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Abstract: In the current study, a new hybrid machine learning (ML)-based model was developed by
integrating a convolution neural network (CNN) with a random forest (RF) to forecast pesticide use on
golf courses in Québec, Canada. Three main groups of independent variables were used to estimate
pesticide use on golf courses, expressed as actual active ingredient rate (AAIR): (i) coordinates
(i.e., longitude and latitude of the golf course), (ii) characteristics of the golf courses (i.e., pesticide
type and the number of holes), and (iii) meteorological variables (i.e., total precipitation, P, and
average temperature, T). The meteorological variables were collected from the Google Earth Engine
by developing a JavaScript-based Code. On the basis of the different periods of total precipitation
and average temperature, four different scenarios were defined. A data bank with more than
40,000 samples was used to calibrate and validate the developed model such that 70% of all samples
were randomly selected to calibrate the model, while the remainder of the samples (i.e., 30%) that did
not have any role in calibration were employed to validate the model’s generalizability. A comparison
of different scenarios indicated that the model that considered the longitude and latitude of the
golf course, pesticide type, and the number of holes in golf courses as well as total precipitation
and average temperature from May to November as inputs (R = 0.997; NSE = 0.997; RMSE = 0.046;
MAE = 0.026; NRMSE = 0.454; and PBIAS (%) = −0.443) outperformed the other models. Moreover,
the sensitivity analysis result indicated that the total precipitation was the most critical variable in
AAIR forecasting, while the average temperature, pesticide types, and the number of holes were
ranked second to fourth, respectively.

Keywords: actual active ingredient rate (AAIR); convolution neural network (CNN); golf courses;
hybrid model; random forest (RF); meteorological variables; pesticides; sustainable agriculture

1. Introduction

Golf courses are high-maintenance environments that often require the use of inputs
such as pesticides to maintain their playing surfaces. While golf courses can provide
several environmental benefits, this pesticide use has led to criticism from the public
and sometimes to regulations from governing authorities. For example, since 2003, golf
managers in the Québec province of Canada have been required to submit a “Pesticide
Reduction Plan” (PRP), signed by a licensed agronomist, to the Ministry of the Environment
and the Fight Against Climate Change (MELCC: Ministère de l’Environnement et de la
Lutte aux Changements Climatiques) every three years. These PRPs must contain six
different items [1], including quantities of pesticides applied for each category (fungicides,
herbicides, insecticides, etc.) on the corresponding treated area, methods implemented to
prevent pesticide migration outside the course, and alternative approaches for monitoring
and controlling pests without pesticides. Finally, these PRPs should also include objectives

Agriculture 2023, 13, 1163. https://doi.org/10.3390/agriculture13061163 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13061163
https://doi.org/10.3390/agriculture13061163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-4741-9437
https://orcid.org/0009-0001-1537-8933
https://orcid.org/0000-0002-6906-629X
https://orcid.org/0000-0001-6169-3654
https://doi.org/10.3390/agriculture13061163
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13061163?type=check_update&version=2


Agriculture 2023, 13, 1163 2 of 22

in reducing each pesticide category for the next three years and the methods that will
be implemented to achieve these objectives. Since insect and disease incidence is highly
dependent on weather conditions and can vary significantly from year to year, it can be
difficult to predict pesticide use and, thus, set realistic objectives in pesticide reductions for
golf course managers. In this context, the use of machine learning (ML) could be helpful
for golf course managers and regulatory authorities to better refine the process through
which the objectives in pesticide reductions are set.

ML has been previously used to predict pesticide behavior as well as its impact on
human health and the environment. For example, Kobayashi et al. [2] developed a model
to predict the soil adsorption coefficient (Koc) of pesticides by comparing three different
algorithms (gradient boosting decision tree, multiple linear regression, and support vector
machine). Vaz et al. [3] were able to develop three new molecules effective against plant
diseases by using ML on a training set of molecules with known activity. In a review study
on the use of prediction models for pesticide use, Gilbert and Edwin [4] proposed different
models based on deep learning to predict pesticide use on the basis of the occurrence
of pests or past pesticide use. Different ML techniques have also been used to identify
pesticide residues on fruits and vegetables [5,6] and to evaluate the toxicity of pesticides
against non-target organisms [7,8].

In a previous study [9], we used the database of pesticide applications compiled by
the MELCC from 2003 to 2018 to develop a machine learning algorithm that can reliably
predict pesticide use on golf courses in Québec. This algorithm relied on a hybrid approach
combining a tree-based method (random forest—RF) and a non-tree-based method (support
vector machine—SVM) followed by an optimization phase (grasshopper optimization
algorithm—GOA). Using golf course characteristics, such as its ID and localization (region),
the number of holes, and the total treated area, the RF-SVM-GOA algorithm was able to
reliably predict pesticide use on golf courses. However, this model had some drawbacks, as
it relied entirely on golf course characteristics and did not consider other factors affecting
pest development, such as weather conditions. Furthermore, the complexity of the model
required very high computer processing power, which limited its application to only
14,000 samples out of the more than 40,000 samples available in the database.

