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Abstract: The application of smart agriculture is increasingly becoming a critical force in transforming
the traditional methods of agricultural production in China. This change, based on technological
innovation, is essential to promoting a sustainable production system in family farms. This study is
based on the resource orchestration theory to investigate how smart agriculture affects the diversity
of green production technologies (GPTs) on family farms. Based on a sample of 563 family farms
surveyed in 2022, this study utilizes propensity score matching (PSM) methods and instrumental
variables to analyze the effect of smart-agriculture adoption on the diversity of GPTs on farms. The
findings reveal that smart agriculture has significantly increased the diversity of GPTs on farms by
8.5%. Network consulting services, value-added products, and environmental monitoring services are
potential impact mechanisms underlying the positive effects of smart agriculture on the diversity of
GPTs on farms. Furthermore, the increased diversity of GPTs is more significant on purely plantation
farms, farms without contract farming, and farms with high levels of mechanization.

Keywords: smart agriculture; green production technology; diversity; family farm; China

1. Introduction

The decline of the ecological environment has become a global issue that has gained
international attention in recent years [1]. The unreasonable development of agriculture has
caused a series of key issues, such as the overuse of agricultural resources and ecological
degradation [2]. Green production technologies (GPTs) are recognized for their role in
promoting sustainable agricultural production [3]. Although green production technologies
(GPTs) have been adopted worldwide, there is a significant disparity between developed
and developing nations. China, as the world’s largest developing country, has taken
significant steps toward encouraging the implementation of green production technologies
(GPTs). Nonetheless, it remains challenging to swiftly transition from its prior conventional
agricultural production methods. According to the Ministry of Agriculture’s statistics,
China’s usage of chemical fertilizers accounts for roughly one-third (1.4 million tons) of the
world’s total annual consumption, exceeding developed nations’ usage by 2.5 to 5 times [4].
That is far from green production standards. To balance food security and the development
of the ecological environment, there is considerable potential for the widespread adoption
of green production technologies (GPTs).

Gao et al. [5] explored the ability of GPTs to improve the quality of arable land and
significantly contribute to the transition to green agricultural production, which would
entail considerable environmental and economic benefits. Regardless of the significant
benefits, Bukchin and Kerret found that the adoption of green production technologies
remains low among farmers in developing countries [6]. Family farms, as the mainstay of
agricultural production, adopting green production technologies will greatly determine
the level of development of green agriculture in China. The intensive and specialized
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production characteristics of family farms have enabled them to overcome some of the
obstacles to the adoption of green production techniques. Therefore, it is vital to find a
green transition path based on family farm characteristics.

In recent years, concepts such as smart farming, smart agriculture, or precision agri-
culture have become more popular [7]. Sultan et al. [8] think these technologies include
climate-smart agriculture (CSA), climate-smart forestry (CSF), climate-smart rangeland
management, and climate-smart livestock production. Smart farming is being conducted
on a large scale using the IoT, artificial intelligence (AI), and agricultural data analysis
in developed nations according to Goel et al. [9]. Mazzetto et al. [10] thought that smart
agriculture (SA) is an evolution of precision farming (PF). It is the integration of tradi-
tional production and the Internet of Things. The Internet of Things (IoT) technology can
link various remote sensors, such as robots, ground sensors, and drones [11]. Sharma
et al. [12] explained that this integration has boosted agriculture production due to the
high potential to assist farmers. The impulse towards technological advancement has
changed traditional agriculture methods and resulted in eco-friendly, sustainable, and
efficient farming. Smart agriculture brings numerous benefits to agricultural production
through weather monitoring, groundwater detection, and temperature control. IoT-based
smart agriculture’s common practices include smart farming for sustainable agriculture
and smart crop rotations that mitigate issues and challenges related to weeds, plant disease,
insects, and other pests according to Zikria et al. [13]. The use of smart agriculture on
farms is gradually spreading. This technological breakthrough provides scope for the
promotion of green production techniques. Moreover, the cost of using smart agriculture
can be evenly spread through large-scale production in the family farm, decreasing the
difficulty of adopting smart agriculture and GPT. The above research demonstrates the link
between smart agriculture and green production.

Based on Sirmon et al.’s [14] resource orchestration theory, the adoption of smart
agriculture on farms will go through three stages of resource integration. First, with the
adoption of smart agriculture, farmers will reorganize all resources and solve some tradi-
tional agricultural problems, such as water shortages, cost management, and productivity
issues according to Farooq et al. [15]. Second, farmers will update their capability by
learning new skills; for example, green production knowledge will be attained by learn-
ing to operate equipment, such as the application of machines in pest and plant disease
identification, robot navigation [16], and wireless underground sensor networks for soil
monitoring [17]. Last but not least, there is a combination of resources to create new value
and influence farmers’ behavior. According to Schukat and Heise [18], farms that use smart
farming are more economically productive. It could help farms have more funds to update
and adopt GPTs. Farmers can, therefore, combine a diverse range of green production
techniques, depending on the mix of resources, to achieve technological efficiency and
value transformation and upgrading.

