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Abstract: Pesticides are chemical molecules employed to protect crops from pests in agriculture.
The use of pesticides significantly enhances crop yields and helps to guarantee the quality of farm
products; due to this, each year, millions of tons of pesticides are employed in crop fields worldwide.
However, the extensive use of pesticides has been related to environmental pollution, mainly in
soils and water bodies. The presence of pesticides in the environment constitutes a menace to
biodiversity, soil fertility, food supply, and human health. Activities related to pesticide use in crops,
such as the handling and pesticide dissolution before application, the filling and cleaning of aspersion
equipment and machinery, accidental spills in crop fields, and the inadequate disposal of pesticide
residues have been identified as important punctual pesticide pollution sources. Therefore, avoiding
releasing pesticide residues into the soil and water is crucial to mitigating the environmental pollution
associated with agricultural practices. Biobeds are biological systems that have been proposed as
feasible, low-cost, and efficient alternatives for punctual pesticide pollution mitigation. Biobeds were
first described as trenches packed with a mixture of 50% wheat straw, 25% soil, and 25% peat, covered
with a grass layer; this composition is known as a “biomixture”. In biobeds, the biomixture absorbs
the pesticide residues and supports the development of different microorganisms, such as bacteria
and fungi, needed for pesticide degradation in the system. The effectiveness of a biobed systems lies
in the high pesticide retention in the biomixture and the degradation potential of the microorganisms
growing in the system. In this review, 24 studies published in the last five years (2018–2022) related
to pesticide biodegradation in biobed systems are analyzed, emphasizing alternative biomixture
composition usage, microbiological strategies, and the key physicochemical parameters for efficient
pesticide degradation in the biobed systems. The availability of robust scientific evidence about the
simple applicability, low cost, and effectiveness of biobeds for pesticide residue treatment is crucial to
increasing the use of biobeds by farmers in different agricultural regions around the world.

Keywords: biobeds; bioremediation; biodegradation; fungicides; herbicides; insecticides;
microorganisms; pesticide residues

1. Introduction

The acceleration of human population growth imposes tremendous pressure on nat-
ural resources and on the agricultural systems necessary to supply raw materials and
foodstuffs [1–4]. Modern agriculture employs several chemical compounds to increase
productivity and avoid the crop losses caused by pests. Among these agrochemicals, pesti-
cides have a primary role [5,6]. Pesticides are chemical substances widely employed for
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the control of different crop pests in agricultural areas, to avoid decreases in the quality
and yield of farm products during food storage, transportation, and commercialization
processes. Pesticides also have important applications in the control of vectors for different
diseases in livestock and humans [7,8]. Hence, pesticide usage greatly benefits human
societies worldwide [9]. However, the intensive application of pesticides is related to
adverse effects on the environment [10], biodiversity [11], soil health and fertility [12], food
supply, and human health [13,14]. Thus, almost all processes involving pesticides represent
a risk to environmental health [8].

Pesticide residues have been identified in all environmental compartments, soil, water,
and air [15]. It is estimated that only a small proportion of the total pesticides employed in
agricultural areas reaches the targets in crops, with the remaining percentage dispersed
through the environment. Pollution caused by pesticides is an important concern in several
regions around the world [16,17]. Moreover, in various less developed countries, many
obsolete, unused, or expired pesticides are stored, constituting an environmental risk that
endangers environmental and human health [18–21]. The release of pesticides into the
environment generates different adverse effects such as reducing the overall soil, water,
and air quality, threats to wildlife and biodiversity, and the contamination of food destined
for livestock and humans, with acute and chronic toxic effects on humans, among the most
relevant [17,22–26].

Pesticides can reach soils and water bodies because of their production and extensive
scale application in agricultural systems. Spills, leaks, wastewater, and inappropriate waste
disposal in the pesticide manufacturing industry have been identified as an environmental
pollution sources [27,28]). However, operations related to pesticide dissolution before
application, the filling and cleaning of aspersion equipment and machinery, and accidental
spills in crop fields have also been identified as important punctual pesticide pollution
sources [29]. The pesticides and their degraded metabolites released from producing
factories reach the soil and both surface water and groundwater bodies, threatening aquatic
environments and human health [30] through the presence of pesticides in food and
drinking water [31]. The adverse impacts of pesticide pollution on the environment and
human health make it necessary to implement adequate strategies for the treatment of
pesticide residues and the remediation of polluted sites [32,33].

Microbial-mediated bioremediation has been proposed as a cost-competitive, efficient,
adaptable, and safe strategy for the treatment of different pollutants [34], including pes-
ticides [35–37]. Biobeds are one of the microbial-mediated bioremediation approaches
proposed for the treatment of pesticide wastes. These systems were developed in Sweden
for the control and treatment of pesticide pollution caused by the environmental release of
effluents derived from the washing of equipment and machinery employed for pesticide
application in crop fields, as well as the inadequate disposal of pesticide residues, accidental
spills in the handling and application of pesticides, and the residual water from different
pesticide formulation plants and agro-industries [38–42]. This technology has been adopted
in many countries and successfully applied for the biodegradation of different pesticide
residues [41–46]. In this review, we evaluate the key parameters for efficient pesticide
degradation in biobed systems, recent studies, the approaches to pesticide biodegrada-
tion in biobed systems, and the current challenges and future perspectives for biobeds’
implementation and effectiveness.

2. Release of Pesticide Residues into the Environment

Both small and high-scale agricultural activity involve the use and disposal of pesti-
cides and represent significant pollution sources. Pesticide punctual pollution events are
generated because of the activities related to the use of different pesticides in crop fields.
The release and dispersion of pesticide residues into the environment represent a high risk
for ecosystems and human health on a global scale [47,48].