Thus, the main objective of the current study was to develop a new hybrid computer
program for predicting golf pesticide use that can (i) analyze the applications of pesticides
on golf courses in the province of Québec, Canada, (ii) assess the importance of different
types of parameters on the use of pesticides on golf courses, and (iii) predict future pesticide
use, which is critical for golf management to meet pesticide reduction targets.

2. Materials and Methods
2.1. Study Area and Data Collection

Since the adoption of the Pesticide Management Code in 2003, the MELCC has com-
piled a database of all golf course pesticide applications in the province of Québec. This
database includes various information, such as the identification of the golf courses, types of
applied pesticides, applied rates, and treated area for 380 golf courses during the 2003–2017
period. The location of all these golf courses is provided in Figure 1. Most golf courses
are located in areas with high population density in the south of the province, with some
located in residential areas less densely populated, such as the southwest and southeast
areas of the province.

The developed ML model includes three types of input variables: (i) characteristics of
the golf courses, such as the number of holes (NH) and pesticide type (PT), (ii) coordinates
of each golf course, such as longitude (X) and latitude (Y), and (iii) meteorological variables,
including total precipitation (P) and average temperature (T). NH, PT, X, and Y were
obtained from the MELCC golf pesticide database, while P and T were collected using the
Google Earth Engine (GEE).
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Figure 1. The location of the golf courses.

The output of the model is the actual active ingredient rate (AAIR) compiled from the
golf pesticide database. It represents the total active ingredient applied over a specific area
in kg 100 m−2 and is defined as follows:

AAIR =
AIT

Treated Area
=

Q × C
Treated Area

(1)

where AIT is the actual ingredient total (kg), Q is the pesticide quantity (kg), C is the
concentration of the active ingredient in the applied pesticide (%), and the Treated Area is
expressed in m2. For simplicity, pesticide density was considered to be equivalent to 1 kg
L−1, allowing for easy conversion of liters into kg for pesticides sold in a liquid form.

2.1.1. Meteorological Dataset

The Google Earth Engine (GEE) was employed to collect the meteorological dataset.
However, although GEE supports large-scale computing, it requires specialized exper-
tise [10]. Therefore, a JavaScript code was developed to preprocess gathered information
from ground-based observations and satellite images data products in GEE. Total precipita-
tion and average temperature were compiled from 2003 to 2017 for three different periods.
The first period, from May to November, aligns with the typical golf season in southern
Québec and is denoted as PSeason (precipitation) and TSeason (temperature). The second
period, spanning from April to October, represents the summer months characterized by
minimal snowfall and frosts and is referred to as PSummer and TSummer. The third period
encompasses the months from November to March, known as the winter months, char-
acterized by the presence of snow and consistently sub-zero temperatures. This period
is denoted as PWinter (precipitation) and TWinter (temperature). Although plant growth is
typically limited during the winter months, the survival of pests, including insects and
fungal diseases, can be influenced by temperature and snow cover, thus impacting the
subsequent growing season’s requirement for fungicides and insecticides. Figure 2 shows
the distribution of the meteorological variables (total precipitation and average tempera-
ture) for the three periods considered. Since no golf courses are located in the central and
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northern regions of Québec province, the provided maps cover only the areas where golf
courses are located to create more precise maps showing the differences in meteorological
parameters among golf courses.
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The total precipitation from May to November (PSeason) throughout 15 years shows
that the difference between the minimum and maximum total precipitation is more than
392 mm (Figure 2a). The minimum PSeason occurs in the southwest of Québec province,
while the maximum occurs in Québec City. Similarly, the difference between the minimum
and maximum of PSummer is significant (Figure 2b). Compared with the maximum PSummer,
the minimum is far from the south. In addition, the maximum PSummer is almost in the same
area as the maximum PSeason. The maximum of PWinter is less than that of PSummer. Similar
to PSummer, the difference between the minimum and maximum PWinter is also significant.
The spatial distribution of the minimum PWinter in Figure 2c is completely different from
the minimum PSeason and the minimum PSummer, both being located more to the northwest.
In addition, the maximum PWinter is located more to the east and northeast as compared
with the south for the maximum PSeason and PSummer.

