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Abstract: The plant factory transplanter is a key component of the plant factory system. Its operation
status directly affects the quality and survival rate of planted seedlings, which in turn affects the
overall yield and economic efficiency. To monitor the operation status and transplanting quality of a
transplanting machine in a timely manner, the primary task is to use a computerized and easy-to-
use method to monitor the transplanting units. Inspired by the latest developments in augmented
reality and robotics, a digital twin model-based and data-driven online monitoring method for plant
factory transplanting equipment is proposed. First, a data-driven and virtual model approach is
combined to construct a multi-domain digital twin of the transplanting equipment. Then, taking the
vibration frequency domain signal above the transplanting manipulator and the image features of the
transplanting seedling tray as input variables, the evaluation method and configuration method of
the plant factory transplanter digital twin system are proposed. Finally, the effect of the transplanter
is evaluated, and the cycle can be repeated to optimize the transplanter to achieve optimal operation
parameters. The results show that the digital twin model can effectively use the sensor data to
identify the mechanical vibration characteristics and avoid affecting transplanting quality due to
mechanical resonance. At a transplanting rate of 3000 plants/h, the transplanting efficiency can be
maintained at a high level and the vibration signal of the X, Y, and Z-axis above the transplanting
manipulator is relatively calm. In this case, Combined the optimal threshold method with the
traditional Wiener algorithm, the identification rate of healthy potted seedlings can reach 94.3%.
Through comprehensively using the optimal threshold method and 3D block matching filtering
algorithm for image threshold segmentation and denoising, the recognition rate of healthy seedlings
has reached over 96.10%. In addition, the developed digital twin can predict the operational efficiency
and optimal timing of the detected transplanter, even if the environmental and sensor data are not
included in the training. The proposed digital twin model can be used for damage detection and
operational effectiveness assessment of other plant factory equipment structures.

Keywords: digital twin; data-driven; plant factory; transplanting; online monitoring

1. Introduction

The production of vegetables is becoming increasingly industrialized due to serious
challenges related to food security, safety, sustainability, and health. Plant factories are
evolving into high-tech facilities characterized by mass production and extensive applica-
tions of technologies [1,2]. Smart horticulture technologies, represented by plant factories
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that integrate multiple production elements and technical equipment, are changing and up-
grading traditional agricultural production methods [3,4]. However, the intricate planting
structure in plant factories poses a considerable challenge to the monitoring of production
operations [5]. As a key piece of technical equipment in plant factories, the operational
status of the plant factory transplanter (PFT) directly affects the quality and survival rate of
the planted seedlings, which in turn affects the overall yield and economic efficiency [6]. A
monitoring system that can be applied to the plant factory environment and display the
working status of transplanters in real-time is needed to design.

There are a large number of sensors and artificial intelligence technologies used for the
monitoring of transplanting equipment for agricultural production [7–10], visual localiza-
tion [11,12], and fault diagnosis [13,14]. These works have greatly advanced the develop-
ment of transplant equipment technology. The means of monitoring agricultural equipment
have become increasingly intelligent and data-driven, including cloud computing, the In-
ternet of Things, big data, machine learning, augmented reality, and robotics [15,16]. Smart
detection technologies integrating virtual reality and physical sensing networks provide
new ideas for transplant monitoring [17,18]. A powerful driver for this development is the
digital twin [19,20].

A DT is a virtual representation of a physical entity created digitally. It can simulate
the conduct of a bodily entity in its actual surroundings with the assistance of data and
add or prolong new skills to the bodily entity by way of capacity for virtual-real interaction
feedback, statistics fusion analysis, and iterative optimization of choices [21,22]. Many
internationally renowned scholars and companies are exploring the use of digital twin
technology in product design, manufacturing, and maintenance [23,24]. The National
Aeronautics and Space Administration (NASA) has investigated a digital twin-based ap-
proach for fault monitoring and elimination in complex systems and applied it to the health
management of flight systems. Using the concept of a digital twin workshop, Tao Fei et al.
designed the composition and operation mechanism of DTS. Zhuang Cunbo et al. proposed
the architecture and implementation path of the product digital twin [25] and pointed out
that the emergence and development of digital twin technology can not only provide clear
new ideas but also methods and implementation paths for realizing information-physical
systems. The advantages of digital twins consist of decreasing manufacturing time and
costs, hiding the complexity of integrating heterogeneous technologies, developing a safer
working environment, and setting up extra environmentally sustainable operations. When
applied to factory farming production, digital twin technologies can significantly increase
greenhouse productivity and sustainability.

