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Abstract: Different cultivars of seeds may have different properties. Therefore, distinguishing 

cultivars may be important for seed processing and product quality. This study was aimed at 

revealing the usefulness of innovative models developed based on selected image textures built 

using traditional machine algorithms for cultivar classification of quince seeds. The quince seeds 

belonging to four cultivars ‘Uspiech’, ‘Leskovac’, ‘Bereczki’, and ‘Kaszczenko’ were considered. In 

total, 1629 image textures from different color channels for each seed were extracted from color 

images acquired using a flatbed scanner. Texture parameters were used to build models for a 

combined set of selected textures from all color channels, sets of selected textures from color spaces 

RGB, Lab, and XYZ, and individual color channels R, G, B, L, a, b, X, Y, and Z using algorithms from 

different groups. The most successful models were developed using the Logistic (group of 

Functions), IBk (Lazy), LogitBoost (Meta), LMT (Trees), and naïve Bayes (Bayes). The classification 

accuracy reached 98.75% in the case of a model based on a combined set of textures selected from 

images in all color channels developed using the Logistic algorithm. For most models, the greatest 

misclassification of cases was observed between seeds ‘Bereczki’ and ‘Kaszczenko’. The developed 

procedure can be used in practice to distinguish quince seeds in terms of a cultivar and avoid mixing 

seed cultivars with different properties intended for further processing. 

Keywords: quince seeds; color imaging; image processing; texture parameters; cultivar 

classification 

 

1. Introduction 

Quince (Cydonia oblonga Mill.) is a plant belonging to the Rosaceae family. It is widely 

cultivated in Europe, Asia, and the Middle East [1]. Quince is native to Trans-Caucasia 

and northern Iran and has spread to other regions, such as Europe and America [2,3]. In 

Europe, quince is cultivated mainly in central and southern regions with a higher 

temperature in summer. Although quince is self-pollinated, pollination with other trees 

can result in improving the yield. Quince rootstocks can be applied in the case of pear 

trees to increase the yield, exert a dwarfing effect on the trees and suppress excessive 

vegetative growth [4]. 

Quince fruit is a pome containing numerous seeds. The fruit is big with asymmetric 

shapes, variable dimensions, and a characteristic fragrance. An abundant hair covering 

the peel disappears with fruit ripening. The quince flesh is white-yellow and firm and 

easily oxidized when exposed to air [5]. The ripe quince fruit belonging to selected 

cultivars has a pleasant, powerful, and lasting flavor [6]. However, despite the pleasant 

and intense aroma, most cultivars are commonly unacceptable to be eaten raw due to 
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hard, astringent, and sour flesh. Therefore, quince is commonly cooked or processed into 

jam, jelly, marmalade, puree, pudding, dried slices, juice, compote, wine, or liqueur 

[1,2,7,8]. Quince is mainly a traditional economic resource in family farms and small 

producers [9]. Because of its nutritional value, great health benefits, and limited use at 

home and in industries, quince is recognized as a target for future investment and 

emphasis [7]. 

The edible part of the quince fruit is characterized by its health-promoting properties. 

Quince is a source of antioxidants and is characterized by its pharmaceutical, 

nutraceutical, and ornamental properties [1]. The flesh is composed of organic acids, 

sugars, and polysaccharides, as well as proteins, phenolics, vitamins, and lipids. 

Especially, a high content of phenolics is present in raw quince [3]. Due to the presence of 

functional compounds and phytochemicals, it can be used in the prevention and treatment 

of diseases [7]. Due to the presence of biologically active compounds, such as polyphenols, 

vitamin C, and terpenoids, quince fruit can help treat sore throat, bronchitis, and 

constipation. Quince leaves have constituents, which can be effective against diabetes, 

cancer, or hyperlipidemia. Furthermore, quince seeds, due to their tannin contents, can 

have a strong anti-diarrheal activity [1]. 

