone and neck network collectively form 

the feature extractor, while the head/detection network forms the predictor or detector. In 

model/24, i.e., detection/head network, the value of nc = 2 represents the number of classes 

the YOLOv5 network was customized to detect. 

YOLOv5 is a single-stage detector that uses a “hard-swish” activation function that 

makes it faster to train as well as to detect [15]. “Hard-swish”, i.e., h-swish, is a modified 

version of the “swish” activation function that is mathematically defined by Equations (1) 

and (2) [32,33]. 

swish(x)  =  x σ(x)=
x

1+e-x  (1) 

h - swish(x)  =  x
ReLU6(x + 3)

6
 (2) 

2.5. YOLOv5 Training, Performance Metrics, and Desirability Function 

The source code for YOLOv5 was obtained from the Ultralytics Inc. GitHub reposi-

tory of YOLOv5 [34]. Selected model hyperparameters are shown in Table 2. The PyTorch 

framework (Facebook AI Research Lab, Menlo Park, CA, USA) with torch version 1.9.0 

and Compute Unified Device Architecture (CUDA) version 10.2 (NVIDIA, Santa Clara, 

CA, USA) were used to implement YOLOv5. The auto anchoring function of YOLOv5 

generated 4.5 anchors per target object based on the annotated ground truth bounding 

boxes (BBs). Original values from the source code were used for enhancement coefficients 

of hue (0.015), saturation (0.7), and lightness (0.4). Stochastic gradient descent (SGD) was 

used as the optimization algorithm for each version. SGD is a method of minimizing an 

objective function during model training by randomly choosing a single data point from 

a batch of data points, thereby reducing computation time to speed up the training process 

[35]. Google Colaboratory Pro (Google LLC, Mountain View, CA, USA) was used to train 

YOLOv5 on Tesla P100 GPU -16GB (NVIDIA, Santa Clara, CA, USA). All four versions of 

YOLOv5 were trained for 250 iterations with a batch size of 4, using 106 training, 21 vali-

dation, and 14 test images, resulting in a total step size of 6625. YOLOv5 was pre-trained 

on COCO datasets for 80 different classes [36]. The pre-trained weights were used as the 

starting point, and YOLOv5 was customized for 2 classes based on a custom dataset. Each 

trained model was saved in pt format and later used for detection. 

Table 2. YOLOv5 hyperparameters used for this study. 

Hyperparameters Values 

Learning Rate 0.01 

Learning rate Decay 0.2 

Momentum 0.937 

Weight Decay 0.0005 

Batch Size 4 

Training Epoch 250 
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Figure 3. Customized YOLOv5s network architecture for detecting 2 classes as generated by Netron 

visualization software. The backbone, neck, and head sections are shown in (A), (B), and (C), re-

spectively. 

To evaluate the trained models on each of the ten datasets, precision (P), recall (R), 

average precision (AP), mean average precision (mAP), accuracy, and F1-score were used 

as performance metrics. These metrics were calculated based on generalized intersection 
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over union loss (GIoUloss), confidence over objectness loss, and classification over proba-

bility loss. The equations to calculate these metrics are given below. 

P=
TP

TP+FP
  (3) 

R=
TP

TP+FN
 (4) 

Accuracy=
TP+TN

TP+TN+FP+FN
 (5) 

F1-score = 2
P * R

P + R
 (6) 

AP = ∑ [R(k) - R(k + 1)] × P(k)

k=n-1

k=0

 (7) 

mAP = 
1

n
∑ APk

k=N
k=1   (8) 

where N is the number of classes (N = 2 in our case for wb and bb), TP is the number of 

true positives, TN is the number of true negatives, FP is the number of false positives, FN 

is the number of false negatives, APk is the AP of class k, and n is the number of thresholds 

(n = 1 in our case). Precision is a measure of TP over predicted positives, while recall is a 

measure of TP rate and is also sometimes called sensitivity. Accuracy, on the other hand, 

is an overall measure of true detection. F1-score is the harmonic mean of P and R, i.e., 

reciprocal of the arithmetic mean of reciprocals of P and R. All these metrics are deter-

mined based upon different losses that are calculated as shown below. 

