
Citation: Guimarães, P.H.R.; de

Castro, A.P.; Colombari Filho, J.M.;

Torga, P.P.; Rangel, P.H.N.; Melo,

P.G.S. Diallel Analysis: Choosing

Parents to Introduce New Variability

in a Recurrent Selection Population.

Agriculture 2023, 13, 1320. https://

doi.org/10.3390/agriculture13071320

Academic Editor: Nour Ahmadi

Received: 23 July 2022

Revised: 20 September 2022

Accepted: 30 September 2022

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Diallel Analysis: Choosing Parents to Introduce New
Variability in a Recurrent Selection Population
Paulo Henrique Ramos Guimarães 1,* , Adriano Pereira de Castro 2, José Manoel Colombari Filho 2,
Paula Pereira Torga 2, Paulo Hideo Nakano Rangel 2 and Patrícia Guimarães Santos Melo 1

1 Escola de Agronomia, Universidade Federal de Goiás, Rodovia GO-462, km 0, Campus Samambaia,
Goiânia 74001-970, GO, Brazil; pgsantos@gmail.com

2 Embrapa Arroz e Feijão, Rodovia GO-462, km 12, Santo Antônio de Goiás 75375-000, GO, Brazil;
adriano.castro@embrapa.br (A.P.d.C.); jose.colombari@embrapa.br (J.M.C.F.); paula.torga@embrapa.br (P.P.T.);
paulo.hideo@embrapa.br (P.H.N.R.)

* Correspondence: paulohenriquerg@hotmail.com

Abstract: Selecting appropriate donors and acquiring information about the genetic basis of inher-
itance is essential for breeding programs. In this study, a diallel cross was produced by crossing
15 progenies with five commercial lines of wide diversity for different rice traits (grain yield, plant
height, days to flowering, panicle blast, brown spots, leaf scald, and grain discoloration) in an in-
complete crossing design. The 20 parents and the 25 F2 crosses constituting the diallel cross were
evaluated in a triple lattice design for different traits in a field test. The analysis of variance revealed
significant differences between parents and their crosses for all traits, showing high variability. The
general combining ability (GCA) and the specific combining ability (SCA) were significant, with
a greater contribution of the SCA compared to GCA for the variation among crosses, indicating
that non-additive effects were more prevalent for the traits evaluated. The results suggested that
commercial lines such as IRGA 424 and BRS Catiana can be used to improve CNA 12T population.

Keywords: rice; Griffing’s method; additive and non-additive gene effects; genetic parameters

1. Background

As one of the most important food crops, rice is cultivated worldwide and is the
primary food source for more than half of the global population [1,2]. In this scenario,
maintaining genetic variability is essential for developing superior cultivars in order to
supply the ever-growing rice demand. As a result, crop breeding includes creating genetic
variability and using it to generate improved cultivars [3]. However, its success depends
on the amount of genetic variability available for exploitation and the extent to which
desirable traits are inherited [4,5]. Therefore, recurrent selection is a breeding method that
maintains genetic variability and increases the likelihood of choosing superior lines with
continuous selection gains. This cyclical method concentrates desirable alleles by selecting
the best progenies in a population [6–8].

The first step in establishing a recurrent selection population is developing the base
population, which must have high genetic variability. Therefore, breeders need to choose
parent groups that are adapted and genetically complementary [9]. In order to attain this
purpose and select the best parents, breeders can use the diallel analysis method. This
method indicates the best parents for hybridization and provides the best genetic comple-
mentation for target traits [8,10]. Moreover, this method allows the study of inheritance
and genetic control related to quantitative traits [11,12].

Furthermore, recurrent selection enables the addition of new genotypes to increase
genetic variability in the population during the recombination phase. This procedure can
be necessary when the genetic variability is exhausted due to the repeated application of
this scheme in small populations, reducing the gains obtained by selection [13]. Therefore,
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efficiently identifying parents for crossing allows for selecting the best hybrid combinations,
increasing the likelihood of obtaining a promising segregating population. In this scenario,
information about the general (GCA) and specific combining abilities (SCA) coupled with
genetic parameters are helpful tools for choosing the better selection strategy and selecting
appropriate parents for crosses [14–16].

There are several methodologies to perform diallel analysis [17–21]. In rice, several
studies [22–26] have used this technique to estimate the GCA and SCA for various agro-
nomic traits. However, although plant breeders frequently use combination studies to
analyze new donors and their usefulness in crosses [27], studies on the application of
diallel analysis in the reintroduction of genetic variability in recurrent selection populations
are scarce or nonexistent. Nevertheless, according to [24], there are important questions
and some restrictions about using diallel analysis as a source of information that can con-
tribute to breeding programs. From this perspective, the main objectives of this study were:
(i) evaluating the genetic potential of five rice cultivars as new allele donors for the CNA
12T population; (ii) determining the combining ability of fifteen progenies of CNA 12T;
and (iii) determining the nature of gene action and the magnitude of associated genetic
components for different traits in rice.

