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Abstract: The article provides an overview of the accuracy of various yield forecasting algorithms
and offers a detailed explanation of the models and machine learning algorithms that are required
for crop yield forecasting. A unified crop yield forecasting methodology is developed, which can be
adjusted by adding new indicators and extensions. The proposed methodology is based on remote
sensing data taken from free sources. Experiments were carried out on crops of cereals, legumes,
oilseeds and forage crops in eastern Kazakhstan. Data on agricultural lands of the experimental
farms were obtained using processed images from Sentinel-2 and Landsat-8 satellites (EO Browser)
for the period of 2017–2022. In total, a dataset of 1600 indicators was collected with NDVI and
MSAVI indices recorded at a frequency of once a week. Based on the results of this work, it is found
that yields can be predicted from NDVI vegetation index data and meteorological data on average
temperature, surface soil moisture and wind speed. A machine learning programming language
can calculate the relationship between these indicators and build a neural network that predicts
yield. The neural network produces predictions based on the constructed data weights, which are
corrected using activation function algorithms. As a result of the research, the functions with the
highest prediction accuracy during vegetative development for all crops presented in this paper are
multi-layer perceptron, with a prediction accuracy of 66% to 99% (85% on average), and polynomial
regression, with a prediction accuracy of 63% to 98% (82% on average). Thus, it is shown that the
use of machine learning and neural networks for crop yield prediction has advantages over other
mathematical modelling techniques. The use of machine learning (neural network) technologies
makes it possible to predict crop yields on the basis of relevant data. The individual approach of
machine learning to each crop allows for the determination of the optimal learning algorithms to
obtain accurate predictions.

Keywords: yield forecasting; remote sensing; machine learning; cereals; oilseeds; grain legumes;
forage crops; sustainable farming practices

1. Introduction

Advances in modern technology have facilitated the monitoring of numerous factors
that can influence crop yields. The systematic collection and analysis of data relating to
these factors makes it possible to establish their specific impact on yield and even predict
it. Accurate crop yield forecasting is a vital and complex activity, essential for achieving
sustainable intensification and the sustainable use of natural resources.

The importance of crop yield forecasts extends to the various stakeholders involved in
the agrifood chain, including farmers, agronomists, commodity traders and policy-makers.
These forecasts provide valuable insights that are used in decision-making processes and
help to optimise agricultural practices. However, yield forecasting is a complex task because
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of the complex interrelationships between crop-specific parameters, environmental condi-
tions and choice of management practices. Developing a reliable and transparent forecast
model is a complex task that requires careful study and a comprehensive understanding
of these multifaceted influences. Modern technology allows us to monitor many factors
that can influence yield. By collecting data on these factors, it is possible to determine
their impact on yields and even predict them. Crop yield prediction is an important but
complex process and is necessary for sustainable intensification and efficient use of natural
resources [1]. Crop yield forecasts are valuable to many stakeholders in the agri-food chain,
including farmers, agronomists, commodity traders and policymakers [2]. Crop yields are
influenced by many crop-specific parameters, environmental conditions and management
decisions [3], and it is difficult to build a reliable and explainable forecast model.

Typically, field surveys, crop growth models, remote sensing data, statistical models
and their combinations are used for crop yield prediction. These methods themselves
address slightly different aspects of crop yield forecasting. Crop growth models simulate
the growth and development of crops according to the agronomic principles of plant–
environment interactions and management [4]. Remote sensing techniques rely on satellite
imagery to capture the current crop condition and then estimate the final yield [5]. Statisti-
cal models use weather variables and results from the previous three methods as predictors
to obtain linear relationships between predictors and crop yields, for example [6]. Recent
studies have combined different methods in innovative ways to construct yield prediction
models. For example, ref. [7,8] used high-resolution remote sensing data and crop mod-
elling to build statistical models to predict actual yields. Similarly, ref. [9] developed a
probabilistic yield forecasting system for Canada using remote sensing, crop modelling,
Bayesian inference and statistical models.

Crop monitoring and yield forecasting methods are described in detail in [10]. This
paper provides information on satellite data, the approaches used to process satellite
images, and the methods used for agricultural land use mapping and yield forecasting. A
brief introduction to the combination of parameters that can be used for forecasting analysis
is obtained. Machine learning algorithms are used to train the data. We also provide a
detailed introduction to the different machine learning methods and accuracy assessments
of machine learning algorithms.

The purpose of this paper is to develop a machine learning and neural network-based
crop yield forecasting methodology for crop yield prediction. Machine learning uses an
empirical modelling approach to learn useful patterns and relationships from input data [11]
and provides a promising avenue for improving crop yield forecasts. Machine learning
algorithms approximate a function that relates functions or predictors to labels such as crop
yields. Similar to statistical models, machine learning algorithms can use the results of
other methods as functions. In addition, machine learning algorithms have some distinct
advantages: they can model non-linear relationships between multiple data sources [12],
their performance tends to improve when more model training data are available [13], and
they can become robust to noisy data by using regularization techniques that help reduce
variance and generalization error [14]. Thus, machine learning can combine the advantages
of other methods such as crop growth models and remote sensing (RS) with data-driven
modelling to produce reliable crop yield predictions.