GIoUloss=λcoord ∑ ∑ lij
obj

B

j=1

s2

i=1

 LGIoU (9) 

Confidence Loss/Objectness Loss= 

∑ ∑  lij
obj

(Ci
B
j=1

s2

i=1 - Ĉi)2 + λnobj ∑ ∑ lij
obj

(Ci
B
j=1

s2

i=1 - Ĉi)2  (10) 

Classification/Probability Loss= 

∑ lij
obj

∑ (p
i
(c)-  p̂

i
(c))c∈class

s2

i=1   (11) 

In Equation (9), λcoord is the penalty coefficient associated with the central coordinate 

of the predicted bounding box (BB), s2 is the number of grid cells generated on the input 

image, and B is the total number of predefined BB, i.e., the anchors, which is equal to 9 (3 

at each scale). In Equations (10) and (11), the existence and absence of an object in the 

predicted BB are represented by ‘obj’ and ‘nobj’, respectively. Similarly, 𝐶𝑖 represents the 

class of the predicted object, �̂�𝑖 represents the class of the ground truth object, and λnobj 

represents the penalty coefficient associated with the confidence loss. Even though these 

metrics are widely used for evaluating the performance of the trained model and its asso-

ciated classifier, one must be careful about two important aspects: the way data are sam-

pled and the balance between different classes in sampled datasets. Xie and Braga–Neto 

[37] found that precision as a performance metric may not be reliable and can be severely 

biased under separate sampling conditions. The sampling technique used in this research 

was kept consistent to avoid bias induced by sampling discrepancy. Similarly, Luque et 

al. [38] showed that an imbalance in the proportion of instances between positive and 

negative classes could affect classification accuracy, and they proposed geometric mean 

(GM) or Bookmaker Informedness as the most bias-free metrics. To solve this issue, 

YOLOv5 also uses focal loss [39]. 
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In addition to evaluating each model’s performance separately, the best model had 

to be identified among all four variants (s, m, l, and x) based on the performance metrics 

and inference time. Identifying the best overall model would enable its deployment on a 

UAS using CV for real-time plastic bag detection in a cotton field. Since this problem is 

similar to optimization with multiple response variables, the desirability function was 

used to convert all the response variables into a single one by first scaling them from 0 to 

1, then taking their geometric mean (GM), and finally, combining them as shown in Equa-

tion (12) [40,41]. 

D = √(d1 × d2 × d3 × …dp)
p

 (11) 

Here, D is the overall desirability of all the p response variables (in our case, p = 4) 

denoted by d1,d2 …dp. In our case, d1 = mAP, d2 = accuracy of white bags, d3 = accuracy of 

brown bags, and d4 = inference speed. To implement this function, JMP Pro version 15.2.0 

software was used (SAS Institute, Cary, NC, USA). In this study, the response goals for 

mAP and accuracies for white and brown bags were set to 1, 0.85, and 0.8 for high, middle, 

and low, respectively, and then the desirability was maximized using constrained New-

ton’s method as explained by Dennis and Schnabel [42]. 

2.6. Experiment Design 

To achieve the second objective, a fixed effect model was designed to examine the 

effect of the color of plastic shopping bags on AP and accuracy with all four variants of 

the YOLOv5 model. A total of 10 observations were made by randomly selecting 10 sets 

of 14 test images containing both white and brown plastic shopping bags and then at-

tempting to detect them with the trained YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x 

models. Assuming Yijc is the j-th observation from treatment group ic, where ic = W, B, and 

jc= 1,2,3, …10, the fixed effect model can be expressed as: 

Yijc = μ
.c

 + αic + εijc (12) 

Here, µ.c is the average of all the treatment group means, while ɛijc is the error, or the 

residual term, for the fixed effect model, and αic is the i-th treatment effect. The null and 

alternative hypotheses for this model can be shown as 

H0c:  αW = αB  (13) 

H1c :  αW ≠ αB (14) 

The first step was to test the normality assumption with the Shapiro–Wilk test at the 

95% confidence level (α = 0.05) with Python’s SciPy Stats module [43]. Then, the model 

effect test was conducted with the Standard Least Squares (SLS) personality fit with JMP 

Pro version 15.2.0 software (SAS Institute, NC, USA). The SLS method is used to fit linear 

models for continuous response variables using the method of least-squares. 