The difference between the minimum and maximum average temperature from May to
November (TSeason) through 2003–2017 is more than 6 degrees Celsius, with the maximum
temperature (i.e., 13.6 ◦C) being more than two times the minimum one (i.e., 5.07 ◦C). The
minimum TSeason is recorded in the northern area of the studied region, while the maximum
TSeason is in the southernmost area (Figure 2d). The spatial distribution of TSummer is very
close to that of TSeason (Figure 2e). However, the minimum and maximum values of TSummer
are completely different from those of TSeason, with the minimum and maximum TSummer
being 3 degrees Celsius higher than the minimum and maximum TSeason. It should be
noted that the maximum TSummer is approximately 1.5 times that of the minimum. The
spatial distribution of TWinter is significantly different from those of TSummer and TSeason.
The minimum TWinter is located in the northwest, while the maximum is located in the
south and the northeast (Figure 2f). All of the values of TWinter are below zero degrees
Celsius, with the difference between the minimum and maximum being approximately
10 degrees Celsius.

2.1.2. Golf Pesticide Database

The MELCC golf pesticide database was cleaned prior to its use for modeling. The
first step of data cleanup was conducted on the 53,000 pesticide applications (i.e., samples)
contained in the database by removing all samples with missing information. Further-
more, samples with an AAIR greater than 3 times the maximum rate allowed by the
product label were also removed, as they were likely to be the result of recording mistakes
and not representative of actual product applications. This resulted in a clean database
of 40,715 samples.

Figure 3 shows the distribution of the AAIR using a boxplot, as well as the number of
different pesticide types (PT) and the number of holes (NH) for the cleaned dataset. For
PT, more than 66% of all samples are fungicides (F), while this value equals 19.74%, 9.76%,
and 3.16% for herbicides (H), insecticides (I), and growth regulators (RC), respectively. The
percentage of other pesticide types is less than 1%. More than 63% of all samples are related
to the NH = 18, while this value for golf courses with 9, 27, 36, and 45 holes is 11.56%,
5.9%, 16.02%, and 1.03%, respectively. The percentage of unique pesticide use applications
on golf courses is less than 1%. Due to Figure 3, most of the AAIR samples are less than
0.1 kg/100 m2 (red line selected in the box plot).

Figure 3 shows that the maximum value of AAIR is approximately 45 kg 100 m−2. The
first quartile, third quartile, and average of this variable are 0.00345, 0.048, and 0.1015 kg
100 m−2, respectively. The average of samples for AAIR is higher than the third quartile.
It means most of the samples are significantly smaller than those larger than the third
quartile. Considering this issue, which is clearly shown in Figure 3, there is a complex
problem that requires a unique strategy. Therefore, in this study, a training method was
proposed that showed not only good performance, on average, but also provided acceptable
performance in all domains. The description of the developed model is presented in the
following section.
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2.2. Modeling Approach
2.2.1. Convolution Neural Network (CNN)

A convolutional neural network (CNN) is a neural network whose layers are inter-
connected locally [11], which overcomes the challenge of reduced speed in the learning of
traditional artificial neural networks (ANN) [12]. The CNN technique is a deep learning-
based algorithm consisting of multiple layers of neurons. The initial layer, known as the
convolution layer (CL), processes input data by examining small squares and maintaining
pixel connections. The CL requires two inputs: a kernel or filter and an image matrix.
Following the convolutional layer, an activation layer can be utilized, typically in the form
of a nonlinear function. The use of newly developed activation functions enables the
creation of networks with simpler structures or faster convergence.

Typically, rectified linear unit (ReLU) functions, which are commonly used as activa-
tion functions, are zeros and ones, making them the most effective and typical activators [13].
ReLU activation functions provide numerous notable benefits. These include circumvent-
ing the vanishing gradient issue, computational efficiency [14], representation of sparsity
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that simplifies and accelerates model training, and linear behavior [15]. The threshold
operation of the ReLU activation function is expressed as follows:

f (x) =
{

0 0
x x ≥ 0

(2)

The pooling layer (PL), also referred to as downsampling, plays a crucial role as
the third layer in CNN. Its primary function is to retain the most important information
while reducing the number of parameters, especially when dealing with large images.
Various types of spatial pooling methods can be employed, such as Max, Average, and
Sum. The purpose of the pooling layer is to decrease the spatial resolution of the feature
maps while preserving essential details. This reduction in resolution leads to a significant
reduction in computation cost by greatly reducing the number of parameters, which, in
turn, helps mitigate the risk of overfitting and enhances the generalization capabilities of the
network. Additionally, pooling offers the advantage of insensitivity to translations, minor
transformations, and distortions in the input volume, thus contributing to the robustness
of the CNN architecture [16].

In a deep neural network, the final layer performs discriminative learning. Object
classes are identified by this fully connected system. On the basis of images, project
goals, and data, scholars have proposed a wide variety of different structures, such as
AlexNet, ResNet, VGGNet, LeNet, GoogleNet, and ZFNet [17