Many studies have applied machine learning to predict crop yields in certain locations,
but it is unclear whether their data and methods can be used for other crops and soil-
climatic zones. Some have used empirical data collected for specific purposes that may
not be available for other crops or soil and climate zones [15]. Some studies have used
publicly available climate and satellite data but have opted for crops and locations that
limit their reusability [16]. To determine the best machine learning method, the authors’
work [17] was used to give a brief introduction to machine learning algorithms that can
be used for yield prediction. Crop yield prediction allows early detection of problems
that reduce overall crop production, and this paper provides a detailed explanation of
the machine learning models and algorithms that are required for crop yield prediction.
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The paper also compares the accuracy of different yield prediction algorithms. In [18], the
authors showed the effectiveness of using Python programming language [19] and the
Jupyter Notebook platform [20] to implement machine learning methods in yield prediction.
Python has many supported libraries for data analysis and machine learning [21], making
it suitable for achieving the goals of this paper. The developed methodology is written
in Python programming language based on the Jupyter Notebook platform. Pandas [22],
Matplotlib [23], Numpy [24], Seaborn [23] and Scikit-learn [25] libraries were used to
develop the yield forecasting methodology. The methodology is based on remote sensing
imagery taken from free sources EO Browser and ladsweb.modaps.eosdis.nasa.gov based
on experimental sites with cereals, legumes, oilseeds and forage crops in East Kazakhstan.
The farmland data were obtained using processed images from Sentinel-2 and Landsat-8
satellites (EO Browser) for the period 2017–2022. Meteorological data were acquired using
the OpenWeatherMap API [26], which made it possible to obtain archived data from 2017
to 2022 with batch processing of factors for the area of interest and to use the acquired
data for commercial purposes according to the license. The collected data were exported
and sorted by crop into xlsx files. These included the following factors: yield, MSAVI [27],
NDVI [28], maximum temperature, minimum temperature, surface soil moisture, root zone
moisture, wind speed and air humidity. In total, a dataset of 1600 indices was collected, in
which the NDVI and MSAVI indices were recorded at a frequency of once a week. The data
were trained for two crop growing seasons: the first growing season (May–June) and the
second growing season (August–September).

Several studies have demonstrated the feasibility of using RS data for perennial crop
yield forecasting. These studies have employed different RS sensors, such as optical, mi-
crowave, and hyperspectral sensors, to capture crop growth and physiological parameters,
such as vegetation indices, canopy height, and water content. For instance, in a study
by Li et al. [29], 10 vegetation indices (VI) derived from PlanetScope and Sentinel-2 time
series images were used to examine the feasibility of estimating maize grain yield using
different regression methods. The study was conducted in Minnesota (USA). There was
good agreement between observed and predicted yields, with a coefficient of determination
of 0.81 at day 86 after sowing. The feasibility of using monthly Sentinel-2 satellite image
composites was investigated in [30] to predict rice yield one month before the harvest
period at the field level using ML techniques in Taiwan. Model validation results from
SVM models using data from transplanting to ripening showed RMSPE and MAPE values
of 5.5% and 4.5% for the second crop in 2019 and 4.7% and 3.5% for the first crop in 2020.

However, the aforementioned studies faced some limitations. For instance, some
studies used limited or outdated RS data, which may affect the accuracy and reliability of
yield forecasting. Others did not consider the influence of environmental factors, such as
weather, soil, and pests, on crop growth and yield, which can lead to biased predictions.
Moreover, some studies used conventional regression or machine learning models, which
may not capture the complex and dynamic relationships between RS parameters and yield
and may lead to overfitting or underfitting.

The integration of modern technology and advanced data analysis has the potential
to bring a breakthrough to agricultural management and support sustainable practices.
However, previous studies have faced limitations that have hindered their effectiveness.
Some of the studies [31] used limited or outdated remote sensing data, which reduced
the accuracy and reliability of yield predictions. In addition, the influence of important
environmental factors such as weather, soil conditions and pests were often not taken into
account [32], resulting in biased predictions. Moreover, relying on conventional regression
or machine learning models [33], it was not possible to capture the complex relationships
between remote sensing parameters and yields, leading to over- or under-interpretation.

To overcome these limitations, the research should focus on incorporating relevant and
complete remote sensing data, accounting for environmental factors and using advanced
modelling techniques. In this way, agricultural management will be able to take advantage
of more accurate and reliable yield forecasts, enabling informed decisions on resource
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allocation, land management and crop selection. Ultimately, this will optimise agricultural
practices, reduce resource wastage and ensure the sustainability of the agri-food sector.

Within that knowledge gap, the current work proposes a new method for predicting
the yield of perennial crops based on RS data. The novel scientific contribution of this work
consists of the joint use of several data sources—UAV, remote sensing, agrochemical studies,
and weather data, within a neural network for yield forecasting. Following this approach
increases the accuracy of predictions, leading to informed decision-making, optimised
resource allocation and reduced environmental impact.

2. Method Summary

The research concept lies in using remote sensing and meteorological data processing
to develop crop yield forecasts. This approach has the potential to revolutionise agricultural
management and support sustainable practices. Machine learning algorithms can be used
to analyse large data sets and identify patterns in crop growth and development that are
difficult to detect using traditional methods. The assessment and elimination of emission
data entail the consideration of multiple criteria and factors, thereby ensuring the reliability
and accuracy of the dataset. These criteria encompass various key elements that facilitate
the identification and removal of undesirable or erroneous emissions-related information.
Among the pivotal factors are as follows:

(1) Use of remote sensing and meteorological data: The most important criterion involves
a careful assessment of the accuracy and reliability of remote sensing and meteoro-
logical data used in the study. Emission data showing inconsistencies or unreliability
with regard to remotely sensed and meteorological data can be deleted.

(2) Application of machine learning algorithms: The second criterion concerns the effec-
tiveness of machine learning algorithms in detecting patterns related to crop growth
and development. Emission data that deviate significantly from the identified patterns
or show anomalies can be considered potential candidates for deletion.

(3) Comparison with traditional methods: The third criterion involves comparing emis-
sion data obtained using remote sensing and meteorological data processing with
emission data obtained using traditional methods. If emission data derived from
traditional methods are found to be more accurate or reliable, the corresponding
emission data derived from remote sensing and meteorological data can be excluded.

If these criteria are reasonably met, the study seeks to provide a comprehensive basis
for excluding emissions from the data set. This approach ensures that the resulting crop
yield forecast model is based on reliable and valid information.

2.1. Modelling Approach and Procedure

The modelling procedure involves collecting historical yield, remote sensing and
meteorological data on the target crops. The data are pre-processed and cleaned to remove
outliers and missing values. In the context of yield forecasting, it is essential to ensure the
integrity and accuracy of the data set by effectively handling outliers, including outliers
that can affect the reliability of forecasting models. The study used a modified statistical
Z-Score method to identify and remove outliers that deviated significantly from expected
models or distributions.