Utilizing digital twin technology in plant monitoring applications offers numerous
advantages. Firstly, growers can remotely monitor and manage operations using real-time
digital information rather than through direct observation and manual labor in the field.
Secondly, if any anticipated issues arise, growers are alerted promptly. Thirdly, growers can
simulate the impact of corrective and preventive measures on digital representation. Finally,
the chosen intervention can be executed remotely by the grower, and a digital illustration
can be used to confirm that the expected issue has been resolved. As a result, this intelligent
management cycle will become increasingly autonomous, requiring no further manual
intervention from the grower.

An on-line monitoring approach primarily based on DT fashions and information is
investigated for plant transplanting gear to acquire dependable and correct monitoring.
The relaxation of the paper is prepared as follows: in Section 2, the twin model, comparison
technique, and configuration approach for PFT monitoring are presented; Section 3 gives
the effects and dialogue of the utility of the PFT monitoring model; and Section 4 offers
the conclusion.

2. Materials and Methods

This case focuses on evaluating the vibration and effect of the transplanting manipula-
tor, which plays an intelligent decision-making role in the regulation of the transplanting
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system. PFT’s transplanting robot plays a crucial role in accuracy and quality, and its
condition directly affects them. The vibration of transplanting manipulators decreases
dimensional accuracy but also shortens the machine’s service life due to fatigue deforma-
tion. Besides decreasing dimensional accuracy, the vibration of transplanting manipulators
also shortens the machine’s service life due to fatigue deformation. To this end, a key
component of transplanters, a hybrid DT-based application, is investigated for real-time
monitoring and vibration evaluation of the manipulator. To evaluate the effect of transplant-
ing, machine vision, and artificial intelligence technology are combined to discriminate and
classify the video image information after real-time transplanting, aiming to provide data
support for the wise decision-making of the transplanter, as shown in Figure 1.
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Figure 1. A digital twin and application of it to PFT.

2.1. Framework

As shown in Figure 2, the hybrid method framework is proposed. To obtain more
accurate monitoring results, this framework combines data-driven and model-based ap-
proaches. Based on the material properties and operating conditions, a multidomain model
of the PFT is developed. In the same way that virtual sensing allows us to calculate the
internal state of systems wherever we are, multiphysics field simulations allow us to map
boundary conditions to the physical PFT and calculate it wherever we want. Calculating the
system state theoretically using simulated internal system values is done by converting the
DT physical degradation model into a system state space model. Sensors are mounted on
the PFT in a specific manner, and then data is provided to support a data-driven approach
to examine the effectiveness of a plant performance evaluation.

In the data-driven approach, a number of steps need to be undertaken in order to
transform historical sensory data into useful monitoring data, including data processing,
feature extraction from twin data, and feature fusion from twin data. Systematic observation
of PFT is conducted using the transplanting stenography monitored by the data-driven
approach. Using a hybrid proximity algorithm, the system observations, the system state
space model, and the simulated intra-system values are combined. Based on a priori
knowledge and simulations of intra-system values, the state of the PFT is monitored. As a
result, the monitored states are modified based on observations of the system.
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2.2. Multi-Domain Model Implementation of Plant Factory Transplanting System