To achieve the third objective, a fixed effect model was designed to test the effects of 

YOLOv5 versions on the AP, mAP, and inference speed for white and brown bags. Again, 

there were 10 observations, 4 treatment groups (YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x), and 4 output metrics (AP for white bags, AP for brown bags, mAP, and infer-

ence speed). Assuming Yij is the j-th observation from treatment group I, where i = s, m, l, 

x, and j = 1,2,3, …10, the fixed effect model can be expressed as 

Yij = μ .+ αi + εij (15) 

Here, µ. is the average of all the treatment group means, while ɛij is the error (the 

residual term) for the fixed effect model, and αi is the i-th treatment effect. The null and 

alternate hypotheses for this model can be shown as 

H0:  αs = αm = αl = αx (16) 
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H1 :  αs ≠ αm  or  αs ≠ αl or αs ≠ αl or αm ≠ αl or αm ≠ αx or αl ≠α x  (17) 

Like the previous case, the normality assumption was first tested, and then the model 

effect, with SLS personality fit with JMP Pro version 15.2.0 software (SAS Institute, NC, 

USA). Finally, to choose the optimal YOLOv5 model, the desirability function in the pre-

diction profiler graphs obtained from the YOLOv5 model type effect tests was used. 

Once the most desirable variant of YOLOv5 was chosen, a fixed effect model test was 

performed to determine the effect of the height of plastic bags (top, middle, and bottom) 

on the overall detection accuracy by the trained YOLOv5 model. For these, 10 random 

image samples (416 × 416 pixels) were chosen, and the most desirable variant of the trained 

YOLOv5 model was used for the detection of plastic bags. The number of detected bags 

was matched visually with the experiment layout to determine the number of top, middle, 

and bottom bags detected out of the total top, middle, and bottom bags present in each 

image. Then, a percentage ratio for each (top, middle, and bottom) was calculated. This is 

called bag-based accuracy hereon. 

3. Results 

3.1. Overall Performance of YOLOv5 for Plastic Bag Detection in Cotton Field 

Figure 4 shows the three types of losses that were calculated and plotted for training 

and validation datasets. 

The plot titles with val_ as the prefix were obtained from the validation dataset. Based 

on the 40 total observations (10 observations from 4 variants of YOLOv5), the mean AP 

for white bags was 90.53% with a standard deviation of 0.08. The mean AP for brown bags 

was 84.84% with a standard deviation of 0.06. The mean of mAP was found to be 87.68% 

with a standard deviation of 0.05. The accuracy for white bags had a mean of 92.35% and 

a standard deviation of 0.05. The mean accuracy for brown bags was 77.87% with a stand-

ard deviation of 0.11. The mean inference speed was 81.43 FPS with a standard deviation 

of 39.78. Figure 5A is a precision-recall plot obtained after training YOLOv5s with one of 

the 10 observation datasets. The areas under these curves can be used to determine AP for 

white bags (wb) and brown bags (bb), as well as mAP corresponding to both. Figure 5B 

includes plots of the F1-score against confidence values, which are directly proportional 

to a confidence value of around 0.33. After that point, the F1-score starts to decrease with 

increasing confidence values, indicating that the predicted BBs can be associated with 

more confidence about the presence of included objects but also that they are less precise 

and accurate for predicted classes (wb and bb). Until the confidence value of approximately 

0.62, the predicted BBs are more accurate, precise, and sensitive about wb, but after this 

point, they become more precise, sensitive, and accurate about bb. Figure 6 is a confusion 

matrix heat map in which white bags have a higher true positive rate than brown bags. 