The modified Z-Score method is recognised for its reliability in detecting outliers,
allowing the distinction between extreme outliers, which represent true outliers, and data
points, which correspond to underlying relationships in the data set. By applying this
statistical method to the preprocessing and data-cleaning phase, we successfully identified
and excluded 176 outliers from the dataset.

Determining which outliers should be excluded was based on a thorough statistical
analysis. Using this analysis, a suitable threshold was established to distinguish true
outliers indicating anomalous behaviour or data quality problems from valid data points
that were consistent with the expected patterns of the agricultural system under study.
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By systematically removing these identified outliers, it was possible to improve the
integrity of the data set and minimise the possibility of distortion in the yield prediction
models. This approach aimed to ensure that the resulting models were robust and able
to reflect the fundamental relationships between the various factors affecting crop yields
while mitigating the impact of anomalous outliers.

It is important to note that the exact number of remote emissions, namely 176, high-
lights the scale of the data points identified as outliers using the modified Z-Score method.
Including this information provides transparency and facilitates the reproducibility of the
study by allowing other researchers to understand the extent to which emissions were
treated as outliers in the data-cleaning process.

Feature engineering techniques are applied to extract relevant information from remote
sensing. Meteorological data and machine learning algorithms such as Random Forest and
Neural Networks are used to train the yield prediction model. The model is validated using
data from recent growing seasons, and the accuracy of the model is assessed using metrics
such as mean absolute error and root mean square error. The impact of different data
sources, feature construction methods and machine learning algorithms on the accuracy
of yield predictions are also evaluated. Finally, the results of the modelling procedure are
used to draw conclusions about the potential of machine learning to improve crop yield
prediction and support sustainable agricultural practices.

2.2. Remote Sensing Imagery Data and Preparation of the Development Environment

Satellite imagery data were processed using Agisoft Metashape Professional software.
The data were obtained from farms in East Kazakhstan, specifically from experimental
farmlands in two distinct soil-climatic zones: chernozem (Figure 1A) and chestnut-type
soils (Figure 1B). The total number of RS images amounts to 64 tiles.
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Figure 1. Contours of the experimental polygons for two soil-climatic zones: (A) Black soil;
(B) Chestnut soil.

Earth remote sensing (ERS) data were obtained from the Sentinel Hub EO Browser
web platform from the Sentinel-L2A satellite. Spectral indices: normalised vegetation
index (NDVI) and modified corrected soil index (MSAVI) were processed using Agisoft
Metashape Professional software.

The current methodology was implemented within the Jupyter Notebook development
environment [20]. This provides an opportunity to interact interactively with compiled
code fragments visualising the work of the programme. The difference from the traditional
IDE is that the code can be divided into parts and executed in any order. This development
environment allows one to test the function that has been written without compiling the
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whole program. A separate memory load function is available so that the resulting part of
the content can be checked. This approach saves time and helps to avoid errors.

The effectiveness of the Python programming language in handling geographic data
was demonstrated in [34]. Pandas and Numpy libraries were used to handle culture data
exported in xlsx format, which handles large volumes of information efficiently and works
with the Excel document format. Consistent use of QGIS and Python (Matplotlib, Pandas,
Seaborn), incorporating various computational methods, was proposed in [35]. That work
emphasises the functionality of a high-level language such as Python and the applicability
of machine learning algorithms to earth science. In this study, the Seaborn statistical
package built on the Matplpotlib Python library was tested to analyse, model and visualise
geospatial data using existing approaches [36]. Efficient and accurate graphing supported
by Python demonstrates the undeniable benefits of machine learning in earth sciences.

The field of Data Science is based primarily on the structuring of data; thus, there is
a need for data preparation libraries. Currently, the best and most used Python library
in this field is Pandas. Pandas has a wide range of capabilities for input/output data
formats, such as Excel, CSV, Python/NumPy, HTML, SQL and others. In addition, Pandas
has powerful query capabilities, statistical calculations and basic visualisation. Pandas
is richly documented, but its syntax is a bit confusing, which is often pointed out as its
most significant drawback. Pandas aims to be a fundamental high-level building block for
conducting practical, real-world data analysis in Python. In addition, this library has the
broader goal of becoming the most powerful and flexible open-source data analysis and
manipulation tool available in any language.

3. Sorting the Data and Calculating the Optimum Indicators
3.1. Importing Libraries and Sorting Data

Pandas, Matplotlib and Numpy libraries are imported first, followed by the creation
of crop databases from previously downloaded and saved xlsx files. The Excel files are
read using the read_excel function, which creates the Pandas database from the existing
data in the file.

According to [37], temperature is an important factor for yield modelling. Previous
studies have shown the importance of averaged temperature and precipitation of the grow-
ing season in explaining crop yield variability [38]. Maximum and minimum temperature
parameters need to be combined into an average to reduce the amount of data. Based
on the literature review, it was decided to use two data stacks consisting of maximum
and minimum temperatures. The average temperature was calculated by determining the
arithmetical root of the temperature parameters and creating a new data set from the results
(Figure S1).

It was necessary to put the data in order before examining the influence of the factors
on each other.

The read_excel function in Figure S2 is the path to the Excel files from which the Pandas
database is created. The maximum and minimum temperature columns are extracted from
the created database, and their sum is divided by two. The resulting value is stored as the
average temperature.

Figure S3 shows a snippet of code to remove block lines in xlsx files with the presence
of a hyphen. This method is achieved by checking the columns through an algorithm for
data “not equal to” the hyphen. Then, after removing all the empty values, the data are
converted to float type via the astype() function for correct data handling in future. To
check and clean the data, the info() function is used to display empty null values and the
data type. The output of the info() function is shown in Table 1.
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Table 1. Output of info().

Column Non-Null Count Dtype

Week 93 non-null int64
NDVI 93 non-null float64

Average deg. C 93 non-null float64
Surface soil moisture (%) 93 non-null float64

Moisture in the root zone (%) 93 non-null float64
Wind speed (m/s) 93 non-null float64

Moisture (%) 93 non-null float64
Date 93 non-null datetime64[ns]

All data are populated with undefined characters and correspond to an acceptable
data type. The output is a list of meteorological data and NDVI at intervals of 1–2 weeks.