It was found that the quince seed mucilage is very valuable. Among others, it is used 

in the food industry as a thickener and bulking agent in several products [7]. Quince seed 

mucilage is also used as a biopolymer for the pharmaceutical industry. It includes a 

mixture of cellulose and water-soluble polysaccharide. Furthermore, acidic hydrolysis 

revealed the presence of D-xylose, haloboronic acids, and L-arabinose. Quince seed 

mucilage is used as an adjuvant in the manufacturing of pharmaceutical products and is 

characterized by binding, stabilizing, thickening, disintegrating, humidifying, 

suspending, sustaining, and emulsifying properties, at different proportions in various 

pharmaceutical dosage forms [10]. 

The properties of seeds can vary among cultivars [11,12]. Therefore, the correct 

distinguishing and identification of cultivars can be important before seed processing. 

Seed quality can be evaluated by trained experts and other techniques, including seed 

image analysis, which is useful for preserving biodiversity. Image analysis techniques 

have advantages as they can speed up the process and automatically classify the seed 

features based on the image pixel values [13]. Image processing allows for achieving 

accurate and rapid results. The seed classification provides important information on seed 

quality. The identification of seed cultivars by human base perception can be a difficult 

task. The lack of human resources is also a problem. Technology using seed images helps 

to evaluate cultivars. The seed cultivar identification by analyzing digital images through 

machine learning techniques overcomes the issues related to human visual perception 

[14]. Automatic methods of seed classification are more effective than the manual process, 

which is more difficult and time-consuming, especially at high production volumes [15]. 

A machine vision system can be an alternative to the human inspection of seed cultivars 

to classify them in terms of their quality [16]. The imaging techniques combined with 

machine learning algorithms reveal good results in seed classification [17]. 

Image processing techniques can be considered the foundation of seed classification. 

The classification of seeds by cultivar based on image features using machine learning 

techniques can be successively used in research [18]. Computer vision studies mainly 

concentrate on recognizing and obtaining features from images using texture, color, and 

morphological features [19]. For seed identification and classification, seed texture, color, 

size, shape, and spectral reflectance are important phenotypic features. The key steps of 

seed identification using machine vision are feature extraction and classification. Feature 

extraction quantitatively describes morphological, color, and textural features by 

empirical formulas and the various algorithms allow for seed classification with different 

performances. The acquiring features non-destructively using machine vision and the 

development of automatic algorithms results in the possibility of accurate and rapid seed 

cultivar classification [20]. 
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Despite promising reports on the possibility of using image analysis and machine 

learning in seed cultivar classification, there is a lack of information on the comprehensive 

use of this approach for quince seeds. The objective of this study was to determine the 

usefulness of an approach combining image processing and traditional machine learning 

to classify quince seeds in terms of cultivars. In total, 1629 image texture parameters (181 

for each of the nine color channels) for each seed were computed. The novelty of the study 

involved developing models to distinguish quince seed cultivars based on different 

textures selected from a combined set of textures selected from all color channels, 

individual color spaces RGB, Lab, and XYZ, and individual color channels R, G, B, L, a, b, 

X, Y, and Z. Models were built using algorithms from different groups of Functions, Lazy, 

Meta, Trees, and Bayes. Thus, the present study is an innovative and comprehensive 

approach to the cultivar classification of quince seeds. 

2. Materials and Methods 

2.1. Materials 

The seeds belonging to four quince cultivars ‘Uspiech’, ‘Leskovac’, ‘Bereczki’, and 

‘Kaszczenko’ were used in the experiment. The quinces were collected from the 

Experimental Orchard of the National Institute of Horticultural Research in Dąbrowice 

(Poland). The sampled quinces were at harvest maturity and were stored at a room 

temperature of 20 ± 1 °C for a month. In the case of each cultivar, fifteen fruits were used. 

The whole quinces were cut using a sharp knife and seeds were manually extracted from 

the fruit. The seeds were rinsed under tap water and cleaned. This procedure lasted a few 

minutes for each seed cultivar and then seeds were immediately subjected to image 

acquisition. 

2.2. Image Acquisition and Processing 

The quince seed images were acquired using an Epson Perfection V19 flatbed scanner 

(Epson, Suwa, Nagano, Japan). The scanner was placed in a box with black walls inside. 

