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Abstract: The study of plant phenotypes based on 3D models has become an important research
direction for automatic plant phenotype acquisition. Building a labeled three-dimensional dataset
of the whole growth period can help the development of 3D crop plant models in point cloud
segmentation. Therefore, the demand for 3D whole plant growth period model datasets with organ-
level markers is growing rapidly. In this study, five different soybean varieties were selected, and
three-dimensional reconstruction was carried out for the whole growth period (13 stages) of soybean
using multiple-view stereo technology (MVS). Leaves, main stems, and stems of the obtained three-
dimensional model were manually labeled. Finally, two-point cloud semantic segmentation models,
RandLA-Net and BAAF-Net, were used for training. In this paper, 102 soybean stereoscopic plant
models were obtained. A dataset with original point clouds was constructed and the subsequent
analysis confirmed that the number of plant point clouds was consistent with corresponding real
plant development. At the same time, a 3D dataset named Soybean-MVS with labels for the whole
soybean growth period was constructed. The test result of mAccs at 88.52% and 87.45% verified the
availability of this dataset. In order to further promote the study of point cloud segmentation and
phenotype acquisition of soybean plants, this paper proposed an annotated three-dimensional model
dataset for the whole growth period of soybean for 3D plant organ segmentation. The release of
the dataset can provide an important basis for proposing an updated, highly accurate, and efficient
3D crop model segmentation algorithm. In the future, this dataset will provide important and
usable basic data support for the development of three-dimensional point cloud segmentation and
phenotype automatic acquisition technology of soybeans.

Keywords: 3D reconstruction; the whole growth period; soybean; point cloud segmentation; dataset

1. Introduction

With the continuous development of plant phenomics, three-dimensional plant phe-
notypic analysis has become a challenging research topic. Using deep learning for point
cloud segmentation is the foundation of crop phenotype measurement and breeding. The
common point cloud datasets used for training are scarce and difficult to obtain, and there
is no commonly used basic data for organ instance segmentation for phenotype extraction.
In addition, due to the complex structure of plants, the data annotation work needs consid-
erable manual processing. A well-labeled dataset is essential for the segmentation of plant
point clouds using deep learning. In order to obtain a well-labeled dataset, it should have
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the following characteristics: complete plant structure, high precision, and the ability to
cover multiple varieties and growth periods. Consequently, building a labeled crop plant
point cloud dataset of the entire growth period is a key step toward achieving accurate
crop point cloud segmentation using deep learning.

Although the lack of well-labeled 3D plant datasets limits the further progress of
plant point cloud segmentation [1], many scholars have made significant advancements in
building plant point cloud segmentation datasets in recent years. Zhou et al. [2] manually
segmented the 3D point cloud data of soybean plants and gave each point a real label.
This was used as the training set for point cloud segmentation and real ground data for
evaluating segmentation accuracy using machine learning methods. Li et al. [3] used
the MVS-Pheno platform to obtain multi-view images and point clouds of corn plants in
the study of organ-level point cloud automatic segmentation of corn branches based on
high-throughput data acquisition and deep learning. At the same time, the research team
developed a data annotation tool kit specifically for corn plants, called Label3DMatch, and
annotated the data to ultimately build a training dataset. Conn et al. [4] planted tomatoes,
tobacco, and sorghum under the five growth conditions of ambient light, shade, high
temperature, strong light, and drought, and performed 3D laser scanning (311 tomato
scans, 105 tobacco scans, and 141 sorghum scans) on the plant stem structure during
20-30 days’ development. A 3D plant dataset was constructed after summarizing the
species, conditions, and time points. Li et al. [5] used this original dataset and manually
marked the semantic labels belonging to stems and leaves using the semantic segmenta-
tion editor (SSE) tool and established a well-labeled point cloud dataset for plant stem
leaf semantic segmentation and leaf instance segmentation. Hideaki et al. [6] proposed a
3D phenotype platform that can measure plant growth and environmental information
in a small indoor environment to obtain plant image datasets. In addition, annotation
tools were introduced, which can manually, but effectively, create leaf tags in plant im-
ages on a pixel-by-pixel basis. Barth et al. [7] rendered a composite dataset containing
10,500 images through Blender. The scene used had 42 program-generated plant models
and random plant parameters. These parameters were based on 21 empirically measured
plant characteristics at 115 locations on 15 plant stems. The fruit model was obtained
through 3D scanning and the plant part textures were collected through photos as a refer-
ence dataset for modeling and evaluating the segmentation performance. David et al. [8]
established a large, diverse, and well-labeled wheat image dataset, called the Global Wheat
Head Detection (GWHD) dataset. It contained 4700 high-resolution RGB images from
multiple countries and 190,000 wheat head markers at different growth stages, with a wide
range of genotypes. Wang et al. [9] constructed a lettuce point cloud dataset consisting of
620 real and synthetic point clouds fused together for 3D instance segmentation network
training. Lai et al. [10] first used the SIM-MVS method to obtain point clouds of these plant
population scenes, which were then annotated similarly to the S3DIS dataset to obtain data
that could be trained and tested. In order to provide important and available basic data
support for the development of three-dimensional point cloud segmentation and pheno-
type automatic acquisition technology of soybeans, this study uses the multiple-view stereo
technology to construct 102 soybean three-dimensional plant models by taking advantage
of its low cost, fast speed and high precision. At the same time, it is manually labeled to
construct the dataset for point cloud segmentation. Compared with other datasets, this
dataset contains three-dimensional information on soybean plants during the whole growth
period, which has certain advantages in model accuracy and quantity.