2. Material and Methods
2.1. Genetic Material

The genetic material consisted of 25 F2 progenies derived from crosses between two
parental groups (Table 1). The first group (grain type “long and slender”), representing
male parents, consisted of five commercial cultivars with the ideotype sought by Brazilian
rice breeders. These commercial cultivars were chosen based on their varied morphological
features, especially high grain yield, earliness, and rice blast resistance. The second group,
representing the female parents, consisted of 15 S0:3 progenies of the second cycle of the
CNA 12T population of lowland rice. This population was synthesized in 2002 by the rice
breeding program developed at the Brazilian Agricultural Research Corporation (Embrapa
Rice and Beans) as a genetically broad-based population with stable genetic resistance to
Magnaporthe oryzae (anamorph Pyricularia grisea Sacc.) [28,29]. Multi-location trials were
used to select 15 S0:3 progenies of the CNA 12T population. This selection was based on
high heritability traits such as plant height (PH), days to flowering (DTF), disease resistance,
grain shape, and lodging resistance. Crosses between the two groups were performed by
hand pollination in a greenhouse at Embrapa Rice and Beans, located in Santo Antônio de
Goiás, Brazil (16◦27′28′′ S, 49◦19′52′′ W, at an elevation of 823 m above sea level). Since
reciprocal crosses were not performed, 15 S0:3 progenies were established as female parents
and five commercial lines were the male donors. Each progeny was sown in excess to
ensure the ultimate presence of one plant per pot. The plants were thinned to one per
plot twelve days after sowing. Before anthesis, the female parents (15 S0:3 progenies) had
their anthers removed using a small vacuum pump to extract the unripe anthers from
the spikelets before being pollinated with a mixture of pollen from several plants of the
same commercial line. After pollination, each panicle was protected with a paper bag to
avoid contamination.

2.2. Experimental Conditions

The F1 crosses were self-pollinated to obtain the 25 F2 crosses. Along with the 20 parents
and 4 checks (BRS Tropical, BRS Jaçanã, Epagri 109, and elite line BRA051108), these crosses
were evaluated at the experimental station of Embrapa Rice and Beans, located in Goianira,
GO, Brazil (16◦26′46′′ S, 49◦24′22′′ W, 732 m). The trial was conducted in a lowland area
with continuous flooding until grain maturity and following a triple lattice design. Each plot
consisted of five rows of five meters, a row space of 0.17 m, and 60 manually sown seeds per
meter. Fertilization consisted of 500 kg ha−1 of 04-28-20 (NPK) + Zn. Topdressing fertiliza-
tion was performed using 150 kg ha−1 of urea two times: 15 days after sowing (DAS) and
45 DAS (75 kg ha−1 N in each). The technical itinerary for crop management was similar
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to commercial production, except for fungicide application. In our case, fungal diseases
were not chemically controlled since disease tolerance was part of the experimental assess-
ment. On the other hand, weeds and insect pests were controlled by mechanized spraying
when needed.

Seven traits were measured: grain yield (GY, kg ha−1), measured in the useful area,
the two central rows (1.36 m2), by harvesting all the grains of each plot, which were then
dried to 13% moisture; plant height (PH, cm), measured from the ground to the tip of the
main tiller; days to flowering (DTF, days), determined as the number of days from sowing
to 50% of plants at anthesis; panicle blast (Pb, scale); brown spots (BP, scale); leaf scald (Ls,
scale); and grain discoloration (Gd, scale). A visual evaluation considered the percentage
of panicles, leaf area, and grains affected by blast, scald, and spots. Grades were attributed
according to a visual diagrammatic scale ranging from 0 to 9 (0: no incidence; 1: 1 to 5%;
3: 6 to 12%; 5: 13 to 25%; 7: 26 to 50%; and 9: >50% infection) as proposed by [30].

Table 1. Schematic design used in the experiment and crosses between the parents of groups 1 (male
parents—commercial rice lines) and 2 (female parents—CNA 12T).

CNA 12T Progenies
Commercial Rice Lines

1’: IRGA 424 2’: BRS Biguá 3’: BRS Catiana 4’: Federarroz 50 5’: Epagri 106

1: CNAx16209-10-B-B-B - X - - -
2: CNAx16210-19-B-B-B X - - - X
3: CNAx16211-14-B-B-B - - - X -
4: CNAx16217-1-B-B-B X X - - -
5: CNAx16219-2-B-B-B - X - - -

6: CNAx16219-22-B-B-B X - - - X
7: CNAx16220-9-B-B-B X - - - -
8: CNAx16221-6-B-B-B X X - - X

9: CNAx16222-11-B-B-B X X - - -
10: CNAx16222-20-B-B-B - - X X -
11: CNAx16223-5-B-B-B - - - X X

12: CNAx16224-20-B-B-B - - X X -
13: CNAx16224-5-B-B-B - X - - -
14: CNAx16225-1-B-B-B - - - X -
15: CNAx16225-17-B-B - - - X X

2.3. Statistical Data Analysis

The experimental design was a 7 × 7 triple lattice design with the genotypes (crosses,
parents, and checks) serving as factors. First, the analysis of variance (ANOVA) was
performed to determine whether or not the ANOVA assumptions were met. After these
preliminary evaluations, the analysis of variance was performed for all the traits according
to the fixed linear model, as given below:

Yijkm = µ + rj + bk/j + tm + gi/m + eijkm

where:
Yijkm: is the observed value of the ith genotype, in the kth block, in the jth replicate,

belonging to type m.
µ: is the constant inherent to all observations.
rj: is the effect of the jth replicate, j = 1, 2, . . . , J.
bk/j: is the effect of the kth block, k (k = 1, 2, . . . , K), within the jth replicate, k = 1, 2, . . . , K.
tm: is the effect of group m in eight groups: GRP1—parental group of commercial rice

cultivars; GRP2—parental group of 15 progenies of the CNA 12T population; GRP3—check
cultivar; GRP4—crosses with IRGA 424; GRP5—crosses with BRS Biguá; GRP6—crosses
with BRS Catiana; GRP7—crosses with Federarroz 50; and GRP8—crosses with Epagri 106;

gi/m: is the effect of the ith genotype within group m;
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eijkm: is the average experimental error associated with the ijkmth plot, assuming
I.I.D ∩ (0, σ2), where I.I.D stands for independent and identically distributed.