As part of a data-driven algorithmic model, the DT model represents the physical
PFT numerically. When constructing a model, it is necessary to consider multiple physical
fields simultaneously, such as mechanical engineering, electrical engineering, hydraulics,
and thermodynamics, in order to have a comprehensive understanding of the system.
Software that supports multi-domain modeling includes Unity 3D (v4.3.1), SolidWorks
(2015), and 3dsMax (2017). Object models at the subsystem level, such as manipulators,
cavity seedlings, and cavity seedling trays, can be built by these programs and incorporated
into a multidomain system model. The implementation of the multi-domain model is
shown in Figure 3.
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DT is widely recognized as the most reliable and accurate method of monitoring sexual
maintenance due to its high fidelity. The accuracy of DT can be improved by obtaining
actual operation results (experiments). Physical PFT-based multi-domain models can also
be simulated to obtain simulation results. Model parameters (e.g., material properties,
operating conditions) should be the same as the actual parameters. DT consistency is then
determined by comparing the experimental and simulation results in an iterative process,
as shown in Figure 4. Multi-domain models are modified and simulated iteratively until
the difference between simulations and experiments is small. Multi-domain models with
small experimental errors can be considered high-fidelity models.
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Furthermore, a real-time mapping interface should be built so the DT model can
be updated. Modeling involves mapping domain knowledge and operating conditions
through interfaces. An expert’s domain knowledge is mainly derived from his or her
experience, mechanical manuals, sensor data, and controller parameters. Fault prog-
nosis and monitoring of the tools will be applied on the basis of some prior expertise
and experience.

The testbed design and sensor installation are shown in Figure 5. The testbed experi-
mental platform includes the data twin service system, the sensing and signal acquisition
system, and the PLC control system. The data twin service system contains a virtual entity
and a data twin service interface. The sensing and signal acquisition system consists of
a three-axis acceleration sensor, an industrial camera, a position sensor, a multi-channel
signal collector, and a human-computer interaction interface. The PLC control system
consists of a manipulator control box and a transplanting truss control box. Among them,
a three-axis acceleration sensor is installed on the platform above the transplanting ma-
nipulator to continuously collect the vibration data of the platform above the manipulator.
An industrial camera is mounted on the truss to take images of the entire tray of seedlings
after each tray is transplanted. The position sensor is mounted on the metal profile on the
side of the conveyor belt, which controls the conveyor belt stepper motor to stop when
the seedling tray moves to the position to be transplanted, completing the subsequent
transplanting. The main parameters of this experiment are: the working environment is
22 ◦C; the spindle speed is 2300 RPM (revolutions per minute); the horizontal module
feed speed is 200 mm/min; the vertical module feed speed is 200 mm/min; the cavity tray
conveyor is rated at 200 W; the transmission speed is 0.5 m/s; and the sampling frequency
is 50 Hz.
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Figure 5. Overall design of PFT digital twin experiment platform.

Currently, it is impractical to construct a DT mannequin that thoroughly displays
each and every element of the complete system. It is essential to purposefully construct
a goal-oriented DT mannequin and simplify it. The essential goal of this study is to
precisely consider the ETQ of plant transplanting. Therefore, the plant seedlings, pots, and
transplanting clamping jaws have been somewhat simplified, as shown in Figure 6.
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As shown in Figure 7, real-time updates of DT are necessary to maintain a true map-
ping with the physical model of the plant factory transplanting machine.The foundation
for adjustment of the transplanting end-effector manipulator for the duration of the trans-
planting procedure can be divided into two types:

1. Transplanting conditions: When it comes to transplanting, there are several critical
parameters that must be taken into consideration. These parameters include the
spindle motor speed, the vibration signal above the transplanting manipulator, and
the role signal. These parameters are controlled by the PFT controller and have a
direct impact on the simulation results of the transplanting process.