We attempt to verify the pathway of smart agriculture’s impact on the diversity of
green production. Based on the research base of scholars, we believe there are three possible
paths: First, smart agriculture relies on the development of the Internet of Things to provide
farmers with a range of web-based advisory services [19]. This makes it easier for farmers
to access professional farming technology via the internet, thus enhancing their knowledge
of green technology [20,21]. Second, based on internet food safety traceability, smart
agriculture increases the added value of agricultural products, which in turn influences
farmers’ decisions on technological improvements [22]. Third, smart agriculture enables
accurate monitoring and assessment of the soil and growing environment. Smart fertilizer
management techniques leverage data, sensors, and advanced tools to ensure accurate
fertilization levels in agricultural production [23], which builds a proper environment
and reduces the difficulty of GPT adoption. It can also ensure the quality of agricultural
products [24], which could bring more profits. The expansion of information sources has
also influenced farmers’ awareness of green production. The dual influence of awareness
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and technical knowledge promotes greater adoption of green production techniques among
farmers. The mechanisms of influence are shown in Figure 1.
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Figure 1. Mechanisms of influence.

Current research certainly demonstrates the possible links between smart farming and
green production technologies but rests more on the impact of smart farming on a single
technology, such as pest control and precision fertilization techniques [23,25]. Secondly,
more studies prefer to explore the application of smart agriculture equipment, and fewer
study the impact of equipment used on producer behavior. Third, in terms of green pro-
duction technology adoption, research highlights the influencing factors of adoption [26].
Finally, this study focuses on the implementation of smart agriculture and its impact on
the diversity of GPTs on family farms, with a view to providing useful recommendations
for sustainable agricultural development in China and other developing countries. The
literature on the impacts of smart agriculture on green production provided numerous
valuable studies for this paper. However, whether benefits of smart agriculture can en-
courage farmers to adopt more GPTs is still unclear. Therefore, according to the resource
supply path of smart agriculture, this paper explores the impact of smart agriculture on
green-production technology through three channels: environmental monitoring, rising
value-added product, and network technology services.

The paper is structured as follows. Section 2 presents the data and methodology
employed in this study. In Section 3, we analyze the findings and address endogeneity
concerns using endogenous transformation models and instrumental variables. Section 4 is
the discussion and future research. Finally, the last section offers policy implications and
concludes the study.

2. Materials and Methods
2.1. Data

This paper’s research samples were family farms registered by the Ministry of Agri-
culture and Rural Development. In May 2022, a project team collected data from Shaanxi
Province, a primarily agricultural province in Northwest China. The team randomly se-
lected family farms from nine municipalities, covering the topography of Shaanxi Province
from north to south. Shaanxi Province, as a largely agricultural province in western China,
has significantly different natural conditions for agricultural production, rich policies for
cultivating family farms, and many agriculture-related universities and agricultural enter-
prises, which can better reflect the impact of smart agriculture on farmers’ green production
behavior under differentiated farm characteristics. The sample research sites are divided
into family farm demonstration counties and general counties and districts. Figure 2 shows
the specific sample distribution. The project team distributed questionnaires to 650 family
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farms, of which 624 were recovered as valid. This indicates an effective recovery rate
of 96%. The questionnaire was a comprehensive and systematic interview survey that
covered individual farmer characteristics, farm production and operation, financial lending,
risk management, and green agriculture. To focus on the adoption of diversity in green
production technology, we excluded purely breeding family farms from the sample. As a
result, our sample contained 563 family farms.
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2.2. The Propensity Score Matching (PSM) Model

Based on the current state of development of smart agriculture in China, we define
the use of smart agriculture in this paper based on the adoption of at least one smart
agricultural device, including smart detection and temperature control devices, smart
irrigation systems and drones, etc. The specific equipment is shown in Figure A1. Whether
smart farming was adopted served as a binary variable, defined as C = 1 if the farm used
smart farming and C = 0 if it did not. Logit models were then used to estimate fitted values
for the conditional probability of participation in smart agriculture, which is an expression
of the propensity score (Equation (1)).

PS = Pr(C = 1|X) = E(C = 0|X) (1)

where PS is the propensity score, and C = 1 and C = 0 refer to family farms that have or have
not adopted smart agriculture, respectively. X refers to the observable personal characteris-
tics of the family farmer and the characteristics of the farm. To ensure the matching results’
robustness, we selected four matching methods., namely k-nearest neighbor matching
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(1 to 4), kernel matching, partial linear matching, and radius matching. The impact of
the adoption of smart agriculture on the diversity of green production technology was
evaluated through the average treatment effect (ATT), defined in Equation (2). In addition
to employing PSM based on observable covariates, we conducted a bounds analysis to
assess the impact of unobservable factors on the estimated effects.

ATT = E(M1|C = 1)− E(M0|C = 1) = E(M1 −M0|C = 1) (2)

2.3. Endogenous Switching Regression (ESR)

While PSM can only address sample selection bias caused by observable factors,
Rosenbaum’s bounds offer an estimate of how unobservable factors may affect the point
estimates [27]. To avoid potential bias from both observable and unobservable factors, such
as farmers’ risk appetite and usage habits, we use an endogenous conversion model. The
ESR model included a selection equation for whether to adopt smart farming and two
decision equations for the diversity of green production technologies.