The genotypes were treated as of fixed effect since the groups included lines or
cultivars selected for desirable traits in the breeding program, i.e., they were not randomly
selected. Then, the following genetic parameters were estimated for each genotype group
based on the mathematical expectation of the mean squares: (GRP1 to GRP8): selective
accuracy (r̂ĝg), using r̂ĝg = (1− 1/F)1/2, where F: is the value of the F test (from Snedecor)
for each source of variation [31]; quadratic component of the genotype group (φgrp1,
φgrp2, φgrp3, . . . , φgrpn), estimated from the expressions of the expected mean squares
(φgrp1 = σ2 + k1φgrp1, φgrp2 = σ2 + k2φgrp2, . . . , φgrpn = σ2 + knφgrpn); coefficient of
genetic determination (H2), equivalent to broad-sense heritability when the genotypes
correspond to random effects using the equation H2 = φgrpn/(MSen/k +φgrpn), where
φgrpn: is the quadratic component of the respective genotype group ( φgrp1, φgrp2, . . . ,
φgrpn), MSen is the residual mean square of the ANOVA and k is the coefficient associated
with ( φgrpn) in the expected mean square values of the respective genotype group; and
the relative coefficient of variation (CVr), via CVr = CVg/CV, where CVg is the genetic
coefficient of variation and CV is the experimental coefficient of variation [32].

In the presence of balanced data, the k coefficient is a direct function of the number
of replicates. However, as the level of unbalanced data increases, the k value departs
from this relationship. Because of the unbalanced experimental data, we decided to
estimate the k coefficient for the eight genotype groups using the general equation of [33]:
k = 1

n−1 tr (W−1) + 1
n ∑ (W−1); where n is the number of genotypes in the respective

group and tr is the trace of W−1, corresponding to the core matrix from the expression of
the sum of squares (SS), where SS = β̂′W−1 β̂ and β̂ is the solution vector for the genotype
group. In this case, SS can be estimated by the general equation of the SS hypothesis using
linear models [34]. Thus, SS = (Cβ̂)

′
(CQC′)−1Cβ̂, which, by deduction, compares β′W−1 β̂

to β̂′C′(CQC′)−1Cβ̂, then W−1 = C′(CQC′)−1C. In these expressions, C is the matrix of
contrasts between the estimates of the effect vector β̂ and Q can be obtained from the
covariance matrix of vector β̂ divided by the mean square error [35].

The ggplot2 package was used to visualize the variability between the different geno-
type groups [36]. The different group means and the genotypes within groups were tested
by the Tukey test (p ≤ 0.05). The analysis was carried out with the R software [37].

2.4. Diallel Analysis

Diallel analysis for the general combining ability (GCA) and specific combining ability
(SCA) followed Griffing’s method 2 [18]. The general linear model was adapted for the
data available for each trait according to procedures given by [35,38], which required
diagonalizing the inverse error covariance matrix (V−1) by Cholesky’s factorization [39].
This procedure provided the congruent matrix U, and U’U = V−1 allowed for estimating all
parameters by simplifying the ordinary Gauss–Markov structure [38]. The design matrix

used the following restrictions:
p
∑
i

ĝi = 0;
p
∑
j

ĝj= 0;
p
∑
i

ŝij = 0 for each j, and
p
∑
j

ŝij = 0 for

each i [21]. The significance of the estimates of the GCA1, GCA2, and SCA effects was
evaluated by the t-test (p ≤ 0.05). The 95% confidence interval and the standard deviation
of each estimate were obtained from the square root of their corresponding variance in the
diagonal of the covariance matrix V̂(β̂).

The quadratic components associated with the GCA of the two groups and the SCA
effects were estimated by the method of moments based on the mean square expectation,

as follows: φGCA1
=

MSGCA1
−MSe

JKL ; φGCA2
=

MSGCA2−MSe
IKL ; φSCA = MSSCA−MSe

K ; where
I is the number of parents of group 1, J is the number of parents of group 2, K is the
number of replicates, MSGCA1 and MSGCA2 are the mean squares of the GCA effects of
groups 1 and 2, respectively, MSSCA: is the mean square of the SCA effect, and MSe: is
the mean square error. The relative importance of the GCA for both groups and the SCA
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in determining the genotypic performance of crosses was assessed by Baker’s ratio [40]:
(2φGCA1

+ 2φGCA2
)

(2φGCA1
+ 2φGCA2

+φSCA)
; where φGCA1

, φGCA2
, and φSCA are quadratic components

associated with the GCA1, GCA2 and SCA effects. All necessary matrix operations to
implement the general linear model and thus obtain the parameter estimates and their
associated errors were performed using the R platform [37].