Three critical points can generate contamination by pesticides during agricultural
activity. The first occurs when the pesticide application devices are filled; here, highly
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concentrated pesticide solutions can be spilled. The second point is when the pesticides are
spread in the crop field; after application, pesticides can reach the surrounding environment.
The third point is during the handling and washing of the application devices when a
high amount of residual water with low-concentration pesticide remnants is generated.
Improper handling of these residues causes soil and water pollution by direct disposal,
leaching, or runoff processes [31,49–51]. Avoiding pesticide release into the soil and water
is a crucial issue in mitigating the environmental pollution associated with agricultural
practices, and biobeds have been proposed as a feasible alternative for punctual pesticide
pollution mitigation.

3. What Are Biobeds?

Biobeds are biological systems used to treat pesticide residues derived from the op-
erations related to the application of pesticides in crop fields. Their use helps minimize
pesticide delivery into the environment, as well as protecting soil and water from pesticide
pollution [52,53]. Biobed technology was developed in Sweden in the 1990s by Torstenson
and Castillo (1997) [54], as a low-cost and efficient alternative to mitigate pesticide pollution
from specific punctual sources. In the original proposal, biobeds had a simple design. The
system was a trench packed with a mixture of 50% wheat straw, 25% soil, and 25% peat
(biomixture), covered with a grass lid. The biomixture has the function of absorbing pesti-
cide residues and serving as a support for the development of different microorganisms,
mainly bacteria and fungi, needed for pesticide degradation in the system (Figure 1).
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Figure 1. Biobed system design and main characteristics.

Biobeds were fast adopted in Swedish agriculture to treat effluents with different
pesticide residues [55]. After that, biobed systems were integrated into several countries of
the European Union, and subsequently, experimental devices were established in several
countries around the world [56]. In 2016, the number of installed biobed systems in the
European Union was around 9000, located mainly in France (4500), Sweden (750), and
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the United Kingdom (450), while in the context of Latin America, 1500 biobed systems
were installed in Guatemala, and additional experimental scale biobeds are located in
Africa, Asia, and North America [57]. The biobed design has been modified according to
the climatic characteristics of the regions in which it is located and the availability of the
materials for the biomixture, including different lignocellulosic materials instead of wheat
straw, or compost instead of peat, as some examples (Figure 2).
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Figure 2. Biobed systems designs in different countries. (A) Conventional design (Sweden),
(B) indirect system design (United Kingdom), (C) direct system (United Kingdom), (D) three-cell
biofilter (Belgium), (E) phytobac design (France), and (F) barrel small design (Guatemala).

The biobeds’ pesticide treatment capacity is related to the design, surface, scale, and
biomixture composition. The water-holding capacity of the biomixture is related to the
components that integrate it. For example, Henriksen et al. (2003) [58] determined an
absorption between 1.6 and 5.2 L·kg−1 of biomixture (wheat straw, soil, and peat; 2:1:1) for
the herbicides isoproturon and mecoprop. Foog et al. (2004) [59] determined the maximum
water-holding in the system for efficient pesticide dissipation was 1121 L/m2 for a biobed
(1.5 m deep) packed with a biomixture composed of wheat straw, soil, compost (2:1:1).
Recently, Lescano et al. (2022) [41] treated 200 L of wastewater with the presence of different
pesticides in a pilot biobed system (1000 L capacity) packed with a biomixture of soil and
millet stubble (1:1).

On the other hand, the climatic conditions of each region can affect the efficiency of
pesticide dissipation in these systems. The most important climatic factors that modify the
effectiveness of pesticide dissipation in a biobed are the environmental temperature and
precipitation/moisture. At low environmental temperatures, the degradation efficiency
is reduced; in some regions, low temperatures can freeze the system [60]. On the other
hand, high levels of precipitation can generate an imbalance in the water content of the
system so that the efficiency and speed of dissipation of pesticides are reduced and can
generate pesticide leaching events [60]. Finally, climatic conditions affect the integrity of
the biomixture; in temperate climates, the biomixture should be replaced every five to eight
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years [55], but in areas with tropical climates, the biomixture should be replaced in six
months to two years [52,61]. These facts must be taken in count for the biobeds systems’
implementation and adequate pesticide residues treatment.

4. Key Factors in Biobeds’ Effectiveness
4.1. Biomixture

The composition of the biomixture is a key factor for the efficiency of pesticide degrada-
tion in biobed systems; so, each component (wheat straw, soil, and peat) plays an important
role [62]. For example, wheat straw is a lignocellulosic substrate that acts as an adsorbent
for pesticides in the system, serves as physical support for the development of microbial
communities, provides essential nutrients for the growth of fungi and bacteria, and stimu-
lates the production of ligninolytic enzymes, such as laccases and peroxidases, reported
to be highly efficient in the degradation of different pesticides. The soil supplies microor-
ganisms to the system and stimulates the microbial activity that mediates the degradation
of the pesticides, while peat is a porous material that increases pesticide retention in the
biobed system, regulates the moisture, and reduces the pH, factors that favor pesticide
dissipation [63–66].

In the biomixture, wheat straw can be replaced by other lignocellulosic substrates,
depending on the availability of these materials in a particular country where biobed
systems are applied. For example, Karanasios et al. (2010) [67] reported the use of different
low-cost lignocellulosic materials, such as sunflower crop residues, olive leaves, grape
stalks, orange peels, corn cobs, and spent mushroom substrate for the degradation of
mixtures of pesticides in biobed systems. In this study, the alternative substrates favored the
retention of pesticides in the system, and comparable pesticide half-life values, concerning
those observed in the biobeds with the presence of wheat straw, were documented.

In another study, Diez et al. (2013) [68] complemented the biomixture composition
with the addition of lignocellulosic materials, such as pine sawdust (25%) and barley husk
(25%), for the degradation of the pesticides carbendazim, isoproturon, and chlorpyrifos. The
systems that contained wheat straw/barley husk (25%/25%) showed higher degradation
percentages for carbendazim and chlorpyrifos after 90 days compared to the systems with
only wheat straw (50%) and wheat straw/pine sawdust (25%/25%).