2. Evaluation of the transplanting effect: The evaluation and assessment of the picture
sign of the transplanting seedling tray for the duration of the transplanting pro-
cess and performs a function of remarks adjustment to alter the parameters of the
transplanting platform.
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2.3. Data-Driven Model Implementation and Dataset Description

In the construction of a data-driven model, various sensors that monitor the condi-
tions of PFT are used to collect big data. After collecting historical data, diagnostic and
monitoring algorithms are designed and trained. As shown in Figure 8, many data pro-
cessing methods are required to build the data-driven model, including noise reduction,
pre-processing, feature extraction, and feature selection, which require expert domain
knowledge as a foundation.
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Accordingly, by setting sensors on the PFT, it is possible to detect and monitor its
operating parameters, primarily the state of the PFT and the surrounding environment.
From the collected data, feature recognition is performed to identify health-related features.
To improve the model training speed and monitoring accuracy only features strongly
related to device health are selected during the feature selection stage. In the construction
stage of the algorithm model, data-driven monitoring and maintenance of PFT are achieved
by constructing fault diagnosis and fault monitoring algorithms based on identified and
extracted features.

Due to sensor drift caused by temperature changes, the raw data contains trend
items that affect eigenvalue monitoring results. In addition, the sampled raw data are
often superimposed with noisy signals, such as industrial frequency signals, periodic
interference signals, and random interference signals, resulting in burrs in the signal
waveform. Additionally, raw data smoothing is performed to reduce interference signals
and improve vibration curve smoothness. The trend term elimination is performed by a
polynomial based on the least squares method, as shown in Figure 9.
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Figure 9. Elimination of trends using polynomials of different orders. (a) Raw data signal. (b) Signal
after removing trend term.

The total data set collected by the digital twin system of plant transplanting is
M = M1, M2, M3, and M4, where M1, M2, M3, and M4 are the data collected under
different operating conditions when the equipment is running for 20 s, 40 s, 60 s, and
80 s, respectively, as shown in Table 1. Each group contains 256 data files. To ensure
synchronization between multiple sources, data from the same time period should be input
into the digital twin system. The data files are intercepted within 20–80 s from the middle
moment, i.e., the vibration and video signals are intercepted and uploaded as data points
separately. The vibration signals are stacked as 6-channel samples, and the data dimension
of the vibration signals of X, Y, and Z channels in the same time period is 128 × 2048 × 6,
and 15% of the data are selected as the test set.

Table 1. Datasets of transplanting digital twin system.

Work Condition Serial Number Working Status Type of Data Acquisition Frequency

1
Standby
Start-up

Vibration D1 2560 Hz

Transverse motor power D2 50 Hz

Vertical motor power D3 50 Hz

Parallel motor power D4 50 Hz

2
Low speed transplant

1500 plants/h

Vibration D1 2560 Hz

Transverse motor power D2 50 Hz

Vertical motor power D3 50 Hz

Parallel motor power D4 50 Hz

3
Medium speed transplant

3000 plants/h

Vibration D1 2560 Hz

Transverse motor power D2 50 Hz

Vertical motor power D3 50 Hz

Parallel motor power D4 50 Hz

4
High speed transplant

4500 plants/h

Vibration D1 2560 Hz

Transverse motor power D2 50 Hz

Vertical motor power D3 50 Hz

Parallel motor power D4 50 Hz

2.4. A Hybrid Evaluation Method Based on DT Model and Data-Driven Transplanting Effect

Through the hybrid approach, the evaluation of transplant quality by data-driven
methods is systematically observed, and the results are corrected theoretically by empirical
derivation. Figure 10 shows the steps of implementing the hybrid method based on the
DT model and a data-driven approach: (1) the data-driven model is constructed and the
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monitoring of ETQ results is set as the observed values; (2) using a multi-physics field
simulation, the DT model is converted into a state-space model for the hybrid algorithm
settings; (3) a more accurate ETQ is calculated by the hybrid algorithm; (4) whether the ETQ
has reached the threshold value is determined to make appropriate maintenance decisions
or return to step (2) for iteration based on the judgment results.
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The algorithm for intelligent recognition of healthy potted seedlings of vegetables
mainly extracts and analyzes the image features of each potted seedling. A vegetable
seedling’s leaf area M represents its growth conditions, so the leaf area features of vegetable
seedlings are selected as one of the classification bases for the health recognition of potted
seedlings. The digital image is composed of several square blocks of pixels, and the actual
physical dimensions of the image pixels can be obtained by calibrating the camera size.
Counting the number of pixels occupied by the mantle leaves in the image and converting
the proportion can determine the actual area of the leaves. The threshold F is determined
by the ratio of extracted leaf area to pore area in vegetable potted seedlings. The Heal
algorithm for intelligent identification of healthy vegetable potted seedlings and rejection of
inferior-quality seedlings finally detects healthy vegetable potted seedlings by comparing
the threshold value F.