Thus, the acquired images were on a black background that facilitated the image 

segmentation. Before scanning, color calibration of the scanner was carried out. The color 

images of quince seeds were acquired at a resolution of 800 dpi and saved in TIFF format. 

For each quince cultivar ‘Uspiech’, ‘Leskovac’, ‘Bereczki’, and ‘Kaszczenko’, images of one 

hundred seeds were obtained and used for image processing. Twenty-five seeds were in 

each image. In the beginning, the file format of images was changed to BMP. The images 

were processed with the use of the MaZda software (Łódź University of Technology, 

Łódź, Poland) [21–23]. The quince seed images conversion to color channels R, G, B, L, a, 

b, X, Y, and Z was performed. The original seed images and images in selected color 

channels are presented in Figure 1. The image segmentation was performed using a 

brightness threshold. The images were segmented into lighter quince seeds and a black 

background. Each seed was separated from the background and considered as one region 

of interest (ROI). Then, 1629 image texture parameters were computed for each ROI, 

including 181 textures for each color channel based on the histogram, gradient map, Haar 

wavelet transform, autoregressive model, co-occurrence matrix, and run-length matrix. 
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Figure 1. The exemplary original images of quince seeds belonging to different cultivars. 

2.3. Cultivar Classification of Quince Seeds Based on Image Texture Parameters 

The differences in selected texture parameters and image texture between quince 

seed cultivars were determined at a significance level of p < 0.05 using STATISTICA 13.1 

(Dell Inc., Tulsa, OK, USA, StatSoft Polska, Kraków, Poland). The normality of the 

distribution of variables and homogeneity of variance was checked. Then, a Newman–

Keuls test was used to compare the means. 

The quince seed cultivars were classified using the WEKA machine learning software 

(Machine Learning Group, University of Waikato, Hamilton, New Zealand) [24–26]. The 

classification models were built based on selected image textures to distinguish seeds 

belonging to ‘Uspiech’, ‘Leskovac’, ‘Bereczki’, and ‘Kaszczenko’. The attribute selection 

was carried out for a set of textures extracted from images in all color channels, and sets 

of textures from individual color spaces RGB, Lab, and XYZ, and color channels R, G, B, 

L, a, b, X, Y, and Z using the Best First and Correlation-based Feature Selection subset 

evaluator. The models were developed using machine learning algorithms from the 

groups of Functions, Lazy, Meta, Trees, and Bayes using a 10-fold cross-validation. The 

confusion matrices, overall accuracies, and the values of the TP (True Positive) Rate = 

Recall, FP (False Positive) Rate, Precision, PRC (Precision-Recall) Area, ROC (Receiver 

Operating Characteristic) Area, MCC (Matthews Correlation Coefficient), and F-Measure 

were computed [27–29]. 

3. Results and Discussion 

The confusion matrices and overall accuracies for models developed for a combined 

set of textures selected from all color channels R, G, B, L, a, b, X, Y, and Z of seed images 

are presented in Figure 2. The combined textures of the images in each of the channels 

were useful for building the classification model. The textures with the highest power to 

distinguish quince seed cultivars were, among others, RSGNonZeros, RSGArea, 

GHMean, GHDomn10, BHMean, BHVariance, LHMean, LS5SN5SumAverg, aHMean, 

aHPerc99, bSGNonZeros, bS4RHGLevNonU, XS5SN1SumOfSqs, XS4RVGLevNonU, 

YS5SH1SumAverg, ZHMean, ZHMaxm10. The mean comparison of selected image 

textures is presented in Table 1. 

  

‘Uspiech’ 

 

‘Leskovac’ 

 

‘Bereczki’ 

 

‘Kaszczenko’ 
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Table 1. The selected texture parameters of quince seeds. 