3. Results
3.1. Phenotyping Screening and Genetic and Variation Parameters

A summary of the results obtained for the overall shoot phenotyping and ANOVA is
presented in Figure 1. As expected, grain yield (GY), plant height (PH), days to flowering (DTF),
panicle blast (Pb), brown spots (Bs), leaf scald (Ls), and grain discoloration (Gd) showed high
variability, with CVs ranging from 1.91% (PH) to 20.03% (Gd) (Figure 1A–G). The magnitude
of the mean squares of the genotypes (crosses and parents) indicated significant differences
(p ≤ 0.01) between genotypes for all traits, suggesting the presence of genetic variability. For
some traits, e.g., DTF and Ls, the mean squares owing to cross effects (GRP4 to GRP8) were
highly significant. Except for GY and Bs, the two parent groups were statistically different
between and within them. In general, GRP2 was more productive, taller, and more sensitive to
diseases (Pb, Bs, and Ls) (Figure 1A,B,D–F) than GRP1, but statistically similar to the first group,
highlighting the potential of the CNA 12T population to generate superior inbreds.
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Figure 1. Variation in the means and 95% confidence intervals for different rice traits. (A) grain yield
(GY), (B) plant height (PH), (C) days to flowering (DTF), (D) panicle blast (Pb),(E) brown spots (BP),
(F) leaf scald (Ls) and (G) grain discoloration (Gd). ns Non-significant; * and ** significant by the
t-test at the 0.05 and 0.01 probability levels, respectively; R: replicates; B(R): block within replicates;
GRP: group; GCA1: general combining ability of the parental group of commercial rice cultivars;
GCA2: general combining ability of the parental group of progenies of the CNA 12T population;
SCA: specific combining ability; GRP1: parental group of commercial rice cultivars; GRP2: parental
group of progenies of the CNA 12T population; GRP3: checks; GRP4: group of crosses with IRGA
424; GRP5: group of crosses with BRS Biguá; GRP6: group of crosses with BRS Catiana; GRP7: group
of crosses with Federarroz 50; GRP8: group of crosses with Epagri 106; CV: coefficient of variation.
Means followed by the same letter do not differ statistically according to the Tukey test (p-value 0.05).
Dashed lines represent the mean (progenies, checks, parents, and crosses) of each measured trait.
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In the case of hybrids, we found that the crosses with IRGA 424 (GRP4) were more
productive, earlier, and with lower plant height than the parental groups (GRP1 and GRP2).
The crosses with Epagri 106 (GRP8) showed the same results (Figure 1A–C). However,
although the hybrids derived from the crosses with BRS Biguá (GRP5) had lower GY than
GRP4 and GRP8, the progenies of GRP5 did not differ from the GRP4 hybrids (Figure 1A)
and had low disease incidence, especially Pb (Figure 1D) and Gd (Figure 1G). Furthermore,
the progenies derived from this cross did not differ statistically from the parental group
and checks for GY (Figure 1A). These results showed that the genotypes evaluated had
significant diversity, and this genetic variability can be exploited through selection by rice
breeding programs.

The summary of the genetic parameters (selective accuracy (r̂ĝg), coefficient of genetic
determination (H2) and coefficient of relative variation (CVr)) is given in Table 2. Except
for Pb, Bs, and Gd in GRP3, GRP6, and GRP5, respectively, the genetic parameters were not
estimated since the quadratic component was negative. The selective accuracy (r̂ĝg) varied
greatly between evaluated traits, ranging from 23.5% (Bs) to 99.8% (Pb). All traits had at
least one group with low to moderate r̂ĝg estimates [31]. Despite these results, traits such
as DTF, Pb, Ls, and Gd had high experimental precision (r̂ĝg > 70%), indicating that the
estimated values are valid compared to real values, providing more statistical reliability in
the estimates of target traits [31,41].

Table 2. Estimates of genetic variance parameters for different traits in eight genotype groups derived
from the crosses between the CNA 12T population and commercial rice lines.

Groups
^
r^

gg
H2 CVr r^

gg
H2 CVr

GY PH

GRP1 0.296 0.087 0.140 0.927 0.859 1.112
GRP2 0.713 0.508 0.454 0.906 0.821 0.003
GRP3 0.893 0.798 0.833 0.397 0.157 0.001
GRP4 0.466 0.217 0.223 0.766 0.586 0.002
GRP5 0.268 0.072 0.118 0.508 0.258 0.001
GRP6 0.369 0.136 0.164 0.844 0.713 0.002
GRP7 0.769 0.591 0.509 0.766 0.587 0.002
GRP8 0.637 0.405 0.360 0.454 0.206 0.001

DTF Pb

GRP1 0.976 0.953 2.121 0.916 0.840 1.032
GRP2 0.955 0.912 1.442 0.992 0.984 3.524
GRP3 0.956 0.914 1.363 † † †
GRP4 0.949 0.901 1.281 0.995 0.990 4.226
GRP5 0.833 0.695 0.640 0.368 0.136 0.168
GRP6 0.991 0.982 3.313 0.998 0.996 6.675
GRP7 0.932 0.868 1.088 0.994 0.988 3.807
GRP8 0.565 0.319 0.288 0.992 0.984 3.331

Bs Ls

GRP1 0.608 0.370 0.345 0.939 0.882 1.232
GRP2 0.874 0.764 0.805 0.960 0.921 1.525
GRP3 0.851 0.725 0.681 0.882 0.779 0.786
GRP4 0.235 0.055 0.102 0.961 0.923 1.472
GRP5 0.798 0.637 0.561 0.961 0.924 1.476
GRP6 † † † 0.451 0.204 0.210
GRP7 0.899 0.809 0.871 0.929 0.862 1.062
GRP8 0.788 0.621 0.539 0.815 0.663 0.592
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Table 2. Cont.