In fact, most of the obtained images of vegetable potting plants are disturbed by
noise, and it is important to denoise the obtained images. The noise in image processing
is mainly Gaussian. The three-dimensional block matching filtering (BM3D) algorithm is
a denoising algorithm based on the three-dimensional transform domain, which is one
of the best algorithms for processing video and image noise reduction. The algorithm is
divided into two steps: First, a base valuation is obtained from the block-matching 3D
matrix transformation; then the noise image is filtered by the obtained base valuation, and
the overlapping blocks are revalued and weighted averaged by the aggregation method to
obtain the final image.

The basic principle of block matching is to divide an image into several parts of a
specific size that do not overlap. Let the displacement of each pixel in each part be the same,
select a specific search area, and then delineate it. The matching criterion is formulated
to search for blocks that are similar to the current block in the search area, that is, the
matching block.

I represents the image containing noise; P represents any matching block that has
been divided and the block size of P is set to K × K. Q represents the sliding window block
during the search process. If the block size is known, its upper left pixel point represents
the matching block, P ∈ I, and Q ∈ I. During the block matching process, an appropriate
step size h is determined first, and then the blocks are divided and searched based on
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the principle of a top-to-bottom, left-to-right sequential approach. The current block P is
selected as the reference block, and the area with P as the center point and the diameter d
as its search area,

S(P) =
{

Q ∈ I
∣∣d(XP, XQ

)∣∣ < τd
}

(1)

where S(P) is set as the three-dimensional matrices aggregated from similar blocks, and τd
is the distance threshold during the search process. The distance d between the matching
blocks in the search process is as follows:

d = h−1‖XP − XQ‖ (2)

where X is the matrix value of the matching block.
Finally, S(P) as the set of matrix blocks in the matrix is arranged in the order of d(P, Q)

and a three-dimensional matrix TS(P) of K × K × S(P) is obtained. Then the denoising in
the three-dimensional transform domain can be expressed as follows:

F(P) = N−1
3D

(
γ
(

N3D

(
TS(P)

)))
(3)

where N3D denotes the three-dimensional you-transformation of the three-dimensional
matrix TS(P), and the operator is N3D. The equation of the function γ is as follows:

γ(X) =

{
0, (|X| ≤ λ3Dσ)
X, (|X| > λ3Dσ)

(4)

where, λ3D is the threshold parameter of hard threshold filtering, and σ is the parameter of
Gaussian white noise.

The advantage of this denoising method is that it can distinguish noise from useful
information in the strip image without any loss of energy. Useful information can be
correctly distinguished from irrelevant information, such as noise TS(P). Because most of
useful image information is at the top of the energy of the 3D matrix TS(P), and irrelevant
information such as noise is often at the bottom of the 3D matrix. This feature allows
filtering by hard thresholds in the transform domain, which effectively removes noise while
retaining most of the useful image information. After filtering the noisy image, each block
will have its corresponding estimate, and each pixel will have its corresponding estimate.
NP denotes the non-zero values in the filtered matrix coefficients, and WP denoting the
estimated values of the underlying weights of the current block is as follows:

Wbasic
P

{
1

NP
(NP ≥ 1)

1(NP < 1)
(5)

In Equation (5), the base estimate of the 3D transform domain filtering is used to
calculate the final estimated weights:

W f inal
P =

∣∣∣τ3D

(
TS(P)