Class RSGNonZeros GHMean BHMean LHMean  aHMean ZHMean ZHMaxm10 

‘Uspiech’ 0.992 a 74.22 a 63.27 a 116.32 a 142.47 a 15.78 a 0.678 a 

‘Leskovac’ 0.988 b 60.21 b 53.83 b 99.96 b 139.06 b 10.27 b 0.928 b 

‘Bereczki’ 0.987 c 45.55 c 39.86 c 84.36 c 137.82 c 6.07 c 0.956 c 

‘Kaszczenko’ 0.990 d 47.45 d 42.96 d 85.77 c 137.37 c 6.58 c 0.985 d 

a,b,c,d—the same letters in the columns denote no statistical differences. 

The seeds of ‘Uspiech’, ‘Leskovac’, ‘Bereczki’, and ‘Kaszczenko’ were correctly 

classified with an overall accuracy reaching 98.75% for the Logistic algorithm (Figure 2a). 

It was observed that seeds belonging to quince ‘Bereczki’ (class 3) were completely 

correctly classified with an accuracy equal to 100%. Whereas accuracies for ‘Uspiech’ 

(class 1) and ‘Leskovac’ (class 2) reached 99% and for ‘Kaszczenko’ (class 4)—97%. 

The lowest overall accuracy (97.50%) and the greatest mixing of cases were observed 

for the model built using naïve Bayes (Figure 2e). For seeds of individual quince cultivars, 

the accuracies of 100% for ‘Leskovac’, 99% for ‘Uspiech’, 98% for ‘Bereczki’, and 93% for 

‘Kaszczenko’ were determined. 

 

Figure 2. The confusion matrices of distinguishing quince seed of ‘Uspiech’ (class 1), ‘Leskovac’ 

(class 2), ‘Bereczki’ (class 3), and ‘Kaszczenko’ (class 4) using models based on combined selected 

image textures from color channels R, G, B, L, a, b, X, Y, and Z developed using Logistic (a), IBk (b), 

LogitBoost (c), LMT (d), naïve Bayes (e). Orange color—correctly classified cases, yellow color—

incorrectly classified cases. 

In the case of models built using a combined set of textures selected from images in 

color channels R, G, B, L, a, b, X, Y, and Z, the performance metrics, such as TP (True 

Positive) Rate, FP (False Positive) Rate, Precision, PRC (Precision-Recall) Area, ROC 

(Receiver Operating Characteristic) Area, MCC (Matthews Correlation Coefficient), and 

F-Measure were very high for each machine learning algorithm (Table 2). The highest TP 

Rate equal to 1.000 was determined for seeds of ‘Bereczki’ for Logistic and ‘Leskovac’ for 
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IBk, LogitBoost, and naïve Bayes. It meant that these cultivars were classified with an 

accuracy of 100%. The lowest TP Rate of 0.930 was found for seeds ‘Kaszczenko’ in the 

case of naïveBayes and it meant that cultivar ‘Kaszczenko’ was classified with the lowest 

correctness for a model built using naïveBayes. The values of FP Rate ranged from 0.000 

for ‘Leskovac’ and Logistic, IBk, and naïveBayes and ‘Uspiech’ for IBk, LogitBoost, and 

LMT to 0.023 for ‘Bereczki’ and naïve Bayes. An FP rate equal to 0.000 for a given class 

indicated that no case from other classes was included in that class. The highest FP Rate 

meant that most cases belonging to other cultivars were classified as the cultivar with the 

highest value of this performance metric. The highest value of Precision reached 1.000 for 

‘Leskovac’ (Logistic, IBk, naïveBayes) and ‘Uspiech’ (IBk, LogitBoost, LMT). The other 

metrics, PRC Area, ROC Area, MCC, and F-Measure were equal to 1.000 in the case of 

quince seeds ‘Leskovac’ for models built using IBk and naïveBayes. The values of PRC 

Area and ROC Area also reached 1.000 for seeds ‘Leskovac’ and LogitBoost algorithm. 

Table 2. The performance metrics of quince seed classification using models built based on 

combined selected textures from images in color channels R, G, B, L, a, b, X, Y, and Z. 