3.2. Ratio of Indicators to NDVI

Since we found from previous studies that NDVI is a key indicator for yield, let us
consider the behaviour of other factors in relation to it. To do this, plots of the relationship
of all indicators to NDVI are output via the plot tool of the Matlpotlib library (Figure 2).
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The correlations and patterns of the NDVI index and weather data are shown in
Figure 2. The analysis shows various noteworthy observations. First, the correlation be-
tween NDVI index and temperature shows a weak relationship, indicating that temperature
alone cannot be a strong predictor of changes in NDVI. Secondly, the behaviour of humid-
ity indices shows similarities with the NDVI index, indicating a potential link between
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humidity and vegetation growth. Finally, the impact of precipitation on the NDVI index
seems to be insignificant, as the observed effect on the index is limited.

3.3. Data Correlation

The correlation coefficient [39] (denoted as r) determines both the strength and direc-
tion of the relationship between the dependent and independent variables. The values of
r range from −1.0 (strong negative relationship) to +1.0 (strong positive relationship). A
significant correlation between two random variables is always evidence of some statistical
relationship in a given sample, but this relationship need not be observed for another
sample and be causal. Often, the luring simplicity of correlation studies leads the researcher
to draw false intuitive conclusions about the existence of a causal relationship between
pairs of variables, whereas correlation coefficients only establish statistical relationships.

The basic intuition underlying information theory is the idea of the characteristic of
“unpredictability” of a random variable, also known as information entropy. For a random
variable X that takes values in the set χ = {x1, x2, . . . , xn} with a probability mass function
p(x), the entropy H(X) is formulated as (1).

H(X) = −∑x∈χ
p(x)log(p(x)) (1)

A negative sign ensures that entropy is always positive or zero. H(X) can be thought
of as approximately equal to the information from a single instance of a random variable
X. Informativeness will be high when the probability is low, and vice versa. Mutual
information (MI) measures how closely a random variable is related to the concept of
entropy. The VI for two random variables X and Y, denoted by I(X;Y), is stated as (2).

I(X; Y) = H(X)− H(X|Y) (2)

where H(X|Y) is the conditional entropy for X given by Y. I(X;Y) measures the average
reduction in uncertainty in a relation, which leads to a value study [40]. It is a more general
form of correlation coefficient, providing an overall measure of the dependence (linear and
non-linear) between two variables [41]. The greater the value of the VI, the greater the
relationship between the two variables. This is an important statistic when analysing time
series from non-linear systems [42]. The VI between two random variables X and Y with
joint probability mass function p(x,y) and marginal probability density functions p(x) and
p(y) is defined as

I(X; Y) = ∑x∈χ ∑yεY p(x, y)log
p(x, y)

p(x)p(y)
(3)

The correlation method used is the linear correlation coefficient (or Pearson correlation
coefficient [43]). The correlation coefficient is calculated using Formula (4).

rXY =
covXY
σXσY

=
∑(X− X)(Y−Y)√

∑(X− X)2 ∑(Y−Y)2
(4)

Here, X = 1
n ∑n

t=1 Xt, Y = 1
n ∑n

t=1 Yt—are the mean values of the samples. The
correlation coefficient varies from minus one to plus one. The proof of this is that, dividing
both parts of the dual inequality −σXσY ≤ covXY ≤ σXσY we get −1 ≤ rXY ≤ 1.

The linear correlation coefficient is related to the regression coefficient, as follows:

rXY = ai
covXY
σXσY

(5)
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where ai is the regression coefficient, x is the standard deviation of the relevant factor.
x∗i = a + bxi,
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The correlation method used is the linear correlation coefficient (or Pearson correla-

tion coefficient [43]). The correlation coefficient is calculated using Formula (4). 

𝑟𝑋𝑌 =
𝑐𝑜𝑣𝑋𝑌

𝜎𝑋𝜎𝑌
=

∑(𝑋−𝑋)(𝑌−𝑌)

√∑(𝑋−𝑋)
2

∑(𝑌−𝑌)
2
  (4) 

Here, 𝑋 =
1

𝑛
∑ 𝑋𝑡

𝑛
𝑡=1 , 𝑌 =

1

𝑛
∑ 𝑌𝑡

𝑛
𝑡=1 —are the mean values of the samples. The correla-

tion coefficient varies from minus one to plus one. The proof of this is that, dividing both 
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𝑟𝑋𝑌 = 𝑎𝑖
𝑐𝑜𝑣𝑋𝑌

𝜎𝑋𝜎𝑌
  (5) 

where 𝑎𝑖 is the regression coefficient, 𝑥 is the standard deviation of the relevant factor. 

𝑥𝑖
∗ = 𝑎 + 𝑏𝑥𝑖 ,￼ 𝑦𝑖

∗ = 𝑐 + 𝑑𝑦𝑖￼ the linear correlation coefficient will equal Equation (3). 

𝑟𝑋∗𝑌∗ =
𝑏𝑑

|𝑏𝑑|
  (6) 

The correlation is automatically calculated by the built-in corr() function of the Pan-

das library. The correlation graph is called with the Seaborn library via the heatmap func-

tion (Figure 4). 

y∗i = c + dyi
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the linear correlation coefficient will equal Equation (3).

rX∗Y∗ =
bd
|bd| (6)