)∣∣∣2∣∣∣τ3D

(
TS(P)

)∣∣∣2 + σ2
(6)

As can be seen, the larger the estimated weights, the smaller the noise entrained.
Calculate the average estimate of each overlapping block in order to obtain the final image.
The health of the potted seedlings is analyzed by using the threshold F and the unit leaf area
of the Heal algorithm to classify the potted seedlings into healthy, sub-healthy, poor quality,
and empty holes. The red “1” represents the healthy seedlings; the green “1” represents the
sub-healthy seedlings; the yellow “1” represents the poor-quality seedlings; and the blue
“0” represents empty holes. The Heal algorithm calibrates the seedling tray and outputs
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information about the coordinates of each type of seedling in the virtual model of the digital
twin, as shown in Figure 11.
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Figure 11. Virtual model mapping of the digital twin.

A plant transplanting DT model with actual physical transplanter mapping capability
was established. Through the mapping interface, working conditions such as spindle speed,
ambient temperature, seedling tray position, and transplantation effect are transmitted to
the DT model for the model update. The updated DT model is simulated to calculate the
operating state and effect of the transplanter. The collected data, such as vibration and
image information, is used to train the machine learning model and determine whether the
transplanting operation continues in another way, as shown in Figure 12.
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2.5. Development and Configuration of the Digital Twin Service System

Unity 3D, SolidWorks 2020, and 3 dsMax 2017 are used to develop the PFT digital
twin system, as shown in Figure 13. SolidWorks 2020 is first used for the 3D modeling of
the HNWC020 plant transplanting machine, and then the animation of the transplanting
process is created in 3 dsMax 2017. Finally, Unity 3D is used to design the system interface
and the interaction of the program. The TCP/IP communication protocol is used to transfer
the data from the physical machine to the digital twin system. Every 0.2 s, a piece of data
from the operation of transplanting is obtained and stored in packets, and every 5 s, a
packet is sent to the twin database. The digital twin system parses one packet every 5 s.
The software runs at a frequency of 30 frames/s.
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Figure 13. PFT Digital Twin Service System.

3. Results and Discussions
3.1. Data-Driven Comparative Analysis of Plant Factory Transplanting Equipment
Working Conditions

To investigate the optimal working parameters of the plant transplanter, it is necessary
to analyze the vibration characteristics under different working conditions. To study
the acceleration state of the shifting manipulator of the plant transplanting equipment,
three-axis acceleration sensors are placed on the beam above the transplanting manipulator.
Figure 14 shows the vibration fitting cloud of the transplanter during horizontal sliding. The
testing condition involves the horizontal motion of the mechanical arm of the transplanter,
which moves the horizontal slider. The signal is sampled at a frequency of 2560 Hz. The root
mean square (RMS) value is calculated every second. During a single cycle of transplanting,
the lateral movement of the slider lasts for about 2 s.
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Fast Fourier Transform (FFT) is used to extract the principal frequencies and harmonics
of the signal. This feature describes the vibrational energy at a specific frequency. Three-
dimensional vibrations are used to extract features. The FFT results indicate that these
sensor data features have different frequencies.