There are several key binocular stereovision spatial positioning technologies involving
image acquisition, camera calibration, image preprocessing, edge feature extraction, and
stereo matching. Multi-vision is based on binocular vision, adding one or more cameras as
a measuring assistant so that multiple pairs of images from different angles of the same
object can be obtained. For the 3D reconstruction of a single plant, this method is more
suitable for low sunlight conditions in the laboratory (Duan et al. [11]; Hui et al. [12]). This
method can also be used for 3D reconstruction in the field such as studying overall crop
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canopy volumes (Biskup et al. [13]; Shafiekhani et al. [14]). Compared with other methods,
the multiple-view stereo method requires relatively simple equipment, and the model
can be established quickly and effectively, with minimum human-computer interaction
required. Although the reconstruction speed is average and the requirements for the
reconstruction of environmental factors are high, the reconstruction accuracy is high, it
is easy to use, and the required equipment price is relatively low. Zhu et al. [15] built a
soybean digital image acquisition platform based on the principle of constructing a multi-
perspective stereovision system with digital cameras covering different angles, effectively
improving the problem of mutual occlusion between soybean leaves. The morphological
sequence images of target plants for 3D reconstruction were then obtained. Nguyen
et al. [16] described a field 3D reconstruction system for plant phenotype acquisition. The
system used synchronous, multi-view, high-resolution color digital images to create real 3D
crop reconstructions and successfully obtained the plant canopy geometric characteristic
parameters. Lu et al. [17] developed an MCP-based SfM system using multiple-view stereo
technology and studied the appropriate 3D reconstruction method and the optimal shooting
angle range. Choudhury et al. [18] devised the 3DPhenoMV method. Plant images captured
from multiple side views were used as the algorithm input, and a 3D model of the plant
was reconstructed using multiple side views and camera parameters. Miller et al. [19] used
low-cost hand-held cameras and SfM-MVS to reconstruct a spatially accurate 3D model
of a single tree. Shi et al. [20] adopted the multi-view method, allowing information from
two-dimensional (2D) images to be integrated into the three-dimensional (3D) plant point
cloud model, and evaluated the performance of 2D and multi-view methods on tomato
seedlings. Lee et al. [21] proposed an image-based 3D plant reconstruction system based on
multiple UAVs to simultaneously obtain two images from different views of plants during
growth and reconstruct 3D crop models with moving structures, based on multiple view
stereo algorithms and metric structures. Sunvittayakul et al. [22] developed a platform
for acquiring 3D cassava root crown (CRC) models using close-range photogrammetry
for phenotypic analysis. This novel method is low cost, and it is easy to set up the 3D
acquisition requiring only a background sheet, a reference object, and a camera and is
suitable for field experiments in remote areas. Wu et al. [23] developed a small branch
phenotype analysis platform, MVS-Pheno V2, based on multi-view 3D reconstruction,
which focused on low plant branches and realized high-throughput 3D data collection.

In this study, the multiple view stereo method (MVS) was used to reconstruct soybean
plants. A soybean image acquisition platform was constructed to obtain multi-angle images
of soybean plants at different growth stages. Based on the silhouette contour principle, the
model was established by contour approximation, vertex analysis, and triangulation, and
3D point cloud and original soybean datasets were constructed. Meanwhile, the obtained
3D models of soybean were manually labeled using CloudCompare v2.6.3 software. An
annotated 3D dataset called Soybean-MVS, including 102 models, was established. Due
to the inherent changes in the appearance and shape of natural objects, the segmentation
of plant parts was a challenge. In this paper, to verify the availability of this dataset,
RandLA-Net and BAAF-Net point cloud semantic segmentation networks were used to
train and test the Soybean-MVS dataset.

2. Materials and Methods
2.1. Method Process

In 2018 and 2019, we cultivated high-quality soybean plants including DN251, DN252,
DN253, HN48, and HN51 varieties. An original 3D soybean dataset and labeled 3D soy-
bean plant dataset were constructed for the whole soybean growth period, consisting of
the first trifoliolate stage (V1), second trifoliolate stage (V2), third trifoliolate stage (V3),
fourth trifoliolate stage (V4), fifth trifoliolate stage (V5), initial flowering stage (R1), full
bloom stage (R2), initial pod stage (R3), full pod stage (R4) initial seed stage (R5), full seed
stage (R6), initial maturity stage (R7), and full maturity stage (R8). Among them, V repre-
sents the vegetative growth stage and R represents the reproductive growth stage. Table 1
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shows the basic characteristics of experimental soybean materials, including soybean vari-
eties, growing days, planting methods, and active accumulated temperature greater than
10 °C. The research process of this paper mainly involved 3D reconstructions based on the
multiple view stereo method, manually labeling data to build datasets, and training and
evaluating datasets through point cloud segmentation. Figure 1 details the overall process
of building a soybean 3D dataset for point cloud segmentation.