The correlation is automatically calculated by the built-in corr() function of the Pandas
library. The correlation graph is called with the Seaborn library via the heatmap function
(Figure 3).
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Figure 3 shows the correlation coefficients of all data studied with one another. The
data with high correlation with yield are the priority indicators. In calculating the param-
eters, attention is paid to their correlation to yield and NDVI. A low correlation to these
indicates little influence, while a high correlation to the other parameters means the same
thing. This is because if two parameters are highly correlated with each other, they have the
same influence on the other factors because they are interrelated. According to research [44],
soil health indicators showed no correlation with crop yields. On the contrary, soil moisture
is an important factor for predicting yield. The authors of [45] point out that soil moisture
content is an effective factor for biological processes and soil profile evolution. In addition,
soil moisture affects the distribution of vegetation. Therefore, a lack of moisture can lead
to drought and degradation, especially in rainfall-dependent areas [46]. Remote sensing
and GIS methods provide reliable alternatives to traditional methods that can cover vast
areas and provide information on spatial and temporal variations in soil moisture content.
Soil moisture content is a major environmental pressure in areas that suffer from poor soil
drainage, along with high groundwater table fluctuations that affect crop survival, growth
and productivity [47]. Various authors have developed new methods for estimating soil
moisture content based on soil reflection and ground surface temperature [48]. The surface
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moisture content of soil can be estimated based on NDVI. The authors of [49] described this
NDVI relationship as a linear relationship with soil moisture content. According to these
data, the moisture content parameter of the surface layer of soil was taken for machine
learning. When analysing the correlation of the data, it was found that the moisture param-
eters are related to one another; thus, the moisture, precipitation and root zone moisture
parameters were removed. The date and week information was also removed, as these
parameters are consistent and would only interfere with model training.

Statistical models and machine learning tools were used to simulate crop yield variabil-
ity using weather indices as inputs. Extreme weather events from the recent past, such as
the droughts in Russia in 2010–2011 and in the United States (US) in 2012, and their impact
on regional crop production and world commodity markets clearly led to the need to also
account for extreme weather conditions when modelling crop yields [50]. For example,
winter wheat has been shown to be particularly susceptible to negative temperatures in
autumn and to heat stress during grain filling and stem lengthening [51]. This vulnerabil-
ity to extreme temperatures is thought to be responsible for the decline in wheat yields
throughout Europe [52]. According to another study [53], every day above 30 ◦C causes
yield reductions of up to 6% in maize and soybean under rainfed conditions. Similarly,
inter-annual variations in rainfall also play a decisive role in crop growth. Although several
studies have considered indices of weather extremes in their analyses, their scope has
either been limited to measuring the conditional relationship with yield [54] or the types of
extremes considered have been limited [55]. A non-linear and threshold relationship has
been shown to exist between yield and weather indices [56]. However, most previous stud-
ies modelled this non-linearity using regression models with quadratic terms for average
weather indices without appropriate justification. Understanding the exact relationship
between weather indices and crop yields is important, given that a previous study reported
significant stagnation and declines in yields of major cereal crops for more than a quarter
of the world’s cropland [57].

4. The Use of Machine Learning and Neural Network Technologies for
Yield Forecasting
4.1. Scikit-Learn Machine Learning Model

The Scikit-learn library is used for machine learning. Scikit-learn is one of the most
widely used Python packages for Data Science and Machine Learning. It allows many
operations and provides many algorithms. Scikit-learn also offers excellent documentation
about its classes, methods and functions, as well as a description of the algorithms used.

The database is divided into two samples. One is taken as a training sample to train
the model, and the second one is used to test the already trained model (Figure S4).

For the best results, several activation functions are used to train the model. To avoid
having to rewrite the code to create the model and its outputs, the predict() function is
created to take as input only the activator of the desired model function (Figure S5).

Figure 4 shows the flowchart of the yield forecasting methodology. The first flowchart
is defined as weather and vegetation index data. The collected data are separated by crop
and then sorted, reducing the number of categories and removing empty values. According
to the timing of the two growing seasons, two samples are taken from the processed data for
the entire growing season and the sowing and harvesting period. The sample is combined
with the yield data, and the correlation of all indicators on the collected data is calculated.
By examining the correlation of data and studies on the topic, categories are selected that
will help in predicting yields.
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Figure 4. Diagram of the priority indicators analysis stage of the yield forecasting procedure.

Figure 5 shows how the training and test samples are formed based on the selected
data. Based on the training sample, the neural network model is trained. During training,
the training results of six activation functions are tested on the test sample data. If the
prediction accuracy results are low, the neural network automatically corrects its weights
and retrains. When the final error value reaches the minimum possible value, the neural
network completes the training. If the prediction accuracy of the trained machine learning
model is high, the model is stored and used for yield prediction.
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The performance of the model was estimated using mean squared error (MSE) and
root mean square error (RMSE). Each output of the function is compared with the actual
value, and the prediction accuracy is measured using MSE and RMSE. These are defined
by Equations (7) and (8).

Mean squared error:

MSE =
1
n ∑n

i=1

(
Yi − Ŷi

)2 (7)

where n—number of data points; Yi—observed values; Ŷi—predicted values.
MSE is the mean squared error [58] used as a loss function for least-squares regression.

It is the sum over all data points of the squared difference between predicted and actual
target variables divided by the number of data points.

Root mean square error:

RMSE =

√
1
n ∑n

i=1

(
Yi − Ŷi

)2 (8)

where i—number of data points; N—number of non-missing data points; xi—actual obser-
vations time series; x̂i—estimated time series.
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RMSE is the square root of MSE [59]. MSE is measured in units that are the square
of the target variable, while RMSE is measured in the same units as the target variable.
Because of its formulation, MSE, like the loss squared function from which it derives,
effectively penalises more serious errors.

4.2. Activation Functions Used to Train the Neural Network

Artificial neural networks are mathematical tools and flexible structures that can create
a non-linear mapping between input and output spaces [60]. Neural networks mimic the
function of neurons in the brain to process information and make decisions. With their
learning capability, they can identify and model complex non-linear relationships between
inputs and outputs of biological processes, providing superior predictive power over
traditional statistical methods for understanding complex relationships in communication
formulations [61]. The deep learning method promises great advances in natural science
data processing because it can account for large input dataset sizes, non-linear relationships
and relationships between multiple variables [62]. Convergent neural networks (CNNs),
the most popular model among deep learning methods, have been used to estimate and
predict crop yields [63]. Deep learning methods with multiple hidden layers tend to
perform better than artificial neural network models with a single hidden layer. However,
deep learning models are more difficult to train and require more advanced hardware and
optimisation techniques [64].