Groups
^
r^

gg
H2 CVr r^

gg
H2 CVr

GY PH

Gd

GRP1 0.933 0.870 1.168
GRP2 0.935 0.874 1.176
GRP3 0.955 0.913 1.355
GRP4 0.926 0.857 1.038
GRP5 † † †
GRP6 0.836 0.699 0.632
GRP7 0.394 0.155 0.182
GRP8 0.811 0.658 0.584

r̂ĝg: selective accuracy; H2: coefficient of genetic determination; CVr: coefficient of relative variation from
ANOVA; GY: grain yield; PH: plant height; DTF: days to flowering; Pb: panicle blast; Bs: brown spot; Ls: leaf scald;
Gd: grain discoloration; GRP1: parental group of commercial rice cultivars; GRP2: parental group of progenies
of the CNA 12T population; GRP3: checks; GRP4: group of crosses with IRGA 424; GRP5: group of crosses with
BRS Biguá; GRP6: group of crosses with BRS Catiana; GRP7: group of crosses with Federarroz 50; GRP8: group of
crosses with Epagri 106. †: φ < 0: negative estimate for the quadratic component of the group.

The square root of the estimates of the coefficient of genetic determination (H2) reflects
r̂ĝg, which indicates the precision in predicting genetic values, referring to the correlation
between predicted genetic values and the actual genetic values of the genotypes [31,42].
The estimates found for H2 in some groups showed low values (H2 < 30%), as found for
GY (GRP1, GRP4, and GRP6), PH (GRP3, GRP5, and GRP8), Bs (GRP1 and GRP4), and Gd
(GRP1) (Table 2). However, for some groups of these traits and for DTF, Pb, Ls, and Gd,
the H2 estimates can be considered high (H2 > 70%) [43]. Therefore, the genetic values
predicted for the different groups are reliable due to the high r̂ĝg estimates.

The relative variation coefficient (CVr) varied greatly according to the trait and phe-
notypic group, ranging from 0.001 (PH) to 6.675 (Pb) (Table 2). Unsurprisingly, the values
provided by CVr were higher than 1, especially for DTF, Pb, Ls, and Gd. The higher the
CVr value, the greater the genetic control of the trait and the lower the influence of environ-
mental factors on phenotypic performance [44]. Moreover, CVr > 1.0 indicates a favorable
situation for selecting superior genotypes, especially among the progenies derived from
the crosses performed [29,42].

3.2. Diallel Analysis and Genetic Components of Variance

Figure 1 shows the partitioning of the overall sum of squares (GCA) and the specific
(SCA) combining ability. Except for GY (GCA2) and Bs (GCA1), the GCA effect was
highly significant (p ≤ 0.01) for both parental groups (GRP1—commercial rice cultivars
and GRP2—progenies of the CNA 12T population). These findings indicate that at least
one parent was superior to the others with regard to the mean performance of its hybrid
combinations. This result can be due to differences between the parents in their ability
to transmit additive effect alleles, thus influencing the behavior of the hybrids for the
evaluated traits [14,45]. Furthermore, the SCA effect was also highly significant (p≤ 0.01),
showing that not only additive effects but also non-additive gene action was involved
in the genetic control of the evaluated traits, thus indicating differences between parent
groups and their crosses regarding GCA and SCA effects in the F2 generation.

The comparative estimates of quadratic components due to GCA and SCA effects
revealed the importance of SCA in controlling the evaluated traits since the quadratic com-
ponent of SCA (φSCA) was higher than GCA (φGCA1

and φGCA2
) for most traits (Table 3).

The higher SCA magnitude suggests a significant role of non-additive gene action such
as dominance and epistatic effects in controlling the evaluated traits. These results can be
supported by Baker’s ratio, which ranged from 0.193 (Pb) to 0.720 (PH) (Table 3). If the
values are lower than one, they suggest that SCA can predict the performance of crosses.
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Table 3. Quadratic component estimates for the general (φGCA1
and φGCA2

) and specific (φSCA)
combining abilities of different traits in two groups of rice.

Quadratic Components GY PH DTF Pb Bs Ls Gd

φGCA1
135,841.17 6.654 5.296 0.011 0.0131 0.039 0.009

φGCA2
12,542.51 0.794 0.613 0.008 0.0134 0.015 0.011

φSCA 293,113.85 5.781 7.157 0.159 0.077 0.128 0.069
Baker’s ratio 0.503 0.720 0.623 0.193 0.408 0.458 0.362

GY: grain yield; PH: plant height; DTF: days to flowering; Pb: panicle blast; Bs: brown spot; Ls: leaf scald;
Gd: grain discoloration.

3.3. Breeding Potential of the Parents Estimated by GCA

The magnitude and direction of GCA effects, as shown in Figure 2, can provide
guidelines for selecting parents and allowing their use by breeders [46,47]. The GCA
effects revealed that none of the parents were good combiners for all traits measured
simultaneously. The GCA estimate showed that the best combining parent to improve the
GY was CNAx16225-17-B-B-B (Figure 2A). Besides, we found a low, negative, and highly
significant GCA estimate (p ≤ 0.01) for Pb (Figure 2D), indicating that this parent could
increase the resistance to panicle blast. On the other hand, using CNAx16225-17-B-B-B in
hybridization can increase rice susceptibility to Bs, Ls, and Gd (Figure 2E–G).
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Figure 2. Estimates of the general combining ability effects (GCA) for two groups (five parents
of group 1 and 15 parents of group 2) of rice parents. (A) grain yield (GY), (B) plant height (PH),
(C) days to flowering (DTF), (D) panicle blast (Pb), (E) brown spots (BP), (F) leaf scald (Ls) and
(G) grain discoloration (Gd). ns Non-significant; * and ** indicate significance at the 0.05 and 0.01
probability levels, respectively, by the t-test. Values are GCA estimates ± SD.