Equation (3) for choosing whether to adopt smart farming on a farm is as follows:

A∗i = φ(Zi) + µi (3)

If A∗i > 0, the value of Ai = 1; otherwise, it is 0. Where Ai denotes the latent variable
that determines whether farm i practices smart farming, Ai = 1 indicates farm i is using
smart farming equipment; otherwise, it is 0. Zi refers to the vector of explanatory variables
that influence whether a farm practices smart farming and contains 13 control variables
and 1 instrumental variable for the distance from the farm to the agribusiness. µi denotes
the random error term.

To measure the effect of smart agriculture use on the diversity of green technology
adoption in family farms, we constructed the following model of the diversity of green
production technologies on farms:

Yi = Xiβi + δAi + εi (4)

In Equation (4), the dependent variable Yi is the degree of diversity of green production
technologies on the farm, Xi is a vector of control variables, Ai denotes the use of smart
agriculture on farm i, and εi is a random disturbance term. Farms choose whether to
use smart agriculture according to their own conditions, and the adoption is affected by
certain unobservable factors that are correlated with the outcome variable Y, resulting in a
correlation between Ai and εi in Equation (4). Therefore, estimating Equation (4) directly
may result in bias due to self-selection issues within the sample. The diversity models of
green production technologies corresponding to farms that have or have not used smart
agriculture are shown in Equations (5) and (6), respectively.

Yia = Xiaβa + σuaλia + εia, if Ai = 1 (5)

Yin = Xinβn + σunλia + εin, if Ai = 0 (6)

Yia and Yin denote the level of diversity of green production technologies on farms
that have or have not used smart agriculture, respectively. Xia and Xin denote the factors
affecting the diversity of green production technologies on both types of farms, and εia and
εin are random disturbance terms. To solve the problem of sample-selectivity bias caused
by unobservable factors, we introduced both the inverse Mills ratio interest rate and the
covariance and the applied the full information great likelihood method to jointly estimate
the equations.



Agriculture 2023, 13, 1236 6 of 19

We estimated the average effect of smart-agriculture use on the diversity of green
production technologies by comparing the expectations of farms with and without the use
of smart agriculture under both real and counterfactual hypothetical scenarios. Equation
(7) is the diverse expectations of green production technologies for farms using smart agri-
culture. Equation (8) is the expected value of diversity of green production technologies for
farms not using smart agriculture. Equation (9) considers two counterfactual hypothetical
scenarios, i.e., the expected value of diversity in green production technologies for farms
using smart agriculture in the unused scenario. Equation (10) is the expected value of the
diversity of green production technologies on farms not using smart agriculture.

E[Yia|Ai = 1] = Xiaβa + σuaλia (7)

E[Yin|Ai = 0] = Xinβn + σunλin (8)

E[Yin|Ai = 1] = Xiaβn + σunλia (9)

E[Yia|Ai = 0] = Xinβa + σuaλin (10)

The treatment effect of the diversity of green production techniques on farms using
smart agriculture (Equation (11)) was obtained through Equations (7) and (10). ATUi
(Equation (12)) refers to the treatment effect of the diversity of green production tech-
nologies on farms not using smart agriculture. We used the mean of ATTi and ATUi to
estimate the average treatment effect of two types of on-farm smart agriculture use on
green production technology diversification.

ATT = E[Yia|Ai = 1]− E[Yia|Ai = 1] = Xia(βa − βn) + (σua − σun)λia (11)

ATUi = E[Yia|Ai = 0]− E[Yin|Ai = 0] = Xin(βa − βn) + (σua − σun)λin (12)

2.4. Description of Variables

The diversity of agricultural technology adoption is mostly based on the number of
technologies adopted in the production chain. Based on the “Technical Guidelines for Green
Development of Agriculture (2018–2030)” released by China’s Ministry of Agriculture
and Rural Affairs as well as on interviews with agricultural experts, we opted for the
following 11 indicators to measure family farms’ common green production technologies:
deep plowing and loosening, straw return, organic fertilizer application, soil testing and
formulation, reduction of chemical fertilizer use, biological pesticides, reduction of pesticide
use, agricultural film recycling, agricultural waste recycling, water and fertilizer integration,
and water-saving irrigation technology. For each indicator, the green production behaviors
could be selected through two choices: (1) the family farm adopted this green production
technology and (2) the family farm did not adopt it. The criterion of diversity was defined
by the number of total green production behaviors. Accordingly, we measured diversity
through the number of green production technologies adopted as a proportion of total
green technology in the agricultural production chain. Although we took the impact of
smart agriculture on the diverse behavior of green production on farms into consideration,
it was also necessary to consider other relevant influences in the control variables to ensure
the scientific nature of the research. As such, following the relevant literature [2,28], we
selected the family farm owners’ characteristics and family farm operational indicators as
the control variables. Table 1 presents the descriptive statistics of the data.

As shown in Table 1, 141 of the 565 farms used smart farming, representing 24.95%
of the total sample. Table 1 shows the diversity of green technologies on farms, with
a mean value of 0.731 for family farms that have adopted smart farming and 0.602 for
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those that have not, with a difference at the 1% level of significance. This suggests that
the use of smart farming may be a greater incentive to adopt environmentally friendly
production techniques. In terms of farm-owner characteristics, younger, more educated,
and professional farmers as well as those who have been in the business for a shorter
time, seem to be more willing to adopt smart farming, with significant differences in
characteristics. In terms of the farms themselves, the smart farming participation group
was characterized by larger land areas, higher mechanization values, and higher operating
incomes and costs. For other characteristics, participating group farms were more likely to
engage in contract farming and to be members of model farms and cooperatives.