Figure 7 includes some results of the trained model used for detection on the test dataset. 
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Figure 4. Example plots showing different losses and performance metrics based on training and 

validation datasets for YOLOv5s. 
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Figure 5. (A) Precision recall curve that was obtained after one of the training processes. (B) Example 

of F1-score values plotted against confidence scores. 

 

Figure 6. Example of confusion matrix obtained after training YOLOv5s and using 1 of the 10 vali-

dation datasets. Here, darker colors represent higher classification accuracies while lighter colors 

represent lower classification accuracies.  
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Figure 7. (A) Example images showing white and brown plastic bags being detected by trained 

YOLOv5s within predicted BBs and the corresponding class confidence scores. The images enclosed 

by dotted yellow rectangles are the test images, and the ones within dotted blue rectangles are the 

ones on which detection results are present. (B) Enlarged version of image showing white and 

brown color bags in corresponding color dotted circles. (C) Enlarged image showing detection re-

sults. 

3.2. Color Effect Tests 

When the color effect model was tested on the four versions of YOLOv5, the resulting 

histogram and density plots (Figures 8–11) showed the distribution of AP and accuracy 

for each version (s, m, l, and x) as well as side-by-side box plots with lines connecting their 

means and medians along with pair-wise Student’s t-test values. Based on 10 observations 

for both white and brown bags, the mean of AP values for s, m, l, and x models were 

89.85%, 90.15%, 87.94%, and 82.81% with standard deviations of 0.06, 0.05, 0.07, and 0.11, 

respectively. The overall mean accuracies for s, m, l, and x were 84.80%, 88.95%, 85.85%, 

and 80.85%, respectively. Based on colors, both the AP and accuracy for white bags were 

significantly higher than the brown bags for s and l (Figures 8 and 10). However, for m 

and x, only the accuracy for white bags was significantly higher than the brown bags (Fig-

ures 9 and 11). The AP and accuracies were expected to be higher with increasing size and 

depth of the model, but this was true only from s to m, not from m to l or l to x. A possible 

reason for this could be that there were fixed numbers of training iterations for all ver-

sions. Hence, the l and x versions may not have reached convergence during the 250 iter-

ations. In this study, it was necessary to fix the hyperparameter values for consistency in 

results comparisons. Table 3 shows the results of the effect of the color of plastic bags on 
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AP and accuracy for all four model versions. There was evidence to determine that color 

had a significant effect (α = 0.05) on accuracy for all four versions. Similarly, there was 

evidence to determine that color had a significant effect on AP for s and l but not for m 

and x at the 5% significance level. From the boxplots of accuracy as a function of the color 

of the bags, white bags had significantly higher accuracy than brown bags (Figure 12). 

 

Figure 8. Distribution of average precision (AP) and accuracy for YOLOv5s as well as for white and 

brown color plastic shopping bags. The blue dots are for brown colored plastic bags and orange 

dots are for white colored plastic bags. 

 

Figure 9. Distribution of average precision (AP) and accuracy for YOLOv5m as well as for white 

and brown color plastic shopping bags. The blue dots are for brown colored plastic bags and or-

ange dots are for white colored plastic bags. 
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Figure 10. Distribution of average precision (AP) and accuracy for YOLOv5l as well as for white and 

brown color plastic shopping bags. The blue dots are for brown colored plastic bags and orange 

dots are for white colored plastic bags. 

 

Figure 11. Distribution of average precision (AP) and accuracy for YOLOv5x as well as for white 

and brown color plastic shopping bags. The blue dots are for brown colored plastic bags and orange 

dots are for white colored plastic bags. 
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Figure 12. Distribution of overall accuracy of the YOLOv5 models as well as accuracy for white and 

brown color plastic shopping bags. The blue dots are for brown colored plastic bags and orange 

dots are for white colored plastic bags. 

Table 3. Plastic bag color effect test on average precision and accuracy of different variants of 

YOLOv5. 