The superior general combiners for PH, IRGA 424, and Epagri 106 (Figure 2B) were
found to be good general combiners for DTF (Figure 2C), with some advantage for the
last genotype, which was a good combiner for Pb (Figure 2D). Low and negative GCA
values for DTF were found in CNAx16225-1-B-B-B, CNAx16209-10-B-B-B, CNAx16210-
19-B-B-B, and CNAx16219-22-B-B-B, indicating a reduction in the crop cycle (Figure 2C).
Genotypes CNAx16224-20-B-B-B and CNAx16219-2-B-B-B were identified as good parents
for use in hybridization to improve DTF and Pb simultaneously based on the GCA effect
(Figure 2C,D), with some advantage for the last genotype, which showed good combining
ability for Ls (Figure 2F). Besides, CNAx16224-5-B-B-B and CNAx16223-5-B-B-B were
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among the best combiners for PH (Figure 2B), providing resistance to Pb (CNAx16224-5-
B-B-B and CNAx16223-5-B-B-B), with some advantage for the last genotype, which was a
good combiner for Ls and Gd (Figure 2D,F,G).

With regard to the resistance to plant diseases exclusively, the best parents were BRS
Biguá (Pb and Ls), BRS Catiana (Bs, Ls, and Gd), CNAx16211-14-B-B-B and CNAx16222-11-
B-B-B (Pb), CNAx16217-1-B-B-B (Pb and Ls), and CNAx16221-6-B-B-B and CNAx16222-
20-B-B-B (Ls) (Figure 2D–G). Hybridization between these parents should be performed
carefully since improving a trait (e.g., Pb) could increase plant susceptibility to Bs and Ls
(CNAx16224-20-B-B-B and CNAx16211-14-B-B-B) (Figure 2D–F) and extend the plant cycle
(BRS Biguá) (Figure 2C).

In contrast, Federarroz 50 showed a low combining ability with the CNA 12T popula-
tion based on the negative and highly significant GCA estimate (p≤ 0.01) for GY (Figure 2A)
and the positive and highly significant GCA estimate (p ≤ 0.01) for DTF (Figure 2C). Like-
wise, CNAx16220-9-B-B-B increased the DTF (Figure 2C) and Pb (Figure 2D), indicating
that introducing these parents in the CNA 12T population could reduce its grain yield
performance, increase the crop cycle, and favor the incidence of panicle blast.

3.4. Impact of Crossing CNA 12T and Inbred Lines

Among the 25 crosses, the 3’ × 10 cross (994 Kg ha−1) showed positive and highly
significant SCA effects for GY (Figure 3A). Furthermore, this cross showed negative and
significant SCA values for Gd (Figure 3G). On the other hand, this hybrid showed positive
SCA values for PH (Figure 3B), DTF (Figure 3C), Pb (Figure 3D), and Ls (Figure 3F). In
contrast, hybrids 1’ × 9 and 4’ × 10 were among the crosses with the highest negative
estimates for GY (Figure 3A), indicating a reduction in grain yield. However, these crosses
were among the top hybrids with a negative and highly significant reduction in DTF
(Figure 3C), Pb (Figure 3D), and Ls (Figure 3F). Moreover, combinations 2’ × 13 and 4’ × 12
showed the highest GY reduction (Figure 3A). However, hybrid 2’ × 13 showed negative
estimates for Ls (Figure 3F) and Gd (Figure 3G). Besides, the 4’ × 12 cross showed negative
and significant values for PH (Figure 3B) and DTF (Figure 3C).

For DTF, the crosses with negative and significant SCA effects were 1’ × 8, 3’ × 12,
2’× 4, 2’× 9, 5’× 8, and 5’× 15 (Figure 3C), showing that these hybrids were good specific
combiners for early rice maturity. Combined with early maturity, these crosses showed a
decrease in Pb and Ls (1’ × 8 and 3’ × 12), Bs and Gd (5’ × 15), Bs (2’ × 4), Ls (2’ × 9), and
Pb (5’ × 8) (Figure 3D–G). However, hybrid 5’×15 showed a positive and significant value
for PH (Figure 3B). Likewise, the 5’ × 8 cross increased the Bs, Ls, and Gd (Figure 3E–G).
Furthermore, DTF showed positive and significant SCA effects for crosses 4’ × 14 and
4’ × 15, increasing the crop cycle for these hybrids (Figure 3C). However, although increas-
ing the DTF, the hybrid 4’ × 15 showed desirable behavior for Ls and Gd (Figure 3F,G).

Resistance to rice diseases such as blast, leaf scald, brown spots, and grain dis-
coloration is desirable in rice breeding [48]. Individually or combined, the desirable
crosses with negative and significant SCA effects for these traits were 1’ × 6, 2’ × 1,
5’ × 2 and 5’ × 6 (Pb), 2’ × 8 (Pb and Bs), 4’ × 3 (Pb, Ls, and Gd), and 1’ × 4 (Pb and Ls)
(Figure 3D–G). Despite these results, hybrids 1’ × 6, 2’ × 1, and 4’ × 3 showed positive and
significant values for Bs (Figure 3E). Moreover, the 5’ × 2 cross had positive and significant
SCA effects for PH (Figure 3B), showing that this hybrid was not a good specific combiner
for plant height reduction. In contrast, crosses 1’× 2 and 1’× 7 had positive and significant
values for Pb and Ls (Figure 3D,F). Likewise, hybrids 4’ × 11 and 5’ × 11 showed an
increased incidence of Pb (Figure 3D).
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Figure 3. Estimates of the specific combining ability effects (SCA) for five groups of crosses between
two rice parent groups. (A) grain yield (GY), (B) plant height (PH), (C) days to flowering (DTF),
(D) panicle blast (Pb), (E) brown spots (BP), (F) leaf scald (Ls) and (G) grain discoloration (Gd).
ns Non-significant; * and ** indicate significance at the 0.05 and 0.01 probability levels, respectively,
by the t-test. Values are SCA estimates ± SD.