In a similar study, Urrutia et al. (2013) [66] evaluated the addition of lignocellulosic ma-
terials such as barley husk, oat husk, and sawdust to biobed biomixtures for the treatment
of the pesticides atrazine, chlorpyrifos, and isoproturon. Among the three lignocellulosic
materials, oat husk was the best substitute for wheat straw, with similar pesticide degrada-
tion rates compared to the biomixture that included just wheat straw. In contrast, barley
husk and sawdust can be added to the biomixtures in combination with wheat straw but
not as the sole lignocellulosic material in the biomixture composition.

Gongora-Echeverría et al. (2017) [69] evaluated the suitability of wheat straw substitu-
tion in biobed systems, employing different materials of high availability in southeastern
Mexico such as compost, sisal fibers, corn stoves, and seaweed in combination with soil for
the treatment of a pesticide mixture composed of 2,4-dichloro phenoxy acetic acid (2,4-D,
1.08 mg/cm3 of mixture), atrazine (2.5 mg/cm3 of mixture), carbofuran (0.23 mg/cm3 of
mixture), diazinon (0.34 mg/cm3 of mixture), and glyphosate (0.36 mg/cm3 of mixture),
mimicking the composition of pesticide effluents generated by farmers in Yucatan, Mexico.
In all evaluated biomixtures, the five pesticides’ dissipation was over 99% after 41 days.

Peat is an important component in biobed biomixtures; however, in some regions, this
material has low availability or high cost. So, in biomixtures, peat has been substituted by
alternative material or just eliminated from the biomixture composition [70,71]. Among the
alternative materials to peat for biobed mixtures, compost [72–76] or vermicompost [43,77–79]
are notable for being the most reported.

Various agro-industrial wastes have been employed in the biomixture composition
in biobed systems to treat fungicides, herbicides, and insecticides from different chemical
families. They include spent coffee grounds [80], coir [80], cotton crop residues [81,82],
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garden wastes [83,84], livestock manure [80,85], olive leaves [68,86,87], pine bark [80],
and sewage sludge [88]. Spent mushroom substrates and biochar have also been in-
corporated into the biomixture composition as complementary materials in pesticide
dissipation [38,39,42,70,89–91].

4.2. Microorganisms

In the biobed systems, the microbiota colonizing the biomixture are responsible for
the pesticide degradation. Microorganisms such as bacteria and fungi may use pesticide
molecules such as carbon, nitrogen, phosphorous, and energy sources for their growth. The
efficient pesticide degradation by microorganisms is related to their great genetic plasticity,
the production of diverse pesticide-degrading enzymes, fast growth, and adaptability to
living in polluted environments [89].

The materials that integrate the biomixture retain the pesticide molecules in the biobeds
and serve as a habitat for the development of different soil autochthonous microorgan-
isms [92]. In biobeds, the presence of lignocellulosic materials reduces the pH in the system
generating an environment that favors the growth and development of lignin-degrading
fungi, such as different species of white-rot fungi [45]. White-rot fungi are organisms
broadly reported in the biodegradation of several organic pollutants, including pesticides
from different chemical families [93–98]. Fungi can produce extracellular enzymes, such
as peroxidases, laccases, and the cytochrome P450 complex, implicated in pesticide degra-
dation [99–101]. On the other hand, the presence of peat in the biomixture also favors
the development of white-rot fungi in biobeds; however, in biomixtures without peat, the
pesticide degradation is mediated mainly by the bacterial community [45]. Bacteria may
act in synergy with fungi to enhance the pesticide and derived metabolites degradation;
so, they can also produce different pesticide-degrading enzymes, such as dehalogenases,
hydrolases, oxidoreductases, oxygenases, and esterases [102–106].

In biobed systems, the biomixture supports the development of broad microbial
diversity, and recent studies have evaluated such microbial complexity. For example,
through a metagenomics approach, Bergsveinson et al. (2018) [107] assessed the bacterial
and fungal diversity in four biobed systems employed for treating pesticide rinsates with
differential composition and pesticide concentrations. As a result of the study, around
440 bacterial genera and an average of 285 fungal genera were identified in each biobed
system. In a similar study, Góngora-Echeverría et al. (2018) [108] identified several archaea
(23), bacteria (598), and fungi (64) species in lab-scale biobed systems with the presence of
a mixture of commercial pesticide formulates (2,4-D, atrazine, carbofuran, diazinon, and
glyphosate). In addition, Russell et al. (2021) [109] evaluated the bacterial diversity in a
two-cell biobed system. After the treatment of pesticide residues, in cell one, 81 bacterial
species from 58 genera were identified, while in cell two, 36 bacterial species from 33 genera
were identified. The most representative bacterial genera in both biobed cells were Afipia,
Sphingopyxis, and Pseudomonas.

The development of a great diversity of microorganisms in the biobed systems is cru-
cial for the efficient treatment of pesticide residues. However, the metabolic activities of the
indigenous microbiota do not always guarantee total pesticide degradation. Due to this, bioaug-
mentation strategies have been employed to enhance pesticide biodegradation efficiency in
biobed systems. This strategy is based on the addition of selected endogenous or exogenous
microorganisms, such as specific fungi and bacterial strains, or the use of characterized or non-
characterized microbial consortia [45,52]. The key characteristics for selecting microorganisms
for a bioaugmentation strategy include pesticide resistance, high pesticide degradation efficiency,
fast growth, and simple culture in lab conditions [110,111]. Examples of microorganisms used in
biobed bioaugmentation strategies include uncharacterized microbial consortia, archaea species,
bacteria of different phyla such as Actinobacteria (Streptomyces spp.), Bacteroidetes, Firmicutes, and
mainly Proteobacteria (Achromobacter ssp., Bordetella ssp., Pseudomonas ssp., and Variovorax ssp.),
and white-rot fungi from different classes (Aphelidiomycetes and Pezizomycetes) and species
(Trametes versicolor and Stereum hirsutum).
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4.3. Physicochemical Parameters

Pesticide dissipation effectiveness in biobed systems is strongly related to the biomix-
ture composition and the metabolic activity of the different microorganisms; however,
other key parameters include the pre-incubation time, moisture, temperature, and pesticide
concentration in the system. Fernández-Alberti et al. (2012) [112] evaluated the effect of
the biomixture pre-incubation time and moisture on chlorpyrifos (insecticide) degradation.
In the study, the biomixture was composed of wheat straw, peat, and soil (2:1:1), pre-
incubation took place (25 ± 1 ◦C) over 0, 15, and 30 days, and three water-holding-capacity
percentages (WHC 40%, 60%, and 80%) were evaluated. The best condition for chlorpyrifos
degradation (>70%) was 15 days pre-incubation and 60% WHC. Pre-incubation favors the
microbial community proliferation in the biomixture, while at a high moisture (60% WHC),
the ligninolytic enzyme activity in the biomixture increases.