Table 1. Basic characteristics of soybean materials. This shows the basic attribute information
of soybean materials selected for this experiment, including soybean varieties, childbearing days,
accumulated temperature and planting methods.

Variety Childbearing Days  >10 °C Accumulated Temperature = Planting Method

DN 251 125 2600 °C potted planting
DN 252 124 2500 °C potted planting
DN 253 115 2350 °C potted planting
HN 48 118 2350 °C potted planting
HN 51 126 2600 °C potted planting

3D reconstruction

(B) Purification of
background

(A) Original image (C) The generated (D) The generated
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Figure 1. The process of building a soybean 3D dataset for point cloud segmentation. The process
mainly includes three parts: 3D reconstruction, building the dataset, and point cloud segmentation.
3D reconstruction includes: (A) original image acquisition; (B) image preprocessing; (C) generation
of 3D model skeleton; (D) generation of 3D model texture. Building the dataset includes: (E) data
annotation; (F) construction of annotated dataset. Point cloud segmentation includes: (G) point cloud
segmentation network selection; (H) result of point cloud segmentation.

2.2. Image Acquisition

This study prepared the image acquisition of 3D reconstruction in the room. The
tools used to collect plant images included: (1) photo studio, (2) Canon EOS 600D SLR
(Canon (China) Co. Ltd., Beijing, China) digital camera and camera rack, (3) rotary table,
(4) calibration pad, and (5) white light absorbing cloth. A light source was added around
the plant to guarantee the required basic environment needed for 3D reconstruction, based
on the multiple view stereo method. The pot was about 90 cm from the camera. During
the image acquisition for each pot of plants, we placed the plant pots on the rotary table,
positioned a dot calibration pad at the plant roots, lowered the camera height, manually
operated the rotary table, took a photo every 10°~25° (this study determined 24° according
to the black dot on the calibration pad), and collected 15 photos after a circle of rotation.
Then, according to the height of the plant, we adjusted the camera height three times on
average, from low to high, and repeated the process. Finally, 60 photos were obtained by
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taking four sets of circular rotation shots at different angles. According to the soybean
growth, image acquisition was conducted at each growth stage (Figure 2). The final number
of images of different varieties of soybean plants is shown in Appendix A Table A1.

White light absorbing cloth

Photo location

porEma s,

High angle shot R = S
Photo tent & e . 4 \

Side shot

Calibration pad I W\

- Rotary table
Canon EOS600D SLR digital camera

(a) (b)

Figure 2. Soybean 3D reconstruction image acquisition. (a) Soybean image acquisition platform.

(b) Schematic diagram of soybean plant 3D reconstruction image acquisition. The 3D reconstruc-
tion was carried out in a laboratory with no wind and sufficient light, using multiple-view stereo
technology (MVS).

2.3. Three-Dimensional Reconstruction

This study obtained a large number of corresponding soybean plant images (about 60)
from multiple perspectives. In addition, this study preprocessed basic image operations
such as noise removal and distortion correction based on Python. At the same time, in the
process of three-dimensional modeling, it is necessary to connect and combine images from
different directions. Therefore, the relationship between the spatial positions of various
images is particularly important. This study adopted the auxiliary camera calibration
method of the calibration device, using a calibration pad to determine the problem of image
overlap, and to determine the shooting direction of various multi-angle images. The model
was established using the “contour extraction”, “vertex calculation”, and “visual shell
generation” steps of the silhouette contour method. Silhouette contour is the contour line of
the image projected on the imaging plane, which is an important clue to understanding the
geometric shape of the object. When a space object is observed from multiple perspectives
by perspective projection, a silhouette line of the object can be obtained in the corresponding
screen of each perspective. Here the silhouette line and the corresponding perspective
projection center together determine a cone of general shape in three-dimensional space,
and the object to be observed is located inside this cone. By analogy, increasing the number
of viewing angles of the target object from different directions can make the shape of each
corresponding cone approach the surface of the object, so as to carry out three-dimensional
visualization of the shape features of the target object.

Firstly, we masked the multi-angle images, selected the position of the soybean plants
in each image, and purified all the background and calibration pad areas unrelated to the
soybean plants, leaving only the complete soybean plant information. Then, according
to the partial information of the target object in each multi-angle image, we obtained
several approximate polygonal contours, numbered each approximate contour, calculated
three vertices from the polygon contour, and recorded the information of each vertex. A
triangular grid was used to divide the complete surface to outline the surface fine joints.
The above is the realization of the “contour extraction” and “vertex calculation and visual
shell generation” steps of the silhouette contour method. At that point, only the soybean
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plant skeleton had been generated. In addition, further optimization operations such as
volume optimization and surface refinement were required to obtain the final soybean
plant surface morphology model. Finally, according to the corresponding orientation
information characteristics of the three-dimensional surface contour soybean plant model
obtained above, combined with the orientation information of different multi-angle images,
texture mapping of its surface was performed, so that the model had more visual features
and better described the characteristics of actual objects. Following three-dimensional
reconstruction, 102 original models were obtained and named according to the year, date,
and variety.