Model 
Average Precision Accuracy 

F Ratio Prob > F F Ratio Prob > F 

YOLOv5s 5.7812 0.0272 19.2649 0.0004 

YOLOv5m 3.0022 0.1002 6.6480 0.0189 

YOLOv5l 12.1663 0.0026 19.8409 0.0003 

YOLOv5x 0.9136 0.3518 21.6296 0.0002 

A chart showing difference inference times that were obtained by testing 14 images 

during each of the 10-test datasets. 

3.3. Model Type Effect Tests 

Values of AP, accuracies, mAP, and inference times for the model effect test are given 

in Table 4. The model type did not have a significant effect on accuracy and AP for white 

bags, but it did have a significant effect in all the other metrics (α = 0.05). In part, this 

means that the detection of white bags was not affected by the choice of model, whereas 

the detection of brown bags was affected by the type of model used. Furthermore, infer-

ence time (i.e., detection speed) depends on the choice of model regardless of bag color. 

This result was expected because larger models are deeper with many more parameters 

that require more processing time, as evidenced by the different inference times obtained 

for each observation test dataset and for all four versions (Figure 13). The distribution of 

mAP for the four YOLOv5 version models can be seen in Figure 14, with histogram and 

density plots as well as side-by-side box plots with means and medians connected by lines. 
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Pair-wise Student’s t-test values are also shown with the boxplots. The most consistent 

distribution can be seen for YOLOv5m, but there was an outlier. The mean and median 

lines are almost parallel between YOLOv5s and YOLOv5m, indicating similar perfor-

mance. The lines decline from YOLOv5m to YOLOv5l and from YOLOv5l to YOLOv5x, 

indicating a sequential decrease in the mAP for the larger models. As mentioned earlier, 

this result can be attributed to the fact that the larger models were likely not trained ade-

quately for their losses to converge. Mean accuracy increased from s to l but decreased 

from l to x; however, the decrease was not significant. The model type did not have a 

significant effect on overall accuracy except between m and x (Figure 14). 

 

Figure 13. A chart showing difference inference times that were obtained by testing 14 images dur-

ing each of the 10-test dataset. 

Table 4. YOLOv5 Model type effect test on AP, accuracy, and mAP for white and brown color plastic 

bags. 

Model F Ratio Prob > F 
White Bags mAP Brown Bags 

F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F 

AP   2.15 0.11 4.63 0.01 3.27 0.03 

Accuracy   0.44 0.73   3.66 0.02 

InferenceTime 27665.3 <0.0001       
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Figure 14. Distribution of accuracies and mean average precision (mAP) for all four variants of the 

YOLOv5 model. The blue, orange, green and red dots are for small, medium, large and extra-large 

variants of the YOLOv5 model respectively. 

3.4. Desirability Function as Optimization Method 

The most important of the six metrics (AP and accuracy for white and brown bags, 

mAP, and inference time) were the inference speed, accuracy, and mAP, because the goal 

was to find an optimal YOLOv5 model with the greatest detection accuracies for white 

and brown plastic bags at a higher inference speed that can be deployed on a GPU for 

near real-time detection. The maximum desirability obtained was nearly 0.95 for 

YOLOv5m, which had the maximum inference speed of 86 FPS, with accuracies for white 

and brown bags greater than 92% and 85%, respectively, and mAP greater than 90% (Fig-

ure 15). 

 

Figure 15. Prediction profilers show maximum desirability for the YOLOv5m (M) model. 

3.5. Plastic Bag Height Effect Test 

Once the most desirable variant of YOLOv5 was found, i.e., YOLOv5m, it was used 

to test how the height of plastic bags on cotton plants affects its detection accuracy (bag-

based detection accuracy). Bag-based detection accuracies, i.e., the percentage of top, mid-

dle, and bottom bags that were detected in each of the ten test images, are shown in Table 

5. 
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Table 5. Effect test of plastic bag height on bag-based detection accuracy. Top, middle, and bottom 

show the percentage of corresponding bags detected in each of the ten test images on which the 

trained YOLOv5m model was used. 