Among various ANN methods and learning algorithms, Multilayer Perception Net-
works (MLP) and radial basis function (RBF) are the most popular neural network mod-
els [65]. MLP can identify the relationship between output and input variables and detect
intrinsic knowledge in a dataset without prior physical consideration. An RBF network is a
combination of an input neuron layer, a hidden layer of RBF neurons and an output neuron
layer that linearly connects the hidden layer to the output node and computes the input
variables passed from the input layer to the hidden layer. The non-linear transformation
process also takes place in the hidden layer, resulting in a mapping between the input
neurons and the hidden layers [66]. Neural networks are widely used in agricultural fields
such as grain yield in ajouan [67] and sunflower [68], winter rapeseed yield modelling [69],
and yield prediction in winter wheat, maize and rice. In addition, studies have been
conducted on predicting average regional wheat yield and production and grain yield in
sesame, modelling oil yield in sesame, and studying biological and grain yield in barley.

Linear regression was used as the first activation function. It is known as Linear-
Regression() [70]. Linear regression fits a linear model with coefficients w = (w1, . . . , wp) to
minimise the residual sum of squares between the observed targets in the data set and the
targets predicted by the linear approximation. The equation through which this function is
calculated is as follows (9):

y = ax + b (9)

where a, b are the coefficients of the weights, which are determined by the technique
during training.

Ridge regression [71] solves some problems of ordinary least squares by imposing a
penalty on the size of the coefficients. The ridge coefficients minimise the penalty residual
sum of squares (10):

minω ||Xω− y||22 + a||ω||22 (10)

The complexity parameter a ≥ 0 controls for the amount of shrinkage: the greater the
value of a, the greater the amount of shrinkage, so that the coefficients become more robust
to collinearity.

By adding a degree of bias to the model coefficients, ridge regression reduces their
variance, thereby yielding estimates that are more robust. Equation (11) is a multiple
linear regression model between yields and predictors, with βj representing coefficients. In
addition to minimising the deviation from yi, the target function for the ridge regression
shown in Equation (12) also includes a penalty term that reduces the coefficient values
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closer to the “true” population parameters. This penalty term, also called L2 regularisation,
is equal to the square of the coefficient values. The tuning parameter (λ) controls the
strength of the regularization. When λ = 0, the ridge regression reduces to a multiple linear
regression, and when λ = ∞, all coefficients drop to 0.

yi = β0 + ∑12
j=1 β jxij (11)

argmin ∑N
i=1

(
yi −∑12

j=1 β jxij

)2
+ λ ∑12

12 β2
j (12)

The Dummy Regressor [72] is a kind of regressor that provides predictions based on
simple strategies, without considering the input data.

Support Vector Regression [73] is an algorithm that allows one to choose a range of
acceptable errors, both through an acceptable error rate (ε) and through tuning beyond this
acceptable error rate. The operation of the function is depicted as |yi − wi xi | ≤ ε. Where
yi is the target, wi is the coefficient, and xi is the predictor (feature). The methodology
derived from a regression of the reference vectors depends only on a subset of the training
data, as the cost function ignores samples whose predictions are close to their target. The
prediction of this function is calculated by formula (13).

∑i∈SV(ai − a∗i )K(xi, x) + b (13)

The parameters are accessed through the attributes dual_coef_, which contains the
difference ai − ai

*, support_vectors_—reference vectors, the intercept and independent
term b.

The general form of the regression equation for SVR is shown in Equation (14), where
<β, X> denotes the dot product and β is the vector of coefficients. The complexity of the
model can be controlled by looking for a small β. This can be ensured by minimising the
norm ||β||2 = < β, β>.

f (x) = 〈β, X〉+ b (14)

Multilayer Perceptron [74] (MLP) is a supervised learning algorithm that learns the
function f (·): Rm→Ro by training on a data set where X = x1, x2, . . . , xm is the number of
measurements to input, and y is the number of measurements to output. Given a feature
set and a target, it can learn a nonlinear function approximation either for classification or
for regression. It differs from logistic regression in that there may be one or more non-linear
layers, called hidden layers, between the input and output levels. Figure 6 shows an MLP
with one hidden layer with a scalar output.

Polynomial regression [75] is a form of linear regression, known as a special case
of multiple linear regression, which estimates the relationship as a polynomial of degree
n. Unlike ordinary linear regression, polynomial regression is more flexible and forms
a natural curve rather than a straight line, depending on the values. It is expressed by
Formula (15).

y = a1x1 + a2
2x2 + · · · an

nxn + b (15)

Random Forest (RandomForest) [76] is a meta-estimate that matches a number of
classifying decision trees on different samples of a dataset and uses averaging to improve
prediction accuracy and control overfitting (Figure 7). The subsample size is controlled
by the max_samples parameter if bootstrap = True (default); otherwise, the whole dataset
is used to construct each tree. In random forests, each tree in an ensemble is built from
a sample taken with replacement from the training set. In addition, when partitioning
each node during tree construction, the best partition is determined either from all input
objects or from a random subset of max_features size. The purpose of these two sources of
randomness is to reduce the variance of the forest estimate. Indeed, individual decision
trees typically exhibit high variance and a tendency toward overfitting. The introduced
randomness in the forest leads to decision trees with somewhat unrelated prediction errors.
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By taking the mean of these predictions, a number of errors are negated. Random forests
achieve variance reduction by combining different trees, sometimes at the cost of a small
increase in bias. In practice, the reduction in variance is often significant, resulting in an
overall improvement in the model.
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4.3. Predicting NDVI and MSAVI Indices

Once the activation functions have been selected, model training and yield prediction
starts. Model training will be in two time ranges for different crop growth periods. The
first is for the entire growing season, from the beginning of the first sprouts of greens in
the fields until they fade (April–November). The second is for the period from sowing the
seeds to harvesting the crop (April to July). All activation functions are used on each crop
in order to identify the most optimal yield prediction methods. Before training the model
to predict yield, the NDVI and MSAVI indices should be predicted.
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NDVI is a vegetative index that determines the photosynthetic activity of a plant. It is
calculated according to how the plants absorb or reflect infrared rays. The better developed
the plants are and the greener the mass they have during the growing season, the greater
the NDVI index. The most common use of this index is to track plant development. For the
ease of working with this index, a colour scheme from lighter tones to darker tones is used,
which is mapped on the field map. The darker the tone, the greater the index. Thanks to
the NDVI index, the mistakes of mechanisers and the development of weeds in the period
after sowing are clearly visible, because the weeds gain green mass faster and are visible
on the spectrum.