Table 1. Variable descriptions.

Variables Definition Adopted
(A = 141)

Non-Adopted
(B = 424)

Mean
Difference

(A-B)

Diversity of GPT adoption The proportion of AGPT adoption 0.731 0.602 0.129 *** 1

Age Age of the farm’s owner 46.638 49.472 −2.833 ***
Education Years of education of farm’s owner 12.319 10.810 1.509 ***

Professional farmer 1 if the farm’s owner is a professional farmer, 0 otherwise 0.702 0.604 0.098 ***
Years of planting Years of participating in agricultural practices 18.312 22.069 3.757 ***

Land scales Land size (mu 2) 243.455 127.419 116.026 ***
Machine value Value of total agricultural machine 10.764 9.262 1.502 ***
Farm income Farm’s total income in 2021 (yuan) 13.436 12.433 0.993 ***
Farm cost 3 Farm’s total production fees in 2021 (yuan 2) 12.472 11.505 0.967 ***

Brand 1 if the farm registered brand of agricultural products; 0 otherwise. 0.433 0.173 0.260 ***
Contract farming 1 if the farm participated in contract farming, 0 otherwise 0.355 0.185 0.170 ***
Number of labors The number of owner labor 2.652 2.372 0.280 ***

Demonstration farms 1 if the farm is registered as a demonstration farm; 0 otherwise. 0.766 0.521 0.245 ***
Cooperatives 1 if the farm participated in cooperatives; 0 otherwise. 0.546 0.384 0.162 ***

Instrumental variable
Distance The distance from farm to agribusiness 1.399 1.813 0.414 ***

Note: 1 ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively. 2 In May 2022, one yuan was
equivalent to 0.15 US dollars, and one mu was equivalent to 0.067 hectares. 3 The total cost encompasses expenses
related to labor, seeds, fertilizers, pesticides, irrigation water, and other factors.

3. Results and Discussion

Using propensity scores derived from a logit model for smart agriculture participation,
we performed a PSM estimation and assessed the associated treatment effects on the main
outcome variables. To evaluate the impact of unobserved factors on our PSM estimates, we
conducted a sensitivity analysis. Furthermore, we verified the robustness of our primary
findings through the use of ESR and instrumental variables.

3.1. The Determinants of Smart-Agriculture Adoption

This paper estimated a logit model to obtain the propensity scores of farmers’ decisions
to participate in smart agriculture. The model included household head and household
characteristics, which could have influenced farmers’ decisions to use smart agriculture and
determine which green technologies to adopt. The results of the logit model are presented in
Table 2, showing that education, farm cost, brand, and demonstration farms had statistically
significant effects on smart-agriculture usage. The influence of educational factors on the
adoption of smart farming is consistent with other studies [21,29]. In addition, China rates
family farms at different levels, so the indicator of demonstration farms is significant due
to the policy effect. Demonstration farms receive higher levels of financial subsidies that
will promote the use of smart farming. The marginal effects of these determinants are also
reported for better interpretation of their effects.
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Table 2. The determinants influencing smart-agriculture adoption.

Variables (1) Logit Estimates (2) Marginal Effects

Age −0.009
(0.016)

−0.001
(0.002)

Education 0.109 **
(0.043)

0.017 ***
(0.006)

Professional farmer −0.039
(0.246)

−0.006
(0.038)

Years of planting −0.011
(0.012)

−0.002
(0.002)

Land scales 0.000
(0.000)

0.000
(0.000)

Machine value 0.037
(0.032)

0.006
(0.005)

Farm income 0.033
(0.087)

0.005
(0.013)

Farm cost 0.236 **
(0.105)

0.036 **
(0.016)

Brand 0.852 ***
(0.235)

0.131 ***
(0.035)

Contract farming 0.319
(0.251)

0.049
(0.038)

Number of labors 0.044
(0.056)

0.006
(0.009)

Demonstration farms 0.600 **
(0.252)

0.092 **
(0.038)

Cooperatives 0.065
(0.219)

0.001
(0.034)

Constant −6.23 ***
(1.603)

Pseudo R2 0.158
Observations 563

Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.

3.2. PSM Estimation for the Effects of Smart Agriculture
3.2.1. Matching Quality

Prior to presenting the treatment estimation results, we assessed the matching quality
of both methods by evaluating the overall bias and the common support of the propensity
scores. From the results of the balance test (see Tables A1 and A2), it can be seen that, after
matching the samples, the standardized bias of the explanatory variables decreased from
38.9% to 2.3–8.5%, and the total bias was significantly lower and less than the 20% level
specified by the equilibrium test; the pseudo R2 decreased from 0.157 before settling at
0.002–0.024 after matching; and the LR statistic decreased from 99.61 before matching to
0.87–8.78 after it. Based on the test methods of [21], the results show that the PSM method
can effectively reduce the differences in the distribution of explanatory variables between
the control and treatment groups and eliminate the estimation bias caused by sample
self-selection in our study. Additionally, Figure 3 demonstrates common support in the
distribution of the predicted propensity scores between the adoption and non-adoption of
smart agriculture. Most observations are within the common range of values (on support
in green and red).
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3.2.2. PSM Results

Table 3 shows the average treatment effects of smart agriculture on the diversification
of green production technologies on farms. The measurement results were essentially
consistent after the use of four different matching methods, all of which were significant
at the 1% level, thus indicating that the sample data had good robustness. In addition,
the arithmetic mean was selected to characterize the impact effects for later analysis. The
study findings indicate a significant and positive impact of smart-agriculture adoption on
farms’ GPT diversity. Specifically, the implementation of smart agriculture may increase the
likelihood of using green production technologies by 8.5% if all farms adopt this approach.
The possible reason is that smart agriculture has higher labor efficiency and productivity
than conventional agriculture [21], which provides a better practical environment for the
adoption of GPT.