2.4. Data Annotation

The data annotation work in this study was completed using the open-source software
CloudCompare v2.6.3. The acquired soybean 3D plant model (.obj format file) was imported
into CloudCompare software, the leaves, main stems, and stems were manually segmented
and marked on the soybean plants, and each point cloud was given a real label. At the same
time, each segmented and marked organ was sampled points on a mesh. The number of
sampling points was fixed at 50,000. The labeled point cloud information included xyzRGB
information and was stored in .txt format. The soybean plant leaves, main stems, and
stems were marked, as shown in Figure 3 (using 20180612_HN48 as an example). Finally, a
labeled soybean 3D point cloud dataset named Soybean-MVS was constructed, including
102 3D models, of which 89 models were used as the training set and 13 models were used
as the test set.

main stem leaf stem

Figure 3. Manually mark leaves, main stems, and stems of soybean plants. The organs of the soybean
plants were manually labeled.

2.5. Point Cloud Segmentation Network

For the semantic segmentation of the soybean-MVS 3D point cloud dataset, this
study selected two deep learning-based point cloud segmentation network architectures,
(1) RandLA-Net [24]; (2) BAAF-Net [25] to test its availability. Appendix A Table A2
shows the hardware, software, and super parameter configuration of the deep learning
model. Figure 4 shows the architecture of the two-point cloud segmentation semantic
models. We have already submitted the data and computer programs used for the analysis,
which will allow the results of our experiments to be reproduced by anyone. The link
addresses are https://github.com /18545155636 /BA AF-Net.git (accessed on 1 January 2023)
and https:/ /github.com /18545155636 /randla-net.git (accessed on 1 January 2023). The
following briefly describes the key methods of these architectures for encoding 3D point
cloud local geometry. Please refer to the original text for the default structure and other
details of the architecture.
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Figure 4. Point cloud semantic segmentation architecture. (a) RandLA-Net semantic segmentation

architecture diagram. (b) BAAF-Net semantic segmentation architecture diagram. The dataset was
trained and tested on two networks.

2.5.1. RandLA-Net

RandLA-Net is an effective and portable network that can identify the semantics of
each point and apply it to large-scale point clouds. It uses the local feature aggregation
module (LFA) to gradually improve the receptivity of each 3D point, which can effectively
save the geometric details of the point cloud. The local feature aggregation module involves
three main steps:

The first step is local spatial encoding (LocSE). The coordinates and features of a point
(center point) in the point cloud P and K points adjacent to the point are taken as input. It
consists of three parts: (1) Finding neighboring points, (2) relative point position encoding,
and (3) point feature augmentation. A new adjacent feature of the center point is output,
which encodes the local geometric feature of the center point. This module can significantly
learn the local geometric features of point clouds, which will eventually play a beneficial
role in learning the complex local structure information of the entire network. The second
step is known as attention pooling. The LocSE output is used as the input of this step. This
includes two parts: (1) computing attention scores and (2) weighted summation. Then,
the feature vectors generated by the center point aggregated local features are output. The
third step is called the divided residential block. It consists of multiple LocSE and attention
pooling layers plus a skip connection.

RandLA-Net regards each point as the center point and each point aggregates the
information of the surrounding points to itself. According to the principle that the points
sampled in the whole point cloud by random sampling should conform to a normal
distribution, random sampling is directly adopted. By employing this, the sampling speed
can be greatly accelerated.
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2.5.2. BAAF-Net

BAAF-Net uses a bilateral structure to increase the local context information of a point,
while adaptively fusing multi-resolution features, to propose a new point cloud semantic
segmentation network, involving the following two steps:

The first step is the bilateral context module. This consists of multiple bilateral context
blocks (BCBs). A BCB is composed of bilateral augmentation and mixed local aggregation.
During bilateral augmentation, the neighborhood information is aggregated around a point
to the point to obtain the local context information in the geometric and feature spaces, but
this is insufficient to express the domain information. Then, the local geometric context
information is adjusted through the local semantic context information, which in turn is
adjusted through the enhanced local geometric context information. Finally, MLP is used
to further process the enhanced local geometric, and local semantic, context information
and stack them together to obtain the enhanced local context information. The mixed
local aggregation process uses the maximum pooling method, that is, the maximum K
values of each feature are calculated as the value of the feature of point i. Then, the mean
point of the local neighborhood of the point is learned through MLP, and the feature of
the point is taken as the feature of point i. Lastly, the above two aggregated features
are spliced to obtain the final feature of point i. The bilateral context module is used to
combine bilateral context modules and continuously output the downsampled points to
BCB, which is also the corresponding encoder part. The second step is the Adaptive Fusion
Module. This part corresponds to the decoder. The encoder will output feature maps with
different resolutions. The output of each layer is gradually upsampled to obtain full-size
feature maps. The previous layer’s feature maps need to be fused each time upsampling is
performed. Then, the full-size feature maps sampled on these multiple scales need to be
fused. To obtain different-sized important information, the full-size feature map is inputted
into MLP to obtain the point level information, which is then normalized using Sofmax.
Finally, the integrated feature map for semantic segmentation is obtained by fusing the
normalized point level information and the full-size feature map after upsampling.