Image processing studies were reported on the weed density estimation for soya
crops [77] and the modelling of leaf disease using neural networks [78]. The approach of
these studies may be useful in improving the accuracy of the current method by accounting
for these additional factors.

The authors of [79] point out that crop yields are closely related to NDVI at early
reproductive and late maturity stages. For wheat, NDVI values were highly correlated with
yield (R2 = 0.601–0.809) from the medium reproductive to the early maturing stage. Using
NDVI values, it was possible to distinguish between fertiliser application levels. Their
results showed that small NDVI values are effective in predicting yields and determining
fertiliser application levels.

At the peak of the growing season, peak NDVI gives a good prediction. The range
of deviation of the forecast from the fact is from 4 to 24%. The average (for many years)
forecast error is no more than 20%. Therefore, NDVI prediction is the first important
indicator to determine the optimal learning function of the model. An analysis of the
accuracy of the NDVI prediction of the learning functions of all the crops studied is shown
in Table 2.

Table 2. NDVI prediction error analysis results for the growing season and * for the sowing and
harvesting period.

Culture Activation Function MSE RMSE MSE * RMSE *

Grain legume crop

Linear regression 0.0448 0.2117 0.0148 0.1216
Ridge regression 0.0439 0.2097 0.01 0.1

Dummy regressor 0.0545 0.2335 0.0052 0.0723
Support vector regression 0.0346 0.1861 0.0154 0.1241

Multilayer perceptron 1.0408 1.0202 0.0398 0.1995
Polynomial regression 0.0366 0.1914 0.017 0.1304

Random forest 0.0524 0.229 0.0152 0.1234

Oilseed crop

Linear regression 0.0517 0.2275 0.0226 0.1506
Ridge regression 0.0486 0.2205 0.0162 0.1274

Dummy regressor 0.0449 0.212 0.0175 0.1325
Support vector regression 0.0363 0.1904 0.0079 0.0889

Multilayer perceptron 0.3283 0.5729 0.0911 0.3019
Polynomial regression 0.0397 0.1993 0.0194 0.1396

Random forest 0.0329 0.1814 0.0123 0.111

Feed crop

Linear regression 0.0244 0.1561 0.0185 0.136
Ridge regression 0.0253 0.1591 0.0246 0.1568

Dummy regressor 0.0413 0.2033 0.0448 0.2118
Support vector regression 0.0164 0.1279 0.016 0.1265

Multilayer perceptron 0.0477 0.2185 0.6684 0.8175
Polynomial regression 0.023 0.1517 0.03 0.175

Random forest 0.0284 0.1685 0.0226 0.1505
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Table 2. Cont.

Culture Activation Function MSE RMSE MSE * RMSE *

Cereal crop

Linear regression 0.0247 0.1573 0.012 0.1098
Ridge regression 0.0289 0.1699 0.009 0.0952

Dummy regressor 0.044 0.2097 0.0098 0.0994
Support vector regression 0.0279 0.1671 0.0134 0.1159

Multilayer perceptron 0.0398 0.1995 1.6156 1.271
Polynomial regression 0.0227 0.1506 0.0128 0.1135

Random forest 0.0243 0.1558 0.0111 0.1056

Histograms of the variance distribution (diff) in the predictions were created by the
Seaborn library with the displot tool (Figures 8–11). The activation function histograms in
Figure 8 show the distribution of the deviations of the machine learning predictions from
the actual values. The minimum value is observed in the Random Forest function.

The activation function histograms in Figure 9 show the distribution of the deviations
of the machine learning predictions from the actual values. The minimum value is observed
in the Ridge regression function.

The activation function histograms in Figure 10 show the distribution of the deviations
of the machine learning predictions from the actual values. The minimum value is observed
in the Random Forest function.

The activation function histograms in Figure 11 show the distribution of the devia-
tions of the machine learning predictions from the actual values. The minimum value is
observed in the Random Forest function. As a result of this research, a comprehensive yield
forecasting methodology was developed, as shown in Figure 12, which demonstrates the
significant role of machine learning in providing accurate yield forecasts.

Since NDVI values are given in small numbers (0 to 1), it is difficult to understand
from MSE results how accurate the model predictions are; thus, RMSE was used, which is
more sensitive to outliers. Analysis of the data error results for the whole growing season
revealed the following optimal training functions:

(1) Support Vector Regression with an RMSE error of 0.1861 for the leguminous crops;
(2) Random Forest with an RMSE error of 0.1814 for oilseeds;
(3) Support Vector Regression with an RMSE error of 0.1279 for forage crops;
(4) Polynomial Regression with RMSE error of 0.1506 for grain crops.

For sowing and harvesting period data, the accuracy is higher due to a smaller distri-
bution of NDVI values. The best results for the sowing and harvesting period showed the
following activation functions:

(1) Dummy Regressor with an RMSE error of 0.0723 for the leguminous crops;
(2) Support Vector Regression with an RMSE error of 0.08 for oilseed;
(3) Support Vector Regression with an RMSE error of 0.1265 for forage crops;
(4) Ridge Regression with an RMSE error of 0.0952 for grain crops.

Despite the high performance of some of the learning functions, there is good accuracy
in some of the studied crops. Arithmetic mean error values are calculated to identify the
best activation function for all crops.

In Table 3, the Support Vector Regression function shows the best results (RMSE
of 0.1679) for NDVI prediction compared to the others among the prediction results for
the whole growing season. The polynomial regression function has high performance
(RMSE—0.1732), ranking second in prediction accuracy. Among the data for the sowing
and harvesting period, Support Vector Regression (RMSE—0.1138) and Ridge Regression
(RMSE—0.1198) showed the best results.
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(G) Random Forest.
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Vector Regression, (E) Multilayer Perceptron, (F) Polynomial Regression, (G) Random Forest.
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Figure 12. Yield forecasting—the overall procedure and the key outcomes.