Algorithm Class TP Rate FP Rate Precision 
PRC 

Area 

ROC 

Area 
MCC F-Measure 

Logistic  

(Functions) 

‘Uspiech’ 0.990 0.003 0.990 0.989 0.998 0.987 0.990 

‘Leskovac’ 0.990 0.000 1.000 0.992 0.990 0.993 0.995 

‘Bereczki’ 1.000 0.010 0.971 0.989 0.998 0.980 0.985 

‘Kaszczenko’ 0.970 0.003 0.990 0.951 0.987 0.973 0.980 

IBk  

(Lazy) 

‘Uspiech’ 0.990 0.000 1.000 0.992 0.990 0.993 0.995 

‘Leskovac’ 1.000 0.000 1.000 1.000 1.000 1.000 1.000 

‘Bereczki’ 0.970 0.010 0.970 0.936 0.978 0.960 0.970 

‘Kaszczenko’ 0.980 0.010 0.970 0.956 0.981 0.967 0.975 

LogitBoost  

(Meta) 

‘Uspiech’ 0.990 0.000 1.000 0.994 0.995 0.993 0.995 

‘Leskovac’ 1.000 0.003 0.990 1.000 1.000 0.993 0.995 

‘Bereczki’ 0.980 0.010 0.970 0.996 0.999 0.967 0.975 

‘Kaszczenko’ 0.970 0.007 0.980 0.998 0.999 0.967 0.975 

LMT  

(Trees) 

‘Uspiech’ 0.990 0.000 1.000 0.994 0.995 0.993 0.995 

‘Leskovac’ 0.980 0.010 0.970 0.992 0.990 0.967 0.975 

‘Bereczki’ 0.990 0.010 0.971 0.986 0.997 0.974 0.980 

‘Kaszczenko’ 0.950 0.010 0.969 0.951 0.993 0.946 0.960 

Naïve Bayes 

(Bayes) 

‘Uspiech’ 0.990 0.003 0.990 0.994 0.995 0.987 0.990 

‘Leskovac’ 1.000 0.000 1.000 1.000 1.000 1.000 1.000 

‘Bereczki’ 0.980 0.023 0.933 0.946 0.987 0.941 0.956 

‘Kaszczenko’ 0.930 0.007 0.979 0.964 0.987 0.940 0.954 

TP Rate—True Positive Rate, FP Rate—False Positive Rate, PRC Area—Precision-Recall Area, ROC 

Area—Receiver Operating Characteristic Area, MCC—Matthews Correlation Coefficient. 

The classification models built based on selected image textures from the color space 

Lab produced very high overall accuracies from 95.25% (naïve Bayes) to 98.25% 

(LogitBoost) (Figure 3). In the case of individual quince cultivars, only seeds ‘Leskovac’ 

were completely correctly classified with an accuracy of 100% for models built using IBk 

and LogitBoost. Whereas seeds ‘Bereczki’ and ‘Kaszczenko’ were classified with the 

lowest accuracies of 91 and 92%, respectively, in the case of a model developed using 

naïve Bayes. The most cases of confusion were found in the classes ‘Bereczki’ and 

‘Kaszczenko’. 
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Figure 3. The confusion matrices of distinguishing quince seed cultivars ‘Uspiech’ (class 1), 

‘Leskovac’ (class 2), ‘Bereczki’ (class 3), and ‘Kaszczenko’ (class 4) using models based on selected 

image textures from color space Lab developed using Logistic (a), IBk (b), LogitBoost (c), LMT (d), 

and naïve Bayes (e). Dark blue color—correctly classified cases, light blue color—incorrectly 

classified cases. 

The performance metrics presented in Table 3 confirmed the high correctness of the 

classification of seeds ‘Leskovac’. In the case of a model built by the IBk algorithm, the 

values of TP Rate, Precision, PRC Area, ROC Area, MCC, and F-Measure reached 1.000, 

and FP Rate was equal to 0.000. For the mentioned cultivar, the values of 1.000 were also 

found for TP Rate, PRC Area, and ROC Area for a model built using LogitBoost, and for 

Precision for a model developed using naïve Bayes. Precision equal to 1.000 and FP Rate 

of 0.000 were also observed for the seeds of ‘Uspiech’ for models built using IBk and 

LogitBoost and ‘Kaszczenko’ for LogitBoost. However, in the case of most models, the 

highest values of FP Rate and lowest other classification performance metrics were 

obtained for seeds ‘Bereczki’ and ‘Kaszczenko’. 