In a similar study, Tortella et al. (2012) [113] evaluated the effect of the biomixture ma-
turity and concentration on the chlorpyrifos degradation; the biomixture (wheat straw, peat
and soil, 2:1:1) was pre-incubated over 0, 15, and 30 days; after that time, three chlorpyrifos
concentrations (200, 320, and 480 mg·kg−1) were added to the biomixture. The biomixture’s
maturity did not affect the chlorpyrifos degradation; all the biomixtures showed degrada-
tion percentages above 50%. However, increasing the chlorpyrifos concentration reduced
the degradation efficiency and the hydrolytic and phenoloxidase activities in the systems.
More recently, Kumari et al. (2019) [114] evaluated the effect of pre-incubation, pesticide
concentration, and moisture on the degradation process of azoxystrobin (fungicide) and
imidacloprid (insecticide) in biobed systems, employing biomixtures that included rice
straw/corn cobs, peat, and compost (2:1:1). Ten days of biomixture pre-incubation be-
fore pesticide application reduced by 5–9 times the degradation rate of the insecticide
imidacloprid, while the increase in the WHC from 60% to 80% had a positive effect on the
degradation rates of both pesticides, reducing their half-life time. However, increases in
the concentration of the pesticides from 30 to 100 mg·kg−1 reduced the degradation rates
of both pesticides.

Cordova-Méndez et al. (2021) [46] evaluated the effect of moisture and temperature
on the dissipation of five pesticides, two insecticides: carbofuran and diazinon, and three
herbicides: atrazine, 2,4-D, and glyphosate; five temperatures (5, 15, 25, 35, and 45 ◦C)
and five water holding capacity percentages (20%, 40%, 60%, 80%, and 100%) were evalu-
ated. The increasing temperature positively affected the dissipation of the five pesticides
evaluated; the highest dissipation percentages were observed at temperatures of 35 and
45 ◦C. However, the increase in the water-holding percentages did not show a significant
improvement in pesticide dissipation. The observed increase in pesticide dissipation was
related to higher microbial activity at higher temperatures. According to the reviewed
studies, for efficient pesticide treatment in biobed systems, physicochemical parameters,
such as the preincubation time, moisture, temperature, and pesticide concentration in the
system, must be optimized.

4.4. Analysis of the Biobeds’ Treated Effluents

According to the biobed design, the systems are isolated from the soil through an
impermeable layer, and it has been proposed that treated effluents ending from biobed
systems could be reused for crop irrigation [115]. However, leachate analysis in biobed
systems is essential to guarantee the efficiency of the treatment process and avoid re-
leasing pesticides into the environment, causing soil and water pollution. In this sense,
Henriksen et al. (2003) [58] evaluated the dissipation of the herbicides mecoprop and
isoproturon in a biobed system. To determine the pesticide dissipation, the concentration of
both herbicides in the leachate was assessed after a year, the concentrations of isoproturon
and mecoprop were of 1.4% and 13%, respectively, of the initial dose (8 g), and the presence
of a higher concentration of mecoprop in the biobed leachate was associated with its lower
retention in the biobed biomixture.
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The excessive effluent load in the biobed systems could be a limiting factor for pes-
ticide retention and dissipation efficiency, causing the release of leachates with pesticide
concentration above the limits established in the regulations. Foog et al. (2004) [59] eval-
uated the effect of reducing the effluent loads in a biobed system (1.5 m deep) over the
concentration of pesticides in leachates. They observed that a reduction from 1175 to
688 L/m2 of biomixture decreased the pesticide concentration in leachate from <0.32% to
<0.006%, while a decrease to 202 L/m2 reduced the pesticide concentration to <0.0001%;
according to their results, the maximum water holding in the system for efficient pesti-
cide dissipation was 1121 L/m2. In another study, Spliid et al. (2006) [116] evaluated
the presence of pesticides in leachates from a biobed system. The concentrations of
21 pesticides (5 g each in the mixture) were assessed through LC-MS/MS; after 593 days of
treatment, only the herbicide bentazone showed a significant presence in leachates (14%
of the original dose), ten pesticides were not detected in leachates, and the ten remaining
pesticides showed reductions below 2% of the initial dose. The authors concluded that
the biobeds were effective in retaining and degrading pesticides, generating effluents with
lower pesticide concentrations.

More recently, Karas et al. (2015) [38] evaluated the risk associated with the environ-
mental release of the biobed-depurated wastewater, the leachates containing fungicides from
pilot biobed systems. The leachates included traces of fungicides (diphenylamine, imazalil,
ortho-phenylphenol, and thiabendazole); acute effects were evaluated in aquatic organisms,
such as the crustacean Daphnia magna and the fish Oncorhynchus mykiss, while chronic ef-
fects were assessed in the fish Oncorhynchus mykiss, the algae Pseudokirchneriella subcapitata,
and sediment-dwelling invertebrates such as Chironomus sp. The biobed-depurated efflu-
ents with diphenylamine, imazalil, and ortho-phenylphenol did not show either an acute
or chronic exposure risk in any bioindicator organism; only the effluents with thiabenda-
zole showed an acute exposure risk for Daphnia magna and a chronic exposure risk for
Oncorhynchus mykiss. In the same study, the treatment of fungicides using bioaugmentation
with fungicide-degrader bacteria generated effluents that showed no acute or chronic expo-
sure risk for the organisms evaluated. The authors conclude that biobed-treated effluents do
not represent an environmental risk and can be safely disposed.