BAAF-Net enhances its local context by making full use of geometric and semantic
features in bilateral structures. It fully explains the uniqueness of points from multiple
resolutions and represents feature maps at the point level according to adaptive fusion
methods for accurate semantic segmentation.

2.6. Evaluation Index

In this study, the average value of the IoU scores of three categories (mlolU) and the
average accuracy (mAcc) were used to evaluate the success of each architecture. The number
of true positives, true negatives, false positives, and false negatives in each category were
expressed as TP, TN, FP, and FN, respectively. Then, the intersection over union (loU) of
each semantic class, the total accuracy (Acc) of each plant, the mean score of IoU (mlol),
and the mean accuracy (mAcc) were defined as:

Accuracy = TP+ TN )
YT TPY TN+ FP+EN’
TP
ot = T FP v FN @
1 n
mAcc = ;2 Acc, 3)
i=1
1k
I =2V 4
mloU ki; ol, 4)

where 1 represents the total number of datasets in the test set (13 data) and k represents the
total number of categories.
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3. Results
3.1. Soybean-MV'S Dataset
3.1.1. Original 3D Dataset

This paper tracked and recorded the entire growth period of five varieties of soybean
and created a 3D reconstruction of the soybean plants during each period. A total of 102
3D virtual soybean plants were obtained and a 3D point cloud dataset of original soybean
plants was constructed. Appendix A Table A3 details the point cloud of the original soybean
3D plant dataset. Figure 5 shows the point cloud information map of the original soybean
three-dimensional plant dataset. Figure 5a displays the comparison results of the total point
cloud cover of stage V and stage R using a ¢-test. It can be seen that there was a significant
difference between the point cloud covers of stage R and stage V, with the stage R point
cloud cover being significantly larger than that of stage V. Figure 5b shows the comparison
results of the reconstructed point cloud cover in 2018 and 2019 using a t-test. It can be
seen that the reconstructed model had almost the same point cloud cover over two years.
Figure 5c is the comparison map of the point cloud cover of soybean plants at different
development stages following an ANOVA variance test, among which the point cloud
cover of soybean plants at the R5 stage is the greatest, indicating that soybean plants grow
the most vigorously during the R5 stage and reach the peak stage of their development.
The two control graphs show that the more complex the soybean plant, the greater the
model point cloud cover. Figure 5d is the comparison map of point cloud cover of different
soybean varieties after an ANOVA variance test, and the difference in point cloud cover
among different varieties is not found to be significant.
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Figure 5. Point cloud information map of original soybean 3D plant dataset. (a) Comparison chart of
total point cloud amount of stage V and stage R. (b) Comparison chart of reconstructed point cloud
amount in 2018 and 2019. (c) Comparison chart of point cloud amount in different development
stages. (d) Comparison chart of point cloud amounts of various varieties.
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Number of points: 4671 Number of sampled point clouds: 700,000

3.1.2. Labeled 3D Dataset

This study annotated the original dataset. In order to homogenize the point cloud,
this study conducted network point collection for each labeled organ, and the number of
sampled point clouds was controlled at 50,000. A labeled soybean 3D point cloud dataset
was constructed. Figure 6 compares the point amount of the original 3D dataset and the
sampled point cloud amount of the labeled 3D dataset, taking the DN252 soybean plant
as an example. The leaves, main stems, and stems of three soybean plant organs were
manually marked. Table 2 shows the number of organs of different types of soybean plants
after labeling.

(b)

Number of points: 37,823 Number of sampled point clouds: 4,700,000

(©) (d)

Figure 6. Comparison between the amount of points in the original 3D dataset and the amount
of sampled point clouds in the labeled 3D dataset. (a,c) Point volume of the original dataset.
(b,d) Sampled point cloud volume of labeled dataset.

Table 2. Number of organ markers in different soybean plants. The number of leaves, the number of
main stems, and the number of stems were compared by counting the organs of labeled soybean plants.

Leaf Main Stem Stem
DN251 756 22 182
DN252 813 22 188
DN253 718 20 165
HN48 649 21 161
HN51 437 17 125

Finally, 89 labeled models were divided into a training set, and 13 labeled models were
divided into a test set. The point cloud amount distribution of each organ in the training
set and test set is shown in Table 3.

Table 3. Point cloud amount distribution of each organ in the training set and test set (%). The
proportion of cloud cover of different organ points in the training set and the test set was calculated.

Leaf Main Stem Stem

Soybean-MVS training models 78.08 2.72 19.20
Soybean-MVS test models 79.13 2.36 18.51
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3.2. Point Cloud Segmentation

The test results of 20 models in the Soybean-MVS dataset on the RandLA-Net and
BAAF-Net models are shown in Table 4.