Image_Sample_Number Top Middle Bottom 

1 62.5 12.5 0 

2 100 0 0 

3 100 100 0 

4 100 0 0 

5 100 0 0 

6 100 33.33 0 

7 100 100 50 

8 100 50 0 

9 100 100 0 

10 80 100 0 

It was found that, on average, 94.25% of the top bags (white and brown), 49.58% of 

the middle bags (white and brown), and 5% of the bottom bags (white and brown) were 

detected by the trained YOLOv5m model. A fixed effect model test determined that the 

height of plastic bags had a significant effect (p < 0.0001) on bag-based detection accuracy. 

4. Discussion 

4.1. Overall Performance of YOLOv5 

Results from this study showed that YOLOv5 was able to detect plastic shopping 

bags in aerial images of a cotton field with an overall accuracy of 92% for white bags, 78% 

for brown bags, and mAP of 88%. This means that using the deep learning method, detec-

tion accuracy for white bags improved by nearly 19%, for brown bags by 18%, and the 

overall detection accuracy improved by 24% when compared to the previous methods 

used [6]. Apart from higher detection accuracy, this method was also able to perform de-

tection at speeds that make it practically viable for near real-time detection (Figure 13). 

Therefore, this approach can be used to potentially enable field robots like unmanned 

ground vehicles to remove the bags autonomously, as proposed by Hardin et al. [44]. It 

was also found that the overall detection accuracy of white bags was significantly higher 

than that of brown bags. This result was expected because the brown bags had lower con-

trast with their surroundings, particularly those that were tied at the bottom of the plants 

and looked like the soil in the background. This is in agreement with the findings by Liu 

et al. [45], in which detection of aircraft by YOLOv5 decreased due to the white back-

ground, as most of the aircraft are white in color. 

It is known that the deeper the CNN network, the better the performance. Deeper 

networks learn better [46,47], explaining why, in most cases, the performance of YOLOv5x 

> YOLOv5l > YOLOv5m > YOLOv5s [22]. Results of our study showed this to be true for 

YOLOv5s and YOLOv5m, but the performance was found to be less for YOLOv5l and 

YOLOv5x. There can be multiple reasons for this, one of which may be attributed to the 

fact that the larger and deeper models were not trained enough to enable the losses to 

converge within the fixed 250 iterations. DL and ML models are stochastic in nature; hence 

fine-tuning hyperparameter values of the l and x other than the ones in Table 1 can result 

in different and perhaps higher detection results. However, for a fair comparison, all four 

versions were trained with the same number of iterations and fixed values of hyperpa-

rameters, as explained in Sections 5 and 6. 

4.2. Effect of Color of Bags on YOLOv5 Performance 

From this study, it was found that the color of plastic bags had a significant effect on 

overall detection accuracy for all four variants of YOLOv5. White bags were always de-

tected with higher accuracy than brown bags, as was expected due to their higher contrast 
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with the background. This result could be different if the cotton plants had many open 

bolls, thus creating a white background and making the detection of white bags difficult 

due to their decreased contrast with the background. An interesting finding was that bag 

color had a significant effect on AP for YOLOv5s and YOLOv5l but not for the YOLOv5m 

and YOLOv5x. This means that the m and x models were fine-tuned and trained such that 

the AP of these models was robust to the changes in the color of plastic bags. 

4.3. Effect of Model Type 

Findings from this study indicated that YOLOv5m performed the best in terms of 

overall accuracy and mAP followed by YOLOv5s, YOLOv5l, and YOLOv5x. However, no 

significant effect was found on the overall detection accuracy of plastic bags except be-

tween YOLOv5m and YOLOv5x. These results suggest that if any of the models are 

trained adequately, they can be used for plastic bag detection in cotton fields without ma-

jor concerns about detection accuracy. This is only true if computation cost is not an issue, 

which in practical situations is always a matter of concern. 

4.4. Optimal Model 

Computation cost in terms of time, energy to operate the system, money, etc., has 

always been a concern when deploying CV algorithms on edge computing devices [48], 

[49]. In our study, we focused on finding the optimal YOLOv5 model out of the four var-

iants, keeping the detection accuracies for white and brown bags at least 80% and infer-

ence speed of at least 35 FPS. The desirability function, as explained in Section 2.5, was 

helpful in determining the most practically viable model for near real-time detection of 

plastic shopping bags in cottonfields, which is YOLOv5m. 