5. Recent Studies of Pesticide Biodegradation in Biobed Systems
5.1. Fungicides

Table 1 shows the key information related to recent studies on the treatment of fungi-
cides in biobed systems. Eleven studies published over the last five years were identified.
These studies assessed the dissipation of ten fungicide compounds from eight different
chemical families. Among the most studied fungicides were metalaxyl (54.5%) and carben-
dazim (27.3%). In the biobed systems, 11 different biomixture compositions were evaluated,
just one with the conventional composition: wheat straw, peat, and soil (50:25:25). Alter-
native biomixture compositions included the use of diverse components, such as coconut
fiber (18.2%), corn cobs (18.2%), rice straw (18.2%), vine shoots/branches (18.2%), and
millet stubble (9.1%), which act as lignocellulosic materials substituted for wheat straw,
and compost (45.5%), vermicompost (9.1%), and spent mushroom substrate (9.1%), which
acted as a peat substitute.

In most of the reviewed studies (81.8%), the microbial community in charge of the
fungicide dissipation was supplemented by the soil included in the biomixture compo-
sition (the soil’s indigenous microbial community). Only one study characterized the
microbial community at the group level, including Proteobacteria, Firmicutes, Actinobacte-
ria, and Acidobacteria as the most representative phyla [79]. In the study carried out by
Castro-Gutiérrez et al. (2019) [117], a bioaugmentation strategy with the white rot fungus
Trametes versicolor was used for the dissipation of the fungicides metalaxyl and carbendazim.
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Table 1. Degradation of fungicide residues in biobed systems.

Chemical Family Fungicide Biomixture (%) Microorganisms Concentration
(mg·kg−1) Degradation (%) Degradation Time

(Days)
Analytical

Determination Reference
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Table 1. Cont.

Chemical Family Fungicide Biomixture (%) Microorganisms Concentration
(mg·kg−1) Degradation (%) Degradation Time

(Days)
Analytical

Determination Reference

Chloronitriles
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Phenylpyrroles

Agriculture 2023, 13, x FOR PEER REVIEW 11 of 30 

Chloronitriles 
Wheat straw, spent mushroom 

substrate, and soil (25:50:25) 
Soil�s indigenous microbial 

community 
8.1 † 50 3 HPLC-DAD [42]

Imidazoles 
Wheat straw, spent mushroom 

substrate, and soil (25:50:25) 
Soil�s indigenous microbial 

community 
75 † 50 29 HPLC-DAD [42]

Methoxt-acrylates 

Rice straw, compost, and soil 
(40:20:20) Soil�s indigenous microbial 

community 
100 † 

82 
45 HPLC-MS [75]

Corn cobs, compost, and soil 
(40:20:20) 

69 

Rice straw, compost, and soil 
(40:20:20) 

Soil�s indigenous microbial 
community 

30 † 

94.8 

28 HPLC [114]

Rice straw, peat, and soil 
(40:40:20) 

98.5 

Corn cobs, compost, and soil 
(40:20:20) 

98.4 

Corn cobs, peat, and soil 
(40:20:20) 

95.3 

Phenylpyrroles 

Wheat straw, spent mushroom 
substrate, and soil (25:50:25) 

Soil�s indigenous microbial 
community 

3.2 † 50 79 HPLC-DAD [42]

Wheat straw, spent mushroom 
substrate, and soil (25:50:25) 

Uncharacterized bacterial 
consortium 

10 

50 42.4 HPLC [39]20 

150 

Triazoles 

Wheat straw, peat, and soil 
(50:25:25) 

Soil�s indigenous microbial 
community 

0.0945 100 168 UHPLC-MS/MS [118]

Vine shoots, vermicompost, and 
soil (25:50:25) 

Soil�s indigenous microbial 
community 

50 13 15 HPLC-DAD [43]

† = Dose (mg·L−1). HPLC/UHPLC = high-performance liquid chromatography/ultra high-performance liquid chromatography. DAD = diode array detector. UV = 
ultraviolet-visible detector. MS = mass spectrometry. MS/MS = tandem mass spectrometry. 

Fludioxonil

Wheat straw, spent mushroom substrate,
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Soil’s indigenous microbial
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Wheat straw, spent mushroom substrate,
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consortium
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50 42.4 HPLC [39]20

150

Triazoles
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0.0945 100 168 UHPLC-MS/MS [118]

Vine shoots, vermicompost, and 
soil (25:50:25) 

Soil�s indigenous microbial 
community 

50 13 15 HPLC-DAD [43]
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Tebuconazole

Wheat straw, peat, and soil (50:25:25) Soil’s indigenous microbial
community 0.0945 100 168 UHPLC-MS/MS [118]

Vine shoots, vermicompost,
and soil (25:50:25)

Soil’s indigenous microbial
community 50 13 15 HPLC-DAD [43]

† = Dose (mg·L−1). HPLC/UHPLC = high-performance liquid chromatography/ultra high-performance liquid chromatography. DAD = diode array detector. UV = ultraviolet-visible
detector. MS = mass spectrometry. MS/MS = tandem mass spectrometry.
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According to the identified studies, the fungicide dissipation efficiency in the biobed
systems ranged from 13% to 100%. Tebuconazole (50 mg·kg−1) showed the lowest degra-
dation rate, with only 13% after 15 days in a biobed system employing a biomixture
composed of vine shoots, vermicompost, and soil (25:50:25) [43]. While the dissipation of
the fungicides metalaxyl (30 mg·kg−1) [79], carbendazim (40 mg·kg−1) [79] and carboxin
(52 mg·kg−1) [39] reached 100% in 16–20 days. For 54.5% of the reviewed studies, the
observed fungicide dissipation was over 90%.