Table 4. Point cloud segmentation test results (%). The results of the dataset on two models, including
IoU, mloU, and mAcc.

RandLA-Net BAAF-Net
leaf 88.58 88.83
IoU main stem 57.03 27.25
stem 45.54 48.23
mloU 63.72 54.77
mAcc 88.52 87.45

Figure 7 shows the Acc of the same soybean plant (DN251) at different growth stages
after RandLA-Net and BAAF-Net network tests. Overall, the mAcc tested by the two
networks was high. For the different complex stages of soybean plant growth, the segmen-
tation accuracy was high and there was no significant difference. Among them, the Acc
value in the R5 period was the highest, which may be because the soybean plants are the
most vigorous and the leaves are the most luxuriant during the R5 period. The effect of the
two networks on the leaf segmentation was better than on the main stems and stems. At
the R8 stage, because the soybean plant was leafless, the Acc value was lowest.

Acce(%) —— BAAF-Net —s— RandLA-Net
100
95 - /

90 - /\ >4

85
80 - \

70 1 1 1 1 1 1 1 1 | 1 1 1 J
VI V2 V3 V4 V5 RI R2 R3 R4 R5 R6 R7 Rs period

Figure 7. Acc results of soybean plants tested in the RandLA-Net network and BAAF-Net network during
the whole growth period. This shows a comparison of the Acc results of the test set on the two models.

Figure 8 shows the label data, label data visualization results, RandLA-Net test vi-
sualization results, and BAAF-Net test visualization results of the DN251 soybean plants.
From the results, both networks separated soybean plant leaves, main stems, and stems,
but there were still identification errors in some details. Figure 9 highlights an example of a
false prediction with a red ellipse. In terms of leaves, both networks performed well, which
may be due to the regular leaf shape and a large amount of training, and they were all
segmented. However, Figure 9a,b show that the two networks recognized stems as leaves
when recognizing the petiole. In terms of the main stem, BAAF-Net performed worse than
RandLA-Net. Figure 9¢c,d show that some main stem components were identified as stems.
This may be due to the small amount of main stem training and the similar morphology of
main stems and stems. In terms of the stem, Figure 9¢,f show that both network test results
identified the stems as part as leaves. In addition, Figure 9g,h show that RandLA-Net
identified the connection between main stems and stems as a leaf, while the BAAF-Net
performed well.
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Figure 8. Soybean plant annotation data, RandLA Net, and BAAF Net visualization results in
different stages. By contrast, this shows the overall segmentation effect of the two models.
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Figure 9. Example of error prediction. (a,b) Examples of false prediction of the petiole. (¢,d) Examples of
main stem error prediction. (e,f) Examples of stem error prediction. (g,h) Examples of error prediction at
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the connection of main stem and stem. (a,c,e,g) The RandLA-Net test results. (b,d,f,h) BAAF-Net test
results. By contrast, this shows the local segmentation difference between the two models.

4. Discussion

This paper explored the growth of soybean plants based on 3D reconstruction technol-
ogy. Figure 10 shows the full soybean plant growth period, using the three-dimensional
model of DN251 soybean plants constructed in this study as an example. The original three-
dimensional soybean plant whole growth period dataset and the labeled three-dimensional
plant soybean whole growth period dataset constructed in this study can provide an impor-
tant basis for solving and tackling issues raised by breeders, producers, and consumers. For
example, research on crop phenotypic measurement and other issues requires the effective
phenotypic analysis of plant growth and morphological changes throughout the growth
period. Considering this, we propose the use of point cloud segmentation.

G2

Figure 10. The life of soybean.

First of all, this paper chose the multiple-view stereo method to reconstruct the entire
growth period of soybean plants. This method obtains detailed information about plants
through crop images and extracts the phenotypic parameters of crops through related
algorithms. Cao et al. [26] developed a 3D imaging acquisition system to collect plant
images from different angles to reconstruct 3D plant models. However, only 20 images
were collected in that study to meet the minimum image overlap requirements for 3D
model reconstruction. In our study, 60 soybean plant images from different perspectives
were collected at four different heights during image acquisition, so the 3D model obtained
after 3D reconstruction was more accurate. At the same time, a three-dimensional dataset
of the whole growth period of the original soybean was established. By comparing the
original point cloud amount of the V and R stages, the relationship between the point
cloud amount of the three-dimensional soybean plant model and the growth period was
analyzed, which confirmed that the number of plant point clouds was consistent with
corresponding real plant development. This provides an important basis for more accurate
three-dimensional reconstruction of crops in the whole growth period in the future.