Table 3. Arithmetic mean values of NDVI prediction errors for all crops for the growing season and
* for the sowing and harvesting period.

Activation Function MSE RMSE MSE * RMSE *

Linear Regression 0.0364 0.1881 0.0167 0.1295
Ridge Regression 0.0367 0.1898 0.0143 0.1198

Dummy Regressor 0.0462 0.2146 0.0166 0.129
Support Vector Regression 0.0288 0.1679 0.0129 0.1138

Multilayer Perceptron 0.2528 0.5028 0.4192 0.6475
Polynomial Regression 0.03 0.1732 0.0194 0.1396

Random Forest 0.0337 0.1837 0.015 0.1226

The modified soil-adjusted vegetation index (MSAVI) is a soil-adjusted vegetation
index that aims to remove some of the limitations of NDVI when applied to areas with a
high degree of soil surface exposure. MSAVI is defined in Equation (16):

MSAVI =
(

2× NIR + 1− sqrt
(
(2× NIR + 1)2 − 8× (NIR− RED)

))/
2 (16)

Based on the results of the MSAVI index studies, the best activation functions with the
best predictive accuracy by crop for the agrometeorological growing season are as follows:

(1) Random Forest with an RMSE error of 0.057 for the leguminous crops;
(2) Random Forest with an RMSE error of 0.091 for oilseeds;
(3) Random Forest with an RMSE error of 0.052 for forage crops;
(4) Polynomial Regression with an RMSE error of 0.011 for grain crops.

For the organic growing season:

(1) Ridge Regression with an RMSE error of 0.0117 for leguminous crops;
(2) Ridge Regression with an RMSE error of 0.0124 for oilseed crops;
(3) Random Forest with an RMSE error of 0.0152 for forage crops;
(4) Dummy Regressor with an RMSE error of 0.0293 for grain crops.

4.4. Predicting Yields

By defining the key functions for predicting NDVI and MSAVI indices, yield prediction
results will be calculated. Since the yield value is calculated as a single value for the whole
year, averaged data values will be used to predict it.

The weather and vegetation index database is sorted by year and concat() is merged
with the yield file data. At the time of sorting, the date and week categories are removed,
as the data are sorted by year (Figure S5).



Agriculture 2023, 13, 1195 23 of 27

Yield predictions of activation functions for each crop for two periods are checked. The
results are presented in the Supplementary Materials (Table S1). According to the results
shown in Table S1, the best activation functions by crop for the entire growing season are
as follows:

(1) Leguminous crops—Polynomial Regression (prediction accuracy 97.1%, RMSE—0.27);
(2) Oilseed crop—Multilayer Perceptron (prediction accuracy 99.24%, RMSE—0.09);
(3) Forage crop—Linear Regression (prediction accuracy 99.58%, RMSE—0.04);
(4) Grain crop—Multilayer Perceptron (prediction accuracy 83.88%, RMSE—1.77).

For the sowing and harvesting period:

(1) Leguminous crops—Multilayer Perceptron (prediction accuracy 90.69%, RMSE—0.33);
(2) Oilseed crop—Multilayer Perceptron (prediction accuracy 97.19%, RMSE—0.09);
(3) Forage crop—Polynomial Regression (prediction accuracy 87.6%, RMSE—1.36);
(4) Grain crop—Multilayer Perceptron (prediction accuracy 82.75%, RMSE—2.00).

5. Conclusions

In conclusion, this paper highlights the crucial power of machine learning, in particular
neural network technology, in crop yield prediction. Using the capabilities of the Python
programming language libraries, a yield prediction model was developed by extensive
testing using weather data and crop vegetation indices. By analysing these datasets, it was
found that yield prediction was possible using NDVI vegetation index data and weather
parameters such as mean temperature, surface soil moisture and wind speed.

Machine learning programming languages make it possible to calculate complex
relationships between these parameters and build a neural network capable of accurately
predicting yields. The neural network uses data weights that are adjusted using activation
function algorithms, which allows it to make reliable predictions. Consequently, using
machine learning technologies (neural networks) allows accurate crop yield prediction if
the relevant data are available.

It is important to note that a customised machine learning approach makes it possible
to identify the optimal learning algorithms for each specific crop, further increasing the
accuracy of the predictions.

In performing the neural network training and selecting the best activation functions,
the following results were revealed:

(1) Prediction readings of all activation functions have a higher accuracy if data for
training are taken for the whole growing season rather than for the sowing and
harvesting period. The average prediction accuracy for the growing season was
95%, whereas the average for the sowing and harvesting period was slightly lower,
at 89.5%.

(2) The calculated best functions for the vegetation period for all crops are Multilayer
Perceptron, with a prediction accuracy ranging from 66% to 99% (mean 85%), and
Polynomial Regression, with a prediction accuracy range from 63% to 98% (mean
82%). It should be understood that the Multilayer Perceptron function generates new
random weights at the start of each training, so the results it produces may vary
between +5% and −5%. This module takes the average of these ranges.

(3) The Ridge, Dummy Regressor, Support Vector Regression and Random Forest func-
tions gave similar prediction results, with prediction accuracy between 70% and 80%
(78% on average).

(4) For the forage crop, the linear learning functions proved to be more efficient compared
to the others.

As can be seen, the prediction accuracy ranges sometimes have a difference of up to
30%. This is due to the fact that there are other factors affecting the yield. It is possible to
adjust the developed code of the yield prediction methodology by adding new indicators
and updating the methodology, which will reduce the range of prediction bias. Similarly,
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these technologies are used to predict other values, such as NDVI and MSAVI, which can
help to build other relationships.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture13061195/s1, Figure S1: Calculating the average
temperature. Figure S2: Sorting and cleaning the database. Figure S3: Dividing the database into
a training database and a test database. Figure S4: code snippet of predict() function. Figure S5:
Creating a Pandas database with yields. Table S1: Results of yield predictions.
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