Table 3. PSM regression results for the effects of smart agriculture on diversity in the GPT.

ATT S.E. T-Test

Panel A: K-nearest neighbor matching
Diversity of GPT 0.086 *** 0.025 3.44

Panel B: Kernel matching
Diversity of GPT 0.085 *** 0.023 3.71

Panel C: Partial linear matching
Diversity of GPT 0.082 *** 0.029 2.79

Panel D: Radius matching
Diversity of GPT 0.086 *** 0.025 3.48

Mean 0.085
Balancing property satisfied YES
Common support imposed YES

Number of treated 134
Number of controls 411

Combined 545
Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.
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3.2.3. Sensitivity Analysis

As mentioned earlier, the PSM method assumes that the decision to adopt smart
agriculture is based solely on observable factors. However, there may be some unobserved
factors at play. To test the susceptibility of the estimated treatment effect to these unob-
served factors, we conducted a sensitivity analysis using Rosenbaum bounds. The results
of this analysis are presented in Table A3. In this method, Γ is a measure of sensitivity to
hidden bias. The closer Γ is to 1, the greater the results’ sensitivity to possible hidden bias,
whereas Γ being closer to 2 reflects a lower sensitivity [30]. As shown in Table A3, four
matching methods of the gamma coefficient were still significant at the 10% confidence level
after 2. The PSM model was constructed based on the available confounding variables and
its estimated propensity values are robust, thus supporting the plausibility of our findings.

3.3. Robustness Tests Based on Instrumental Variables

This paper employed the ESR model to verify the robustness of our PSM results and
control for potential bias caused by unobserved factors. To ensure model identification, we
used the distance to the nearest agribusiness entity as a potential instrumental variable for
smart-agriculture adoption, which is commonly used in similar studies [31,32]. A valid
instrument should satisfy relevance and exogeneity properties. First, it should be highly
correlated with smart-agriculture adoption as only agribusiness entities are likely to offer
smart devices to farmers. Moreover, the proximity of a farm to an agribusiness entity
leads to a higher spillover effect, increasing the likelihood of nearby farmers adopting
smart agriculture. Second, its exogenous nature could be verified by the fixed distance
between a farm and the nearest agribusiness entity, even before the farmer decides to
adopt smart agriculture. Thus, the distance is less likely to have a direct impact on farmers’
GPT diversity. The estimation results are presented in Table A4, and as expected, the
distance has a significant and negative effect on smart-agriculture adoption, implying that
longer distances tend to reduce the probability of adoption. The Wald F statistics were all
significant, indicating the absence of a severe weak instrument problem.

Table 4 presents the estimated treatment effects of smart-agriculture adoption on the
diversity of GPT among farmers, which were consistent with the findings obtained from
PSM. However, the magnitude of the treatment effect was larger, with an average of 14.2%.
These results were further confirmed by the ESR model, indicating that smart-agriculture
adoption significantly improves farmers’ GPT diversity. It is important to note that the
treatment effect from the ESR model should be interpreted as a local average due to the
introduction of an additional instrument.

Table 4. Treatment effect of smart-agriculture adoption on the diversity of the GPT.

ATT ATU ATE

Diversity of GPT 0.142 ***
(0.011)

0.078 ***
(0.006)

0.094 ***
(0.005)

Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.

3.4. Channel Analysis

Table 5 presents the estimations of smart agricultural potential channels and their
effects on the diversity of green production technologies, using both KNNM and KN
methods. The results from both methods were largely consistent, as supported by previous
studies [33–36]. We found that smart agriculture has a significant and positive effect
on farms’ agricultural production, including network technology services, value-added
product, and environmental monitoring. More specifically, ATEs suggest that if all farms
were to adopt smart agriculture, the network technology services, value-added product,
and environmental monitoring could be increased by 17%, 78.7%, and 33.7%, respectively.
We thus conclude that improved access to network technology, value-added products, and
environmental monitoring services are potential changes through which smart farming has
a clear positive impact on the technological diversity of the green production of farms.
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Table 5. PSM regression results for the effects of smart agriculture on potential channels.