Secondly, training point cloud segmentation models usually require a large amount of
tag data, the cost of which is very high, particularly in intensive prediction tasks such as
semantic segmentation. In addition, the plant phenotype dataset also faces the additional
challenges of severe occlusion and different lighting conditions, which makes obtaining
annotations more time-consuming (Rawat et al. [27]). Gong et al. [28] used a structured light
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3D scanning platform, based on a special turntable, to obtain the 3D point cloud data of
rice panicles, and then used the open-source software LabelMe to mark point by point and
create a rice panicle point cloud dataset. Boogaard et al. [29] manually marked cucumber
plants twice with CloudCompare and constructed annotated dataset A and annotated
dataset B. Dutagaci et al. [30] obtained 11 3D point cloud models of Rosa through X-ray
tomography and manually annotated them, creating a labeled dataset to evaluate 3D plant
organ segmentation methods, called the ROSE-X dataset. However, these datasets do not
emphasize the importance of three-dimensional data of the entire growth period of plants
and the amount of data is relatively small, which lacks integrity for subsequent studies
such as the phenotypic measurement of whole plant growth periods. In our study, Soybean-
MVS, a labeled three-dimensional dataset of the whole growth period of soybean, was
constructed, which fully meets the data volume requirements of in-depth learning point
cloud segmentation training and evaluation and ensures the integrity of the dataset used
for the point cloud segmentation research. This not only provides a basis for measuring
plant phenotype, bionic species, and other issues, but may also provide a basis for exploring
the natural laws of plant growth.

Thirdly, in the process of labeling the dataset in our paper, since the soybean plant main
stem and stem information are relatively similar, and a soybean plant only has one main
stem, the number is much lower than leaf and stem, leading to a low segmentation accuracy
of the main stems. There is a situation where the points on the petiole were classified
as leaves. However, the visualization results show that each point cloud segmentation
network model still segmented most of the points on the main stems. Therefore, the
Soybean-MVS dataset can ensure the effectiveness of the point cloud segmentation task.

Finally, the Soybean-MVS dataset is universal. The universality of datasets is crucial
to empirical research evaluation for at least three reasons: (1) providing a basis for mea-
suring progress by copying and comparing results; (2) revealing the shortcomings of the
latest technology, thus paving the way for novel methods and research directions; (3) the
method can be developed without first collecting and tagging data (Schunck et al. [31]).
Furthermore, data with high universality can meet the requirements of different point cloud
segmentation models and obtain a highly reliable segmentation model. Turgut et al. [32]
evaluated their performance on real rose shrubs based on the ROSE-X and synthetic model
datasets and adjusted six-point cloud-based deep learning architectures (PointNet, etc.) to
subdivide the structure of a rosebush model. In our paper, RandLA-Net and BAAF-Net
were used for testing (also applicable to other 3D point cloud classification and segmenta-
tion models based on depth learning). In the future, we will continue to expand and adjust
the Soybean-MVS dataset and apply it to other point cloud segmentation network models,
to further improve it.

5. Conclusions

In order to provide important and usable basic data support for the development of
three-dimensional point cloud segmentation and phenotype automatic acquisition technol-
ogy of soybeans, this paper adopted the multiple-view stereo technology and obtained
60 photos in each group through four different height circular rotation shots. Three-
dimensional plant reconstruction was carried out using the profile contour method to
construct the original three-dimensional soybean plant dataset of the whole growth period.
It was concluded that the number of point clouds was consistent with the actual plant
development. The leaf, mainstem and stem in the obtained data and sample points were
manually annotated on a mesh. A soybean three-dimensional plant dataset named Soybean-
MVS was constructed for point cloud semantic segmentation. Finally, RandLA-Net and
BAAF-Net models were used to evaluate the dataset, and the mAcc of the test results were
88.52% and 87.45%, respectively. The usability of the Soybean-MVS labeled 3D plant dataset
was verified. The publication of this dataset provides an important basis for proposing an
updated, high-precision, and efficient 3D crop model segmentation algorithm. In the future,
we will constantly update and supplement the dataset, and apply it to more point cloud
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segmentation models to make it more universal. At the same time, the automatic acquisition
and breeding of soybean phenotype will be further explored on the basis of this dataset.
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Appendix A

Table Al. Image collection quantity of soybean plants of different varieties in different stages.

Vi

V3

Vi V5 R1 R2 R3 R4 R5 R6 R7 R8

DN251
DN252
DN253
HN48
HN51

2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019

(=Nl NN

V2
60 0 60 60
60 0 60 60
60 0 60 60
60 0 60 60
60 0 60 60

60 60 60 O 60 60 60 60 60 60 60 O 60 60 60 60 60 60 60 60 60
60 60 60 O 60 60 60 60 60 60 60 O 60 60 60 60 60 60 60 60 60
60 60 60 O 60 60 60 60 60 60 60 O 60 60 60 60 60 60 60 60 60
60 60 60 O 60 60 60 60 60 60 60 O 60 60 60 60 60 60 60 60 60
60 60 60 O 60 60 60 60 60 60 60 O 60 60 60 60 60 60 60 60 60

Notes: In this study, five kinds of soybeans, DN251, DN252, DN253, HN48 and HN51, were planted in the pot
farm of Northeast Agricultural University in 2018 and 2019, and images were collected during the whole growth
period of soybeans. Table 1 shows the specific number of images collected.

Table A2. Hardware, software, and hyperparameter configuration of deep learning models.