5.2. Herbicides

Table 2 shows information related to the recent studies on treating herbicides in
biobed systems. Twelve studies published in the period between 2018 and 2022 were
identified. In these studies, the dissipation of five herbicide compounds belonging to four
chemical families was studied; atrazine (58.3%), glyphosate (50%), and 2,4-D (25%) were
the most represented herbicides. The studies reported the use of 16 different biomixture
compositions. In addition to the conventional wheat straw/stubble (25%), the reported
biomixtures included in their composition alternative lignocellulosic materials, such as
corn husk/stover (25%), rice straw (18.8%), alfalfa straw (12.5%), millet stubble (6.3%),
seaweed (6.3), sisal (Agave sisalana fibers) (6.3%), and coconut fiber (6.3%). In seven (43.5%)
of the biomixtures reported, peat or any alternative peat substitute was included in the
composition, while in the remaining biomixtures, compost (38%), river waste (12.5%),
rice husk ashes (6.3%), and wheat straw biochar (6.3%) were included in the biomixture
composition as alternative materials to peat.

In five (41.7%) of the twelve reviewed studies, the soil indigenous microbial community
carried out herbicide dissipation in the biobed systems. In four studies (33.3%), the main
microbial (archaea, bacteria, and fungi) groups present in the biobeds were identified, and
in three studies, a microbial bioaugmentation strategy was employed. Córdova-Mendez
et al. (2021) [46] identified the presence of white-rot fungi growing on the biomixtures (corn
husk and soil; 50:50) used for the treatment of the herbicides atrazine, glyphosate, and 2,4-D.
Concerning the bioaugmentation strategies, Castro-Gutiérrez et al. (2019) [117] evaluated
the use of the white-rot fungi Trametes versicolor as an inoculant in the biomixture (coconut
fiber, garden compost, and soil; 45:13:42) for the treatment of herbicide atrazine (40 mg·kg−1),
observing a dissipation of 68.4% in 16 days. In addition, Kumari et al. (2022) [76] evaluated
the use of a bacterial consortium previously characterized as efficient in atrazine degradation
as an inoculant for the biobed system in the dissipation of a mixture of atrazine and fipronil
(50 mg·L−1). Employing three biomixture compositions, the atrazine dissipation ranged
between 94 and 98% after 60 days.

According to the identified studies, the fungicide dissipation efficiency in the biobed
systems ranged from 68% to 100%. The herbicide atrazine (40 mg·kg−1) showed the lowest
dissipation, 68% in 16 days, in a biobed system with a biomixture composed of coconut
fiber, garden compost, and soil (45:13:42) [79], while the highest dissipation ranges were
observed for glyphosate [108,119,120].
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Table 2. Degradation of herbicide residues in biobed systems.

Chemical Family Herbicide Biomixture (%) Microorganisms Concentration
(mg·kg−1) Degradation (%) Degradation Time

(Days)
Analytical

Determination Reference

Organophosphates
(glycines)
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Phenoxy-
carboxylates
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Table 2. Cont.

Chemical Family Herbicide Biomixture (%) Microorganisms Concentration
(mg·kg−1) Degradation (%) Degradation Time

(Days)
Analytical

Determination Reference

Triazines
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fungi 50 93 30 HPLC [123]
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5.3. Insecticides

Regarding the dissipation of insecticide compounds in biobed systems, 15 studies
were identified from 2018 to 2022 (Table 3). These studies describe the dissipation of seven
insecticide compounds belonging to five chemical families in biobed systems. The most
evaluated insecticides were carbofuran, imidacloprid, and chlorpyrifos, with four studies
each. In these studies, 25 biomixture compositions were evaluated, highlighting the use of
alternative materials substituted for the conventional components of biomixture (wheat
straw and peat). Lignocellulosic materials, such as corn husk/stover/straw (28%), coconut
fiber (20%), rice straw (16%), corn cobs (8%), vine shoots/branches (8%), cereal brand
(4%), millet stubble (4%), and seaweed (4%), were employed instead of wheat straw, while
materials such as compost/vermicompost (60%) were the main substitutes for peat.

The soil indigenous microbial community carried out the dissipation of the insecticide
compounds in the biobed systems (46.7%). In three studies (20%), the microbial community
was characterized, and in five studies (33.3%), a bioaugmentation strategy was employed
to enhance the insecticide dissipation in biobeds. All the insecticides evaluated reached
high dissipation percentages in biobed systems, including carbofuran (98–100%), imida-
cloprid (22–100%), chlorpyrifos (6–100%), diazinon (98–100%), phosmet (91–99%), fipronil
(80–86%), and cypermethrin (95–97%). A lower dissipation was observed for chlorpyrifos
(50 mg·L−1), 6% after 28 days in a biomixture composed of wheat straw, peat, and soil
(50:25:25) inoculated with Streptomyces spp. [124] in comparison to the study of Diez et al.
(2018) [123], in which the dissipation of chlorpyrifos (50 mg·kg−1) reached 100% after
30 days in a biomixture with the same composition but with the presence of a microbial
community of actinobacteria, bacteria, and fungi.

Overall, carbofuran (carbamates) and diazinon (organophosphates) showed higher
dissipation ranges in the studies included in Table 3. Carbofuran (20 mg·kg−1) was dissi-
pated at 100% after 16 days in biomixtures composed of coconut fiber, garden compost, and
soil (45:13:42) bioaugmented with Pseudomonas sp. and Sphingobium sp. and the presence
of the antibiotic oxytetracycline [117], while diazinon (50 mg·L−1) was dissipated at 100%
after 240 days in a biomixture composed of wheat straw, peat, and soil (50:25:25), inoculated
with Streptomyces spp. [124]. However, the same insecticide at a higher dose (1718 mg·L−1)
reached dissipation ranges of 98–99% after just 41 days in a biomixture including materials
such as corn stover/seaweed/sisal, compost, and soil (25:25:50) [108].
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Table 3. Degradation of insecticide residues in biobed systems.

Chemical Family Insecticide Biomixture (%) Microorganisms Concentration
(mg·kg−1) Degradation (%) Degradation Time

(Days)
Analytical

Determination Reference

Carbamates
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Table 3. Cont.