Variables ATT ATU ATE

Panel A: K- Nearest neighbor matching (KNNM)

Network technology services 0.139 **
(0.059)

0.180 ***
(0.055)

0.170 ***
(0.049)

Value-added product 0.784 ***
(0.037)

0.788 ***
(0.063)

0.787 ***
(0.053)

Environmental monitoring services 0.326 ***
(0.066)

0.341 ***
(0.065)

0.337 ***
(0.057)

Balancing property satisfied Yes
Common support imposed Yes

Observations 563
Number of treated 134
Number of controls 411

Combined 545
Panel B: Kernel matching (KN)

Network technology services 0.138 ***
(0.048)

0.185 ***
(0.048)

0.173 ***
(0.044)

Value-added product 0.783 ***
(0.036)

0.749 ***
(0.054)

0.757 ***
(0.047)

Environmental monitoring services 0.312 ***
(0.056)

0.350 ***
(0.057)

0.341 ***
(0.052)

Balancing property satisfied Yes
Common support imposed Yes

Observations 563
Number of treated 134
Number of controls 411

Combined 545
Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.

3.5. Heterogeneity Analysis

To further explore the differential impact of the adoption of smart farming by family
farms with different characteristics, we grouped farms according to their type, namely
whether they were involved in contract farming and their level of machinery value. The
PSM results are shown in Table A5. The level of green production technology diversity
enhancement appears to be more significant (with an 11.2% increase) after the adoption
of smart agriculture in pure plantation farms. This is likely due to the current focus on
smart farming for irrigation, fertilization, and weed control, which is more conducive to
improving green farming techniques in planting aspects. This is in line with the aims
of smart agriculture regarding food security [37]. Furthermore, farms without contract
farming had a greater increase in GPT diversity levels after using smart farming, with
an average treatment effect of 7.2%. With contracts in place to ensure farm sales and
farmer revenue, farmers are less motivated to pursue additional technical advancements.
The insignificant effect of contract farming on technology has also been verified in other
studies [38]. Accordingly, the number of farms adopting green production technologies
would not be significantly higher. Finally, the average treatment effect for farms with higher
levels of mechanization was 9.1%, significant at the 1% level. Possible reasons for this
could be that farms with high levels of mechanization have more productive capital and
technical knowledge and are more willing to embrace the new technologies brought by
smart farming.
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4. Discussion

The focus of the discussion will be based on the results of the study and will mainly
cover the adoption of smart agriculture and GPT, the impact of smart agriculture on green
production technologies, and future research directions.

4.1. Adoption of Smart Agriculture and GPT

Empirical studies on the adoption of GPT and smart agriculture have proliferated
globally, revealing that factors such as human capital and household resources play sig-
nificant roles [16,18]. Digital finance [39] and government support [26] are also major
factors affecting farmers’ adoption of GPT and smart agriculture. Against the backdrop
of the current global COVID-19 outbreak, some scholars have found that the adoption
of green and smart agriculture can effectively address the impact of COVID-19 on agri-
cultural development [40]. Smart farming offers advantages not only to scientists and
agronomists but also to farmers, as it enables them to leverage modern technologies and
devices that enhance productivity, minimize costs, and improve product quality [7]. Based
on the advantages of smart agriculture and green production technology adoption, scholars
have further explored the barriers to adoption, mainly including several demographic and
socioeconomic factors that may impede farmers’ adoption of AGPTs [41,42]. These include
individual endowment factors such as age and education level [28], family characteristics
such as arable area and farming experience, and cognitive factors such as environmental
knowledge and responsibility awareness [43]. There is consistency between these studies
and the results of our influencing factor in the logit model.

Additionally, policies such as agricultural subsidies and organizational support may
also play a role. For example, family farms in China are graded according to administrative
regions and level of farm development, including county model farms, municipal model
farms, and provincial model farms, and whether being a model farm has an impact on the
farm’s access to financial subsidies, which in turn affects whether the farm has sufficient
funds to adopt smart agriculture and GPTs. Therefore, whether it is a demonstration farm
or not also has an influence on the adoption of smart agriculture.

4.2. The Impact of Smart Agriculture on the Diversity of GPTS

According to the results of the ATT on the impact of smart agriculture on green pro-
duction technology diversity, farms that adopted smart agriculture were able to increase
their green production technology adoption percentage by 8.5%. In terms of the counterfac-
tual, farms using smart farming that do not adopt smart farming have a green production
diversity participation rate of 64.6% (adoption of 7 green production technologies), but their
green technology adoption diversity increases to 73.1% (adoption of 8 green production
technologies) due to the use of smart farming, an increase of 8.5% and a growth rate of
13.3%. The results validate the role of technology in contributing to green agricultural
development, which is in line with the direction of Beddington’s research [44].

In the mechanism test, we found that smart farming has a significant positive impact
on agricultural production on farms, including network technology services, value-added
products, and environmental monitoring. The results of the ATEs show that network
technology services, value-added products, and environmental monitoring could be in-
creased by 17%, 78.7%, and 33.7%, respectively, if all farms adopted smart farming. Sagheer
et al. [45] thought that smart agriculture offers the possibility of diversifying into green
technologies through detection and control. Romeo et al. also found that smart farming
uses integrated services to provide technical support to farmers, thus contributing to prod-
uct quality [46]. Improved product quality helps to improve farm income and provides
financial support for the adoption of green production technologies. Smart agriculture
makes automated operations possible, effectively improving the efficiency of environmen-
tal monitoring by Ahmed et al. [47]. For example, smart irrigation systems integrate IoT
technology with smart agriculture to conserve water consumption during the irrigation of
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agricultural land [48]. This not only improves GPT levels but also reduces production costs
on the farm.