Through the FFT analysis of the frequency domain, the mechanical vibration charac-
teristics under different working conditions are visually reflected, as shown in Figure 14.
As shown in Figure 14a, the vibration signal in the X, Y, and Z-axis directions does not have
obvious peaks in condition 1. The vibration amplitude in each axis direction is significantly
increased in condition 2. In the low frequency range within 100 Hz, the vibration is mainly
in the X-axis direction, in which two wave peaks appear. This may be due to the coupling
resonance between the transplanting parts of the transplanter and the original test stand
during the transplanting process. As shown in Figure 14c, the vibration amplitude in the
low frequency range within 100 Hz increases significantly in the X-axis direction, with a
maximum value of 2.45 m/s2. The vibration amplitude in the medium frequency range
of 210–580 Hz increases significantly in the Z-axis direction, with a maximum value of
1.5 m/s2. As in Figure 14d, the amplitude in the X-, Y- and Z-axis directions increases
significantly in condition 4. The large amplitude in the Z-axis direction will affect the trans-
planting accuracy and uprightness of potted seedlings, which means that it is not suitable
for transplanting in condition 4. The above analysis reflects the vibration frequency domain
characteristics of the transplanting machinery under different working conditions but does
not reflect the vibration energy of each time period. From the above analysis, it can be seen
that under conditions 1 and 2, the vibration amplitude is small and the transplantation
efficiency is low. Under condition 4, it is easy for parts to resonate, easily causing damage
to the transplanting parts. At medium speed, transplanting of 3000 plants/h, the high
transplanting efficiency can be maintained, and the vibration signal of the X, Y, and Z axes
above the transplanting robot is relatively gentle, which is suitable for transplanting.

3.2. Comparative Analysis of Real-Time Image Processing Effects of Transplanting Potted Seedlings

To improve the final recognition accuracy of an image analysis system, it is essential
to conduct a comparative analysis of potted seedling transplantation classification algo-
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rithms under optimal working conditions. This will help ensure that the image information
obtained is of higher quality and more suitable for accurate recognition. As shown in
Figure 15 four methods: the optimal threshold method for threshold segmentation, the tra-
ditional maximum inter-class variance method, the optimal threshold method for threshold
segmentation combined with the traditional Wiener algorithm, and the optimal threshold
method for threshold segmentation combined with the 3D block matching filter algorithm
are selected for image information processing of potted seedlings.

1 

(a) (b) (c) (d) (e)

Figure 15. Real-time image processing comparison of transplanting potted seedlings. (a) Qriginal
images; (b) Optimal threshold method; (c) Maximum inter-category variance method; (d) Wiener
algorithm; (e) 3DBM filtering algorithm.

To verify the rationality of the genetic algorithm-based optimal threshold method
in this article, the optimal threshold method based on the genetic algorithm and the
traditional maximum inter-class variance method for threshold segmentation are performed
on the original images of two pepper seedlings in Figure 15a, respectively. The threshold
segmentation results are shown in Figure 15b,c. It can be seen that the image obtained by the
optimal threshold segmentation based on a genetic algorithm can clearly segment the leaves
of pepper seedlings from the background. However, the image obtained by the traditional
maximum interclass variance threshold segmentation fails to segment the leaves of pepper
seedlings, and the image is blurred, not meeting the requirements. This comparison can
verify the reasonableness of the optimal threshold method based on a genetic algorithm
for threshold segmentation. In addition, the following comparison of image denoising
algorithms is only based on Figure 15b,c and does not meet the requirements and cannot
satisfy the conditions for further testing. To verify the rationality of the 3D block matching
filtering algorithm selected in this paper, the two images in Figure 15b are denoised based
on the 3D block matching filtering algorithm and the conventional Wiener algorithm,
respectively. The denoised results of the image are shown in Figure 15d,e.

From the above figures, it can be seen that the traditional Wiener algorithm image
denoising of Figure 15b,c fails to remove the noise close to the leaves and larger areas,
resulting in significant overall error. In contrast, using the three-dimensional block match-
ing filtering algorithm of Figure 15b,c for image denoising, Figure 15e, obtained by using
the 3D block matching filtering algorithm for image denoising in Figure 15b,c, can almost
completely remove the noise generated by the background parts, except for the leaves of
pepper seedlings, and the denoising effect is good. Through comparison, the rationality
of the optimal threshold method for threshold segmentation combined with the 3D block
matching filtering algorithm for image denoising can be verified.