Chemical Family Insecticide Biomixture (%) Microorganisms Concentration
(mg·kg−1) Degradation (%) Degradation Time

(Days)
Analytical

Determination Reference
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5.4. Characteristics and Risk Profiles of the Pesticides Treated in Biobeds

In the present review, the studies reported the treatment of 22 pesticide molecules
through biobed systems. The identified pesticides included ten fungicides, five herbicides,
and seven insecticides. The characteristics and risk profiles of these pesticides are shown
in Table 4. According to their solubility in water, most of the pesticides have low (59.1%)
or moderate (22.7%) solubility; only the fungicide metalaxyl, the herbicides 2,4-D and
glyphosate, and the insecticide imidacloprid presented high solubility in water. Regarding
their persistence in soils, most of the pesticides did not show great persistence (77.3%); only
the fungicides fludioxonil and fluxapyroxad and the insecticides imidacloprid and fipronil
were persistent, while the fungicide thiabendazole and the insecticide chlorpyrifos were
very persistent. The leachability of pesticides is a significant environmental concern. The
pesticides included in the present review had low or moderate leachability (86.3%); only the
pesticides, Azoxystrobin (fungicide), 2,4-D (herbicide), and imidacloprid (insecticide) had
high leachability capacity and therefore a greater risk for the contamination of underground
water bodies. Likewise, most pesticides presented a low bioaccumulation potential (72.7%)
or at the threshold for concern (27.3%).

According to their acute, oral, and dermal toxicity in rats, the WHO classifies pesti-
cides into five groups. Most pesticides in the present review are classified as slightly or
moderately hazardous (77.3%), and only one, carbofuran, is a highly hazardous pesticide.
However, despite not presenting high levels of acute danger in mammals, these pesticides
have other characteristics that threaten the environment and human health. All the identi-
fied pesticides have different degrees of toxicity in model organisms such as birds (50%),
fish (90.9%), crustaceans, such as Daphnia magna (59.1%), pollinators, such as bees (45.5%),
and earthworms (36.4%), grouping them as xenobiotics with a high ecotoxicological risk.
On the other hand, the acute and chronic effects in mammals (40.9%) of these pesticides,
which can be moderate or high, also have proven or possible reproductive/development
effects (72.7%), endocrine disruptor profiles (54.5%), and confirmed or possible carcino-
genic effects (22.7%). In the case of pesticides such as chlorpyrifos, diazinon, and phosmet,
they are inhibitors of the acetylcholinesterase enzyme, while the herbicide 2,4-D and the
insecticides chlorpyrifos, diazinon, fipronil, and phosmet generate neurotoxic effects in
mammals; these are the reason why these pesticides are a threat to human health. All these
compounds have characteristics that make them a risk for environmental and human health.
Preventing their release to the environment (soil and water) from agricultural practices is
crucial.
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Table 4. Characteristics and risk profiles of the pesticides included in the review.

Characteristics Risk Profile

Pesticide Water Solubility 1 Persistence in Soil 2 Leachability 3 Bioaccumulative Potential 4 Acute Toxicity 5 Ecotoxicity 6 Human Health 7

Fungicides

Metalaxyl High Moderately persistent Moderate Low Moderately hazardous

Moderate acute toxicity in birds, fish,
and Daphnia magna
Moderate chronic toxicity in
Daphnia magna and earthworms

Moderate acute toxicity in mammals
Moderate chronic toxicity
in mammals

Carboxin Moderate Not persistent Moderate Low Slightly hazardous
Moderate acute and chronic toxicity in
birds, fish, Daphnia magna,
and earthworms

Moderate chronic toxicity in mammals
and possible
reproduction/development effects

Imazalil Moderate Moderately persistent Low Low Moderately hazardous High chronic toxicity in fish Endocrine disrupter and
reproduction/development effects

Azoxystrobin Low Moderately persistent High Low Unlikely to present
acute hazard

Moderate acute toxicity in fish,
Daphnia magna, bees, and earthworms
Moderate chronic toxicity in fish,
Daphnia magna, and earthworms

Moderate chronic toxicity in mammals
and possible
reproduction/development effects

Carbendazim Low Moderately persistent Moderate Low Unlikely to present
acute hazard

High chronic toxicity in fish,
Daphnia magna, and earthworms

Endocrine disrupter and
reproduction/development effects

Chlorothalonil Low Not persistent Low Threshold for concern Unlikely to present
acute hazard

High acute and chronic toxicity in fish
and Daphnia magna

Carcinogen, endocrine disrupter, and
reproduction/development effect

Fludioxonil Low Persistent Low Threshold for concern Unlikely to present
acute hazard

High acute and chronic toxicity in fish
and Daphnia magna

Possible carcinogen and possible
reproduction/development effects

Fluxapyroxad Low Persistent Moderate Low Slightly hazardous High chronic toxicity in fish Possible carcinogen and possible
reproduction/development effects

Tebuconazole Low Moderately persistent Moderate Low Moderately hazardous High chronic toxicity in birds and fish Endocrine disrupter and
reproduction/development effects

Thiabendazole Low Very persistent Moderate Low Slightly hazardous High chronic toxicity in fish
Moderate chronic toxicity in mammals,
possible carcinogen, and possible
reproduction/development effects

Herbicides

2,4 D High Not persistent High Low Moderately hazardous

Moderate acute toxicity in birds, fish,
bees, and earthworms
Moderate chronic toxicity in birds, fish,
and earthworms

Endocrine disrupter,
reproduction/development effects,
and neurotoxicant.

Glyphosate High Not persistent Low Low Slightly hazardous Moderate chronic toxicity in birds, fish,
and earthworms

Possible carcinogen, possible
endocrine disrupter, and possible
reproduction/development effects

Linuron Moderate Moderately persistent Moderate Low Slightly hazardous

Moderate acute toxicity in birds, fishes,
Daphnia magna, bees, and earthworms
Moderatechronic toxicity in birds, fish,
Daphnia magna, and earthworms

High chronic toxicity in mammals and
high reproduction/development effects
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Table 4. Cont.