4.5. Effect of Plastic Bag Height 

The bag-based detection accuracies were found to be relatively consistent for the top 

and bottom bags, with a standard deviation of 12.80 and 15.81, respectively; however, in 

the case of middle bags, it was highly inconsistent, with a standard deviation of 46.17. On 

average, the trained YOLOv5m was able to detect top bags with significantly higher de-

tection accuracy than the bottom bags. This is as expected because most of the bags at the 

bottom remained hidden under the canopy of cotton plants and, therefore, could not be 

seen in the aerial images collected by the UAS. The middle bags were detected at higher 

accuracy than the bottom bags but at a significantly lower value than the top bags. 

4.6. Limitations 

The findings of this study are limited by the fact that fixed hyperparameters and 

training iterations were used for all YOLOv5 variants, such that deeper models like 

YOLOv5l and YOLOv5x apparently failed to converge their losses. These models would 

likely perform better if trained for a greater number of iterations. Furthermore, the infer-

ence speed reported here is for a GPU that is part of a high-performance computing sys-

tem that is not readily available for practical applications in field conditions. Hence, the 

inference speed may be significantly different for a field-based computing platform. In 

addition, this study reports the findings based on images collected from 18.28 m (60 feet) 

above ground limit (AGL), and therefore, the results may improve when high-resolution 

images are collected from either lower elevation or using a high-resolution camera or com-

bination of both. 

5. Conclusions 

In conclusion, this paper demonstrates the successful utilization of YOLOv5 for de-

tecting white and brown plastic shopping bags in a cotton field using RGB aerial images 

obtained from UAS. The average accuracies achieved were 92.35% and 77.87% for white 

and brown bags, respectively, with an mAP of 87.68%. Compared to classical ML methods 
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previously employed, YOLOv5 exhibited a 24% higher overall accuracy in bag detection. 

The study also highlights the significant influence of bag color and height on cotton plants 

on detection accuracies, concluding that YOLOv5m is the most practical model for near 

real-time detection. Furthermore, the analysis reveals that top bags were detected with 

significantly higher accuracy (94.25%) compared to middle (49.58%) and bottom bags 

(5%). Additionally, it was observed that the background color had a detrimental effect on 

the detection accuracy of plastic shopping bags. Consequently, it is recommended to sur-

vey cotton fields before the open boll stage, during the period when the leaves are green 

and the cotton bolls are closed, to ensure that the aerial images are free of white and brown 

backgrounds that may hinder YOLOv5's performance. Moreover, it is advised to conduct 

surveys when the plant canopies are not overly dense to avoid overlooking bags entan-

gled at the bottom of cotton plants, which often remain undetected and may require man-

ual scouting. 

6. Future Work 

Since YOLOv5 is built upon a PyTorch (Facebook AI Research Lab, Menlo Park, CA, 

USA) framework, which is written in Python programming language, it is easy to deploy 

on embedded systems like GPUs. The inference results (Figure 9) are promising for real-

time object detection. However, these were obtained on Tesla P100 GPU -16GB (NVIDIA, 

Santa Clara, CA, USA), which provides computation speed not possible to deploy at “the 

edge” (i.e., at the source of image data generation, a UAS with camera and GPU). The goal 

of this research is to deploy the developed AI model on a low-cost and lightweight edge 

computing device that can be easily mounted on a UAS. Developing near real-time com-

putation on an edge computing device will be part of future research. The future work 

will also involve the extraction of central coordinates of detected BBs with plastic shop-

ping bags and then georeferencing them to a geodetic coordinate system that might allow 

ground-based robots to collect the detected plastic shopping bags. Ideally, detection and 

coordinate extraction will be performed in near real-time with the trained YOLOV5m 

model on a low-cost, lightweight GPU device mounted along with a camera on a UAS. 
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