Table 3. The results of the classification of quince seeds of ‘Uspiech’, ‘Leskovac’, ‘Bereczki’, and 

‘Kaszczenko’ based on models developed using selected image textures from color space Lab. 

Algorithm Class TP Rate FP Rate Precision 
PRC 

Area 

ROC 

Area 
MCC F-Measure 

Logistic  

(Functions) 

‘Uspiech’ 0.980 0.003 0.990 0.991 0.994 0.980 0.985 

‘Leskovac’ 0.960 0.003 0.990 0.995 0.998 0.967 0.975 

‘Bereczki’ 0.960 0.027 0.923 0.948 0.989 0.921 0.941 

‘Kaszczenko’ 0.940 0.020 0.940 0.965 0.975 0.920 0.940 

IBk  

(Lazy) 

‘Uspiech’ 0.990 0.000 1.000 0.993 0.996 0.993 0.995 

‘Leskovac’ 1.000 0.000 1.000 1.000 1.000 1.000 1.000 

‘Bereczki’ 0.970 0.023 0.933 0.880 0.966 0.935 0.951 

‘Kaszczenko’ 0.940 0.010 0.969 0.926 0.938 0.940 0.954 
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LogitBoost  

(Meta) 

‘Uspiech’ 0.990 0.000 1.000 0.994 0.995 0.993 0.995 

‘Leskovac’ 1.000 0.007 0.980 1.000 1.000 0.987 0.990 

‘Bereczki’ 0.990 0.017 0.952 0.993 0.998 0.961 0.971 

‘Kaszczenko’ 0.950 0.000 1.000 0.994 0.998 0.967 0.974 

LMT  

(Trees) 

‘Uspiech’ 0.980 0.003 0.990 0.982 0.991 0.980 0.985 

‘Leskovac’ 0.990 0.003 0.990 0.993 0.993 0.987 0.990 

‘Bereczki’ 0.960 0.010 0.970 0.975 0.996 0.953 0.965 

‘Kaszczenko’ 0.980 0.013 0.961 0.990 0.993 0.960 0.970 

Naïve Bayes 

(Bayes) 

‘Uspiech’ 0.990 0.003 0.990 0.993 0.991 0.987 0.990 

‘Leskovac’ 0.990 0.000 1.000 0.995 0.996 0.993 0.995 

‘Bereczki’ 0.910 0.030 0.910 0.903 0.987 0.880 0.910 

‘Kaszczenko’ 0.920 0.030 0.911 0.978 0.984 0.887 0.915 

TP Rate—True Positive Rate, FP Rate—False Positive Rate, PRC Area—Precision-Recall Area, ROC 

Area—Receiver Operating Characteristic Area, MCC—Matthews Correlation Coefficient. 

The classification models built based on a set of selected textures from images in color 

channel L were characterized by the lowest correctness (Figure 4). The overall accuracy 

reached 97.00% for the IBk algorithm. An accuracy of 100% was determined only for 

‘Leskovac’ and a model built using IBk. The lowest overall accuracy of 94.00% was 

produced by a model built using Logistic. 

 

Figure 4. The confusion matrices of distinguishing quince seed cultivars ‘Uspiech’ (class 1), 

‘Leskovac’ (class 2), ‘Bereczki’ (class 3), and ‘Kaszczenko’ (class 4) using models based on selected 

textures from images in color channel L developed using Logistic (a), IBk (b), LogitBoost (c), LMT 

(d), and naïve Bayes (e). Dark green color—correctly classified cases, light green color—incorrectly 

classified cases. 