Catalogue Content
CPU Core 19-12900kf
RAM 64 GB
GPU NVIDIA 3090 (24 GB)
operating system Ubuntu 18.04
Cuda 11.3
Cudnn 8.4
Data Annotation CloudCompare
Deep learning framework Tensorflow 2.6.0
Anaconda Anaconda 5.2
Momentum 0.9

threshold 0.5
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Table A3. Original information of 3D soybean plant model.

Variety Date of Reconstruction Stage Points
DN251 12 June 2018 V3 66,528
DN252 12 June 2018 V3 85,871
DN253 12 June 2018 V3 5164
HN48 12 June 2018 V3 63,915
HN51 12 June 2018 V3 5390
DN251 19 June 2018 V4 78,211
DN252 19 June 2018 V4 7482
DN253 19 June 2018 V4 6581
HN48 19 June 2018 V4 5776
HNG51 19 June 2018 V4 6734
DN251 26 June 2018 R1 10,752
DN252 26 June 2018 R1 140,986
DN253 26 June 2018 R1 11,535
HN48 26 June 2018 R1 9371
DN251 4 July 2018 R2 14,842
DN252 4 July 2018 R2 21,367
HN48 4 July 2018 R2 18,757
HN51 4 July 2018 R2 12,300
DN251 11 July 2018 R3 25,306
DN252 11 July 2018 R3 24,316
DN253 11 July 2018 R3 26,733
HN48 11 July 2018 R3 22,995
HN51 11 July 2018 R3 271,221
DN251 26 July 2018 R5 99,451
DN252 26 July 2018 R5 37,704
DN253 26 July 2018 R5 51,456
HN48 26 July 2018 R5 61,301
HNG51 26 July 2018 R5 808,638
DN251 17 August 2018 R6 35,193
DN252 17 August 2018 R6 37,896
DN251 8 September 2018 R7 24,864
DN252 8 September 2018 R7 19,805
DN253 8 September 2018 R7 19,145
HN48 8 September 2018 R7 35,983
HN51 8 September 2018 R7 33,647
DN251 3 October 2018 R8 5574
DN252 3 October 2018 R8 8662
DN253 3 October 2018 R8 11,313
HN48 3 October 2018 R8 11,220
HNG51 3 October 2018 R8 9366
DN251 29 May 2019 \4! 9415
DN252 29 May 2019 V1 10,233
DN253 29 May 2019 Vi 7014
HN48 29 May 2019 \2! 8766
HNG51 29 May 2019 V1 6541
DN251 3 June 2019 V2 6113
DN252 3 June 2019 V2 4671
DN253 3 June 2019 V2 4860
HN48 3 June 2019 V2 4947
HN51 3 June 2019 V2 4269
DN251 8 June 2019 V3 8322
DN252 8 June 2019 V3 5228
DN253 8 June 2019 V3 5161
HN48 8 June 2019 V3 7974
HNG51 8 June 2019 V3 5777
DN251 12 June 2019 V4 7890
DN252 12 June 2019 V4 5612
DN253 12 June 2019 V4 88,756
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Table A3. Cont.

Variety Date of Reconstruction Stage Points
HN48 12 June 2019 V4 113,444
HNG51 12 June 2019 V4 5956
DN251 18 June 2019 V5 9132
DN252 18 June 2019 V5 7669
DN253 18 June 2019 V5 9416
HN48 18 June 2019 V5 10,604
HNG51 18 June 2019 V5 100,902
DN251 24 June 2019 R1 149,372
DN252 24 June 2019 R1 9728
DN253 24 June 2019 R1 135,007
HN48 24 June 2019 R1 160,789
HNGb51 24 June 2019 R1 7672
DN251 27 June 2019 R2 13,951
DN252 27 June 2019 R2 171,706
DN253 27 June 2019 R2 176,975
HN48 27 June 2019 R2 242,936
HNG51 27 June 2019 R2 11,597
DN251 5 July 2019 R3 19,569
DN252 5 July 2019 R3 20,336
DN253 5 July 2019 R3 286,872
HN48 5 July 2019 R3 22,544
HN51 5 July 2019 R3 17,661
DN251 13 July 2019 R4 29,729
DN252 13 July 2019 R4 26,609
DN253 13 July 2019 R4 28,611
HN48 13 July 2019 R4 35,583
HNGb51 13 July 2019 R4 26,426
DN251 22 July 2019 R5 37,823
DN252 22 July 2019 R5 50,636
DN253 22 July 2019 R5 54,806
HN48 22 July 2019 R5 56,830
DN251 6 August 2019 R6 54,325
DN252 6 August 2019 R6 712,682
DN253 6 August 2019 R6 632,552
HN48 6 August 2019 R6 603,497
DN251 26 August 2019 R7 45,556
DN252 26 August 2019 R7 45,332
DN253 26 August 2019 R7 44,100
HN48 26 August 2019 R7 27,986
DN251 21 September 2019 R8 9990
DN252 21 September 2019 R8 8426
DN253 21 September 2019 R8 9317
HN48 21 September 2019 R8 7229
HNGb51 21 September 2019 R8 9964
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