Characteristics Risk Profile

Pesticide Water Solubility 1 Persistence in Soil 2 Leachability 3 Bioaccumulative Potential 4 Acute Toxicity 5 Ecotoxicity 6 Human Health 7

Atrazine Low Moderately persistent Moderate Low Slightly hazardous

Moderate acute toxicity in fish,
Daphnia magna, and earthworms
Moderate chronic toxicity in fish and
Daphnia magna

Endocrine disrupter

Prometryn Low Moderately persistent Low Low Slightly hazardous High chronic toxicity in fish Endocrine disrupter

Insecticides

Imidacloprid High Persistent High Low Slightly hazardous High acute toxicity in birds and bees
High chronic toxicity in birds Reproduction/development effects

Carbofuran Moderate Not persistent Moderate Low Highly hazardous

High acute toxicity in birds,
Daphnia magna, and bees
High chronic toxicity in fish and
Daphnia magna

High acute toxicity in mammals,
endocrine disrupter, and
reproduction/development effects

Diazinon Moderate Not persistent Low Threshold for concern Slightly hazardous
High acute toxicity in birds,
Daphnia magna, and bees
High chronic toxicity in Daphnia magna

Endocrine disrupter, acetyl
cholinesterase inhibitor, and
neurotoxicant

Chlorpyrifos Low Very persistent Low Threshold for concern Slightly hazardous

High acute toxicity in birds, fish,
Daphnia magna, and bees
High chronic toxicity in birds, fish,
Daphnia magna, and earthworms

High acute and chronic toxicity in
mammals, endocrine disrupter,
reproduction/development effects,
acetyl cholinesterase inhibitor,
and neurotoxicant

Cypermethrin Low Not persistent Low Threshold for concern Slightly hazardous
High acute toxicity in fish,
Daphnia magna, and bees
High chronic toxicity in Daphnia magna

High acute toxicity in mammals and
endocrine disrupter

Fipronil Low Persistent Moderate Threshold for concern Slightly hazardous High acute toxicity in birds and bees
High chronic toxicity in birds and fish

High acute and chronic toxicity in
mammals and neurotoxicant

Phosmet Low Not persistent Low Low Slightly hazardous

High acute toxicity in Daphnia magna
and bees
High chronic toxicity in fish and
Daphnia magna

Reproduction/development effects,
acetyl cholinesterase inhibitor,
and neurotoxicant

1 Water solubility (20 ◦C; mg·L−1): low (≤50), moderate (50–500), and high (>500). 2 Persistence in soil: soil aerobic degradation in days: not persistent (<30), moderately persistent
(30–100), persistent (100–365), and very persistent (>365). 3 Leachability: Groundwater Ubiquity Score (GUS Index) [127]): low (<1.8), moderate (1.8–2.8), and high (>2.8).
4 Bioaccumulative potential: bio-concentration factor (kg−1): low (<100), threshold for concern (100–5000), and high (>5000). 5 Acute toxicity: risk associated with acute expo-
sure according to the WHO Recommended Classification of Pesticides by Hazard (WHO, 2020 [128]), LD50 (mg·kg−1 body weigh) in rats: unlikely to present acute hazard (U) (oral and
dermal 5000 of higher); slightly hazardous (III), oral and dermal > 2000; moderately hazardous (II), oral 50–2000 and dermal 200–2000; highly hazardous (Ib), oral 5–200 and dermal
50–200; extremely hazardous (Ia), oral < 5 and dermal < 50. 6 Ecotoxicity: acute and chronic toxicity doses are specific to each model organism; information was taken from the Pesticide
Properties Database (PPDB, Hertfordshire University, UK) [129], available at http://sitem.herts.ac.uk/aeru/ppdb/en/ (accessed on 15 June 2023). 7 Human health: acute oral effects on
mammals (dose mg·kg−1): low (>2000), moderate (100–2000), and high (<100); chronic effects on mammals (dose mg·kg−1d−1): low (>200), moderate (10–200), and high (<10).

http://sitem.herts.ac.uk/aeru/ppdb/en/
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6. Conclusions

Biobed systems have been proposed as an alternative for reducing pesticide pollution
in crop fields. These treatment systems have become relevant worldwide due to their
effectiveness, simplicity, and adaptability, thus generating alternative designs and including
diverse materials in biomixture composition. Most studies in the field have evaluated
alternative materials in order to substitute wheat straw and peat in the biobed biomixture.
Lignocellulosic materials such as coconut fiber, corn husk/stover/straw, corn cobs, and
rice straw were the most reported materials substituted for wheat straw. At the same
time, compost was the most common substitute for peat. Moreover, for efficient pesticide
treatment in biobed systems, physicochemical parameters, such as the preincubation time,
moisture, temperature, and pesticide concentration in the system, must be considered to
optimize the degradation process.

Among the reviewed studies, pesticide dissipation was mainly carried out by the
soil’s indigenous microbial community, which was included in the biomixture composition.
However, in recent studies, metagenomic approaches have been included in characterizing
the microbial community in biobed systems, identifying complex mixtures of different
archaea, bacteria, and fungi species. Recently, to enhance pesticide dissipation in biobed
systems, bioaugmentation with selected fungi and bacteria has been carried out with
promising results. The dissipation of ten fungicide compounds, five herbicides, and seven
insecticides in biobed systems was found among the reviewed studies. Overall, biobed
systems lead to a high level of pesticide dissipation, above 90%, including the dissipation
of pesticides of emerging concern such as glyphosate, highly hazardous pesticides such
as carbofuran, and highly persistent pesticides such as atrazine. However, only some
studies evaluated the dissipation of the mixtures of multiple pesticide compounds. Future
research in pesticide dissipation through biobed systems must include bioaugmentation
strategies with effective pesticide-degrader microorganisms to assess the dissipation of
complex pesticide mixtures.
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