In the case of ‘Leskovac’ seeds and a model developed using the IBk algorithm, the 

performance metrics were the most successful. The TP Rate, Precision, PRC Area, ROC 

Area, MCC, and F-Measure were equal to 1.000, and FP Rate was 0.000 (Table 4). The 

values of Precision, PRC Area, ROC Area reaching 1.000, and FP Rate equal to 0.000 for 



Agriculture 2023, 13, 1310 9 of 12 
 

 

‘Leskovac’ were obtained for a model built using Logistic, and Precision of 1.000 and FP 

Rate of 0.000 were determined also for LogitBoost and LMT. Additionally, seeds of 

‘Uspiech’ were classified with high correctness. The values of Precision, PRC Area, and 

ROC Area reached 1.000, and FP Rate was 0.000 in the case of Logistic, Precision of 1.000 

and FP Rate of 0.000 were found for IBk, and ROC Area of 1.000 for naïve Bayes. The seed 

of ‘Bereczki’ and ‘Kaszczenko’ were classified with the highest FP Rate reaching 0.043 

(Logistic, LMT) for ‘Bereczki’ and 0.037 (Logistic, naïve Bayes) for ‘Kaszczenko’. 

Table 4. The performance metrics of quince seed classification using models developed based on 

textures of images in color channel L. 

Algorithm Class TP Rate FP Rate Precision 
PRC 

Area 

ROC 

Area 
MCC F-Measure 

Logistic  

(Functions) 

‘Uspiech’ 0.990 0.000 1.000 1.000 1.000 0.993 0.995 

‘Leskovac’ 0.990 0.000 1.000 1.000 1.000 0.993 0.995 

‘Bereczki’ 0.900 0.043 0.874 0.935 0.984 0.848 0.887 

‘Kaszczenko’ 0.880 0.037 0.889 0.963 0.984 0.846 0.884 

IBk  

(Lazy) 

‘Uspiech’ 0.990 0.000 1.000 0.992 0.991 0.993 0.995 

‘Leskovac’ 1.000 0.000 1.000 1.000 1.000 1.000 1.000 

‘Bereczki’ 0.990 0.037 0.900 0.848 0.963 0.925 0.943 

‘Kaszczenko’ 0.900 0.003 0.989 0.915 0.907 0.926 0.942 

LogitBoost  

(Meta) 

‘Uspiech’ 0.990 0.003 0.990 0.998 0.999 0.987 0.990 

‘Leskovac’ 0.960 0.000 1.000 0.998 0.999 0.973 0.980 

‘Bereczki’ 0.990 0.040 0.892 0.980 0.994 0.919 0.938 

‘Kaszczenko’ 0.910 0.007 0.978 0.988 0.995 0.926 0.943 

LMT  

(Trees) 

‘Uspiech’ 0.980 0.010 0.970 0.971 0.996 0.967 0.975 

‘Leskovac’ 0.970 0.000 1.000 0.986 0.987 0.980 0.985 

‘Bereczki’ 0.940 0.043 0.879 0.966 0.989 0.877 0.908 

‘Kaszczenko’ 0.880 0.023 0.926 0.960 0.982 0.872 0.903 

Naïve Bayes 

(Bayes) 

‘Uspiech’ 0.990 0.003 0.990 0.999 1.000 0.987 0.990 

‘Leskovac’ 0.990 0.003 0.990 0.993 0.991 0.987 0.990 

‘Bereczki’ 0.890 0.030 0.908 0.914 0.980 0.866 0.899 

‘Kaszczenko’ 0.910 0.037 0.892 0.948 0.980 0.868 0.901 

TP Rate—True Positive Rate, FP Rate—False Positive Rate, PRC Area—Precision-Recall Area, ROC 

Area—Receiver Operating Characteristic Area, MCC—Matthews Correlation Coefficient. 