3.3. Evaluation of Transplanting Effects with Digital Twin Virtual Mapping Reproduction

As shown in Figure 16, potted seedlings processed in real-time are discriminatively
classified and mapped into a virtual seedling tray grid. The final recognition maps are
shown in Figure 16a,b. The optimal threshold method is used for threshold segmentation;
the 3D block matching filtering algorithm and traditional Wiener algorithm are used for
image denoising, respectively. The red “1” represents healthy seedlings; the green “1”
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represents sub-healthy seedlings; the blue “0” represents poor-quality seedlings; and the
yellow number indicates the holes. The Heal algorithm calibrates the seedling tray and
outputs the coordinates of each type of seedling, as shown in Figure 16.
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From Figure 16a, based on the traditional Wiener algorithm, the coordinates of inferior
seedlings in the seedling tray I are (3, 1), and in seedling tray II are (5, 2) (1, 3). The
coordinates of sub-healthy seedlings are (1, 1), (2, 1), (7, 1), and (6, 2), and the remaining are
healthy seedlings. From Figure 16b, based on the 3D block matching filtering algorithm,
the coordinates of inferior seedlings in the seedling tray I are (3, 1), and the coordinates of
sub-healthy seedlings are (6, 3). In seedling tray II, the coordinates of inferior seedlings
are (1, 3), (5, 2), and (7, 1), and the coordinates of sub-healthy seedlings are (1, 1), (2, 1),
(5, 1), (4, 2), and (6, 2), while the remaining are healthy seedlings. As shown in Figure 17,
the accuracy of digital twin virtual mapping for transplanted seedlings is reflected in the
recognition and analysis of more than 4000 seedling tray images. From Figure 17, it can be
seen that by combining the optimal threshold method and the traditional Wiener algorithm
for image threshold segmentation and denoising, the recognition rate of healthy seedlings
can reach 94.3%. Through comprehensively using the optimal threshold method and 3D
block matching filtering algorithm for image threshold segmentation and denoising, the
recognition rate of healthy seedlings has reached over 96.10%. As such, this experiment
is more suitable for using the optimal threshold method and 3D block matching filtering
algorithm for image threshold segmentation and denoising, and the recognition accuracy
is high.
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The digital twin model-based and data-driven transplanting effect evaluation method
can monitor the working status and evaluate the transplanting effect of plant transplanters
online. The method can overcome the poor adaptability and difficulty of updating physical
models, greatly improving the monitoring and optimization efficiency of configuration
parameters. At the same time, the generated virtual entity mapping is more intuitively
reflected in the control interface, which can significantly reduce the dependence of equip-
ment operators on relevant expertise. If VR/AR technology can be combined in the future,
it will bring a better planting experience, and operators may also grow vegetables like
video games.

4. Conclusions

This case focuses on evaluating the vibration and transplanting effect of the transplant-
ing manipulator, which plays an intelligent decision-making role in the regulation of the
transplanting system. The transplanting robot is an important part of PFT, and its condition
directly affects the accuracy and quality of plant transplanting. It is not only the vibration
of the transplanting manipulator that reduces the dimensional accuracy of the planting but
also the fatigue deformation of the machine, which shortens its service life. Traditionally,
transplant monitoring is based on work experience and statistics, which would lead to
improper or excessive maintenance. A DT-based hybrid application is studied for real-time
vibration monitoring and real-time evaluation of key components of transplanters. At
medium speed, transplanting of 3000 plants/h, the high transplanting efficiency can be
maintained, and the vibration signal of the X, Y, and Z axes above the transplanting robot
is relatively gentle, which is suitable for transplanting. In terms of transplanting effect
evaluation, this study combines machine vision and artificial intelligence technology for
real-time discrimination and classification of the video images after transplanting. The
real-time evaluation of the transplanting effect is obtained to provide data support for the
intelligent decision-making of transplanting machines. Combining the optimal threshold
method with the traditional Wiener algorithm, the identification rate of healthy potted
seedlings can reach 94.3%. Through comprehensively using the optimal threshold method
and 3D block matching filtering algorithm for image threshold segmentation and denois-
ing, the recognition rate of healthy seedlings has reached over 96.10%. In the future, the
implementation of cloud and edge-based DT models as well as DT-based model migration
learning will be further investigated.
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