The impact of agricultural production on environmental pollution also becomes mea-
surable when the level of environmental monitoring is increased. Instead of farmers relying
on experience for their farming activities and simply increasing fertilizers and pesticides as
the only solution to ensure yields, more scientific production solutions have been created
by smart farming systems. Our research findings bring new empirical evidence for the
development of green production methods on family farms. Family farms have stronger
economic power compared to smallholder farmers and with supportive national policies.
It is far more willing to adopt new technologies than smallholder farmers [49]. Based on
the impact of smart agriculture on the diversity of GPT, promoting smart agriculture in
farms is a good way to accelerate the modernization and greening of Chinese agriculture.

4.3. Future Research

Our study aims to investigate the impact of smart-agriculture adoption on the diversity
of GPTs. While this objective aligns with prior research, we extend the literature in three
key ways. First, we use representative samples on GPT adoption from family-farm surveys
in rural China in 2022. Second, we provide fresh evidence of influential mechanisms. Third,
we find that the diversity of GPTs is more significant on purely cultivated farms, farms
without contract farming, and farms with high levels of mechanization. This facilitates the
targeted promotion of smart farming.

The object of this paper is to grow family farms, and further research can be conducted
in the future depending on differences in the type of farm (e.g., farm or leisure farm), farm
cultivars (types of vegetables), etc. In this way, the hot areas of smart farming applications
can be analyzed, which in turn will complement the future directions of agricultural
technology improvement. In addition, the adoption of smart agriculture in this paper is
based on farmers’ individual choices, and the differences in the effects of active adoption
and policy support can be further analyzed in light of the future implementation of smart
rural projects in China. Finally, a separate discussion can be conducted to analyze the
differences in the adoption performance of drones, smart seeding, and smart irrigation
equipment based on the type of smart agriculture equipment, deepening the impact of
smart agriculture on green production technologies.

5. Conclusions

Smart agriculture has infiltrated agricultural production, and the increased adoption
of green technologies by technological advances is crucial for developing countries. In
this study, we estimated the impact of smart agriculture on GPT diversity through a field
survey of 563 family farms in Shaanxi Province, one of China’s agricultural production
provinces. PSM and ESR were applied to address possible selection bias from observable
and unobservable factors. We found that the use of smart agriculture had a significant
positive impact on GPT diversity, with an increase of 8.5%. Smart agriculture influences
the technological diversity of green production on farms through web-based technical
services, value-added products, and environmental monitoring services. Furthermore, GPT
diversity increased more significantly (by 11.2%) after the adoption of smart agriculture
in pure plantation farms. Farms without contracts were more strongly affected by the
green incentive effect of smart farming, with a 7.2% improvement. Finally, higher levels
of mechanization resulted in a greater diversity of GPTs on farms that adopted smart
agriculture, with a significant increase of 9.1%.

The policy implications of our findings are noteworthy. Although the widespread
adoption of smart agriculture and GPTs is expected to transform the agricultural and
environmental sectors, it is imperative to adopt a more inclusive development strategy.
More support should be provided to facilitate the adoption of smart agriculture. First,
smart agriculture software companies could simplify their equipment operations, taking
intelligence and convenience as the principles of smart agriculture manufacturing. It
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can customize its services according to the type of farm. For planting farms, testing
indicators can be matched to planting varieties, and intelligent agricultural systems such as
the planting encyclopedia can be developed to spread knowledge of green planting more
comprehensively. This method may lower the threshold for the use of smart agriculture and
make software in line with the knowledge level of farmers in developing countries. Second,
government departments could provide farms with financial subsidies to reduce the cost
of smart-agriculture adoption. Empirical experience shows that the contribution of smart
farming to green production is significant, controlling for other operational characteristics
of the farm. Reducing the cost of using smart farming is, therefore, an important way to
promote modernization and greening of agricultural development. Particular attention
should be given to the smaller and lower mechanization farms in the less developed
regions. Third, the government could expand the construction of rural infrastructure
network facilities to break the hardware barriers to smart agriculture applications and lay
the foundation for subsequent smart agriculture upgrades.

As the adoption of smart agriculture can be seen as a dynamic game between farmers
and producers in terms of costs and revenues, future research can focus on the dynamic
impact of smart agriculture on environmentally sustainable behaviors, exploring the long-
term impacts of smart agriculture, and its relationship with agricultural yields and green
behaviors. However, caution should be exercised when interpreting the results of our
study. More research is needed to analyze the heterogeneity of adoption costs, as the
costs and outputs of smart farming adoption may vary considerably across different smart
farming practices, thus influencing farmers’ adoption of GPTs. It would also be useful
to further explore the relationship between smart farming and farmers from the perspec-
tive of behavioral economics, such as the moderating role of farmers’ risk perceptions
and preferences.
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Appendix A

This appendix contains five tables and one figure that display information on PSM
match quality, sensitivity analysis, ESR regression results, heterogeneity analysis, and smart
equipment.

More specific equipment for smart agriculture, including smart sowing, smart spray-
ing, and smart plowing equipment. Machines controlled by the network, belonging to
the collection and operation desk for real-time monitoring and analysis, are shown in
Figure A1.
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Table A1. Overall PSM quality indicators before and after matching.