The obtained results revealed the possibility of the classification of quince seeds 

belonging to cultivars: ‘Uspiech’, ‘Leskovac’, ‘Bereczki’, and ‘Kaszczenko’ with high 

overall accuracy reaching 98.75% for the Logistic from the group of Functions using 

selected image textures and traditional machine learning algorithms. The performed 

experiment was treated as supplementary to the previous studies of quince cultivar 

classification using models built based on texture parameters of flesh images, in which the 

total accuracies of 99% and 94% were obtained for images acquired using a digital camera 

and a flatbed scanner, respectively. The most successful algorithm was the Multilayer 

Perceptron also from Functions [30]. The present study confirmed that, in addition to the 

flesh, also the seeds can be a useful part of the quince fruit for cultivar classification. The 

usefulness of seeds for distinguishing cultivars was also revealed in previous own and 

other authors’ research. For example, peach seeds belonging to two cultivars were 

correctly classified in 100% using models based on image textures developed using Bayes 

Net (Bayes), Logistic (Functions), SMO (Functions), and Multi Class Classifier (Meta) 

machine learning algorithms [31]. Models involving the image texture features of apple 

seeds classified two cultivars with an accuracy reaching 100% (naïve Bayes from the group 

of Bayes, Multilayer Perceptron from Functions and Multi Class Classifier) and three 
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cultivars in 85% (naïve Bayes) [32]. Sabanci et al. [33] distinguished four pepper seed 

cultivars in 99.02% using the SVM (Support Vector Machine) algorithm. Whereas Koklu 

et al. [34] correctly classified two types of pumpkin seeds in 88.64% using SVM. 

The high classification accuracies obtained in this study are sufficient to distinguish 

quince seed cultivars with high probability. An overall accuracy of 98.75% determined for 

four classes allows for very correct classification. Such a result is sufficient to confirm the 

authenticity of seeds and to detect falsifications. However, it can prompt further research 

involving image analysis and machine learning for the quality evaluation of quince seeds. 

The appearance, including the color and structure of the seeds of different quince 

cultivars, may depend on the growing season and the degree of maturity of the fruit. 

Therefore, further more detailed studies will involve more cultivars, collected in several 

seasons and with different degrees of fruit maturity, to develop a more universal model 

for distinguishing quince seed cultivars. Another aspect of further research may concern 

the inclusion of geometric parameters such as linear dimensions and shape factors in 

classification models. Models combining the image texture parameters and geometric 

features could increase classification accuracy. 

Additionally, the use of deep learning can result in a further increase in the cultivar 

classification accuracy of quince seeds. Deep learning is a modern approach to image 

processing and data analysis with great potential [13]. Traditional machine learning uses 

manually extracted features in image classification. It can be more time-consuming and 

complex and affects the classification performance. Therefore, computer vision often 

involves deep learning to extract image features [19]. Traditional classification models can 

be characterized by poor effects for the classification involving many categories and 

unbalanced sample distribution. Deep learning models can be successfully used to 

identify diverse seeds with high precision and the ability to deal better with a large 

amount of data. Deep learning can be distinguished from the traditional modeling pattern 

by adopting a structure, which is similar to the human brain [35]. Deep learning provides 

a hierarchical representation of data using various convolutions and thus can increase the 

learning capabilities and image classification performance metrics [36]. Therefore, 

performing research using deep learning can be beneficial. 

4. Conclusions 

The quince seeds belonging to four cultivars: ‘Uspiech’, ‘Leskovac’, ‘Bereczki’, and 

‘Kaszczenko’ were the most successfully distinguished using the classification models 

based on attributes selected from sets of combined textures from images in all color 

channels R, G, B, L, a, b, X, Y, and Z. The optimal classification algorithm was Logistic 

from the group of Functions. The classification model built using Logistic based on a 

combined set of textures selected from images in all color channels R, G, B, L, a, b, X, Y, 

and Z was characterized by the highest overall accuracy of 98.75%. Despite the promising 

results of the cultivar classification of quince seeds using image processing and machine 

learning, there were some limitations and biases in the experimental data. The research 

was carried out in one growing season, for one degree of maturity and for a limited 

number of cultivars and seeds. Therefore, further research may be carried out using, for 

example, more quince cultivars and the next growing seasons. Additionally, with more 

seeds, deep learning models could be used. 
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