4. Discussion

The analysis of variance systematically revealed highly significant effects of the geno-
types, highlighting differences between crosses, parents, and checks (Figure 1). Moreover,
our field phenotyping provided quality data for grain yield (GY), plant height (PH), days to
flowering (DTF), panicle blast (Pb), brown spots (Bs), leaf scald (Ls), and grain discoloration
(Gd) in lowland rice. Despite high CVs, as found in rice studies by [3,49–51], we found low
CVs that confirmed our good performance for rice screening.

Recurrent selection is an open-ended scheme that involves recycling the best geno-
types, generation after generation. The cyclic scheme improves the frequency of favorable
alleles for different target traits. Moreover, it is possible to obtain improved progenies
and add more genetic variability at each selection cycle [6–8]. As a result, some parents
may appear more useful than others in rice improvement, depending on the goals of the
study. In general, some traits are desirable in rice breeding, e.g., yield potential, grain
shape, and grain quality (BRS Catiana, IRGA 424 and Epagri 106) [52,53], tolerance to
high nitrogen levels (IRGA 424), plant architecture (BRS Catiana, Epagri 106 and IRGA
424) [52,53], resistance to panicle blast (IRGA 424, BRS Biguá and Fedearroz 50) [54,55], iron
toxicity tolerance (IRGA 424 and Epagri 106) [54], and lodging resistance (BRS Catiana) [53].

The CNA 12T population was developed as a source of stable genetic resistance for
Magnaporthe oryzae (anamorph Pyricularia grisea Sacc.) [28,29]. In a previous study performed
by [56] with the CNA 12T population, the contribution of environmental effects to pheno-
typic variance outweighed genetic effects (σ2

e > σ2
g ) for panicle blast. This result highlighted

an outstanding linear performance of CNA 12T in different environments. Panicle blast is
one of the most devastating rice diseases, colonizing leaves, panicles, and other plant parts,
resulting in significant losses [57–59]. Panicle blast is a quantitative trait largely influenced
by the environment due to the existence of different blast races [60–62]. Therefore, it is
essential to identify stable genotypes capable of adapting to a wide range of rice-growing
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areas. In this study, by running a diallel analysis, we attempted to analyze the usefulness of
a parental rice group (commercial lines) to introduce new genetic variability into the CNA
12T population, especially for Pb, and evaluate the behavior of new populations through
these crosses.

It is common to observe predominant additive effects for most traits in early genera-
tions of self-pollinated crops [63]. Therefore, we expected to observe polygenic inheritance
and predominant additive effects for most traits evaluated. In contrast, we found predom-
inant non-additive effects controlling the expression of individual traits since the φSCA
effects were higher than the φGCA1

and φGCA2
effects (Table 3). This finding was confirmed

by Baker’s ratio, whose values were lower than one. High Baker’s ratio values (>0.5),
associated with genetic high determination coefficients (Table 2), imply that selection can
be effective in early generations [64]. The authors of [27] emphasize that this predominance
of non-additive effects offers more opportunities for exploiting hybrid vigor or heterosis in
rice improvement. Similar results were found by [64,65] for grain yield and by [14,27] for
plant height and days to flowering. Despite the predominance of non-additive effects, as
found in the present study, [14] highlighted the presence of considerable additive genetic
effects in irrigated rice across Latin America, which can be exploited by breeding programs.
Therefore, recurrent selection, such as that used by the rice breeding program at Embrapa, is
a valuable method that concentrates positive alleles dispersed among different rice groups
and emphasizes the GCA effect, in addition to being an efficient method for recombining
many genes and increasing the yield potential [66,67].

Originally, the IRGA 424, Epagri 106, and BRS Biguá lines were modern plant types,
with low plant height, early plant cycle, and resistance to panicle blast [54,68,69]. The
reduction in PH found in the hybrids derived from IRGA 424 and Epagri 106 (Figure 1B) is
a consequence of the Green Revolution, which introduced semidwarf genes and allowed the
selection of genotypes with higher yields and lower plant height [70–72]. Short plants are
suitable for high sowing densities, have high tillering capacity, respond to high nitrogen
fertilization rates, and lodging resistance, resulting in increased harvest indices [73–75].
Unsurprisingly, the hybrids derived from IRGA 424, Epagri 106, and BRS Biguá showed
a net increase in GY (Figure 1A). Moreover, the earliness in maturity found for these
progenies (Figure 1C) indicated that they could withstand high temperatures at the end
of the growing season, ensuring good grain filling. Coincidentally, IRGA 424, BRS Biguá,
and Epagri 106 had high GCA effects for PH and DTF, Pb and Ls, and PH, DTF, and
Pb, respectively (Figure 2B–D,F). Therefore, these lines contribute favorable alleles for
effectively improving the PH, DTF, Pb, and Ls, ultimately improving the grain yield.