Method Sample Ps R2 LR chi2 Mean Bias (%)

Unmatched 0.157 99.61 38.9
K Nearest Neighbor Matching Matched 0.006 2.08 3.1

Kernel matching Matched 0.002 0.87 2.3
Partial linear matching Matched 0.024 8.78 8.5

Radius matching Matched 0.005 1.84 2.7

Table A2. Covariate balance test.

Variables
Unmatched Mean

%Bias T Value p > |t|
Matched Treated Control

Age U 46.638 49.472 −31.7 −3.24 0.001
M 47.09 46.688 4.5 0.36 0.717

Education
U 12.319 10.81 54.4 5.56 0.000
M 12.157 12.062 3.4 0.30 0.764

Professional farmer
U 0.702 0.604 20.6 2.09 0.037
M 0.701 0.716 −3.1 −0.27 0.789

Years of planting U 18.312 22.069 −31.9 −3.23 0.001
M 18.776 19.629 −7.3 −0.62 0.538

Land scales
U 243.45 127.42 36.3 4.44 0.000
M 201.01 210.79 −3.1 −0.24 0.811

Machine value
U 10.764 9.262 41.4 3.98 0.000
M 10.718 10.66 1.6 0.15 0.877
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Table A2. Cont.

Variables
Unmatched Mean

%Bias T Value p > |t|
Matched Treated Control

Farm income
U 13.436 12.443 47.1 4.84 0.000
M 13.333 13.285 2.2 0.21 0.834

Farm cost
U 12.472 11.505 66.4 6.95 0.000
M 12.366 12.338 1.9 0.16 0.875

Brand
U 0.433 0.173 58.8 6.49 0.000
M 0.403 0.418 −3.4 −0.25 0.805

Contract farming U 0.355 0.185 38.9 4.22 0.000
M 0.328 0.339 −2.6 −0.19 0.847

Number of labors
U 2.6525 2.372 17.3 1.90 0.057
M 2.5896 2.639 −3.1 −0.26 0.798

Demonstration farms
U 0.766 0.521 52.7 5.21 0.000
M 0.754 0.757 −0.8 −0.07 0.944

Cooperatives U 0.546 0.384 32.9 3.40 0.001
M 0.537 0.532 1.1 0.09 0.927

Table A3. Rosenbaum bounds sensitivity analysis.

Gamma
KNNM KM PLM RM

Sig+ Sig− Sig+ Sig− Sig+ Sig− Sig+ Sig−
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.5 0.002 0.000 0.001 0.000 0.002 0.000 0.002 0.000
1.6 0.005 0.000 0.004 0.000 0.004 0.000 0.005 0.000
1.7 0.012 0.000 0.009 0.000 0.010 0.000 0.012 0.000
1.8 0.023 0.000 0.018 0.000 0.020 0.000 0.023 0.000
1.9 0.040 0.000 0.032 0.000 0.036 0.000 0.040 0.000
2 0.065 0.000 0.053 0.000 0.058 0.000 0.064 0.000

Table A4. Estimation of smart-agriculture adoption on the diversity of GPT.

Variables (1) Select Equation (2) Adoption (3) Nonadoption

Constant −2.854 ***
(0.861)

0.622 **
(0.280)

0.177
(0.130)

Age −0.008
(0.010)

−0.004
(0.002)

−0.000
(0.001)

Education 0.059 **
(0.025)

0.003
(0.006)

0.009 **
(0.004)

Professional farmer −0.052
(0.143)

0.025
(0.034)

0.065 ***
(0.021)

Years of planting −0.006
(0.007)

0.001
(0.002)

−0.001
(0.001)

Land scales 0.000
(0.000)

0.000
(0.000)

−0.000
(0.000)

Machine value 0.019
(0.019)

0.016 ***
(0.005)

0.008 ***
(0.002)

Farm income 0.001
(0.037)

0.020 **
(0.008)

0.004
(0.005)

Farm cost 0.142 ***
(0.054)

−0.023 *
(0.013)

0.016 *
(0.009)
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Table A4. Cont.

Variables (1) Select Equation (2) Adoption (3) Nonadoption

Brand 0.473 ***
(0.145)

0.021
(0.038)

−0.045
(0.028)

Contract farming 0.200
0.152

0.030
(0.034)

0.044 *
(0.026)

Number of labors 0.021
0.039

0.004
(0.008)

0.004
(0.007)

Demonstration farms 0.313 **
0.145

−0.023
(0.013)

−0.047 **
(0.021)

Cooperatives 0.010
0.135

0.049
(0.032)

0.041 **
(0.020)

Distance −0.203 ***
(0.070)

Rho1 −0.013
(0.381)

Lns1 −1.783 ***
(0.060)

Rho0 −0.221
(0.230)

Lns0 −1.64 ***
(0.039)

Likelihood −155.342
Wald test 61.47 ***

Observations 563
Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.

Table A5. PSM regression results for heterogeneity analysis.

Variable
ATT

Type of Farm Contract Farm Machine Value

Diversity
of GPT

=plantation
farm

=Combined
farm =1 =0 >average <average

0.112 ***
(0.030)

0.067
(0.043)

0.052
(0.041)

0.072 **
(0.030)

0.091 ***
(0.027)

0.076
(0.056)

Note: ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.
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