According to [76], GCA estimates can be used as the breeding value index of a par-
ticular genotype. When these values are high, the parental mean predominates over the
general mean, indicating the flow of useful genes from parents to offspring at a higher rate,
in addition to additive gene action [77]. Therefore, higher GCA estimates could indicate
higher heritability, reduced environmental effects, and high gene interactions [46,78]. In the
present study, where we determined the best combiners among the two groups, we found
that none of the parents in either group stood out simultaneously as a good combiner,
highlighting the complexity of improving multiple traits and the selection process [79,80].
Herein, negative and significant values were considered for all traits except GY. In this
scenario, some parents of the first group (GRP1) showed negative and significant GCA
values for more than one trait: Bs, Ls, and Gd (BRS Catiana); Pb and Ls (BRS Biguá); PH
and DTF (IRGA 424); and PH, DTF, and Pb (Epagri 106). This indicates that this group
can be used to improve particular CNA 12T’s traits (Figure 2). Similar results were found
by [81,82], wherein a single parent was identified as having a favorable GCA effect for
more than one trait. However, the introduction of these donors to the CNA 12T population
must be performed carefully since improving a trait can cause an undesirable increase in
other traits (e.g., reduction in Pb (Figure 2B) and increase in PH (Figure 2D), as found for
BRS Biguá).
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Although there were no significant GCA effects found in IRGA 424 and BRS Catiana
for GY (Figure 2A), these lines could be directly introduced into the CNA 12T population
without harming the productive capacity of the population since they showed positive GCA
effects for GY. Therefore, these genotypes can result in greater resistance to Pb, Gd, and Bs
(IRGA 424 and BRS Catiana) (Figure 2D,E,G), resistance to Ls (BRS Catiana) (Figure 2F),
better plant architecture, tolerance to lodging (IRGA 424 and BRS Catiana) (Figure 2B), and
earliness (IRGA 424) (Figure 2C). The CNA 12T population, which currently consists of
18 subpopulations [28,29], could be composed of 20 subpopulations, with an additional
two coming from the half-sibling families derived from these two new parents.

In contrast, it should be noted that genotype Federarroz 50 is known as an important
source of resistance to rice blast [55,83]. However, introducing this parent into the CNA 12T
population of the present study reduced its performance in terms of grain yield (Figure 2A)
and increased the crop cycle (Figure 2C). In order to overcome this problem, Federarroz
50 could be incorporated into the CNA 12T population via backcrossing using the CNA
12T population as a recurrent parent and selecting resistant progenies in each backcrossing
cycle. Through this procedure, the participation of this genotype in the genetic back-
ground of the CNA 12T population would be negligible, except for the target alleles of rice
blast resistance.

According to [78], the potential of parents to combine well is defined by their ability
to transmit and express desirable genes to their progenies. This effect can be noted through
desirable SCA effects in crosses. Based on this concept, we found two types of gene actions:
IRGA 424 × CNAx16222-11-B-B-B and Fedearroz 50 × CNAx16211-14-B-B-B, which had
low GCA effects for Ls and Gd, respectively (Figure 2F,G). On the other hand, their pro-
genies (1’ × 9 and 4’ × 3) had high SCA effects (Figure 3F,G), which can be explained by
over-dominant, non-allelic gene interactions, i.e., of the dominance × dominance type [84].
Another type of gene action could be exemplified for DTF through the crosses between BRS
Catiana × CNAx16224-20-B-B-B and Fedearroz 50 × CNAx16224-20-B-B-B. In this case,
the desirable additive effects of a good combiner (CNAx16224-20-B-B-B) and the favorable
epistatic interactive effects of a poor combiner (BRS Catiana and Fedearroz 50) (Figure 2C)
resulted in a high SCA effect in the 3’ × 12 and 4’ × 12 progenies, respectively (Figure 3C).
These findings could imply additive × additive gene action [85]. According to [86], this
situation is favorable, and these parents can be exploited for rice improvement, resulting in
stable transgressive segregants carrying fixable gene effects.

In some cases, e.g., Ls, the 3’×10 hybrid had unfavorable SCA effects (Figure 3F).
However, the parents used in this combination were good combiners with favorable GCA
effects (Table 1 and Figure 2F). This result might be linked to the unfavorable allelic
combination from the parents, resulting in an undesirable behavior of the target trait.
Similar results were found by [11,87], who reported that good general combiners might
not produce hybrids with desirable SCA values. This finding indicates epistatic gene
action, similar to earlier studies, e.g., [88–90], where several traits in rice were found to be
controlled by epistatic gene action.

5. Conclusions

Parental matching is the key to breeding programs. This study highlighted a wide
diversity of different rice traits evaluated in the CNA 12 T population. Our study revealed
highly significant differences between parents and their crosses for all traits and the variance
was highly significant for most traits studied in the F2 progenies. The results found in this
research support [14,66,67], in whose study the recurrent selection method is useful and
allows for concentrating positive alleles dispersed among different rice groups. Through
this method, general (GCA) and specific (SCA) combining ability effects can be exploited to
improve CNA 12T progenies. However, the relative contribution and changes in GCA and
SCA effects in improving the crosses of commercial lines using the CNA 12T population
varied greatly. We also found that the intercrossing of CNA 12T and commercial lines
produced hybrids with varying levels of SCA effects. Baker’s ratio highlighted the greater
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importance of non-additive effects governing traits such as grain yield, plant height, days to
flowering, panicle blast, brown spots, leaf scald, and grain discoloration. Some donors (e.g.,
IRGA 424 and BRS Catiana) showed favorable combinations with CNA 12T, highlighting
the potential to find desirable transgressions for the genetic improvement of rice. However,
it is necessary to evaluate other trials performed in different Brazilian regions in order to
compare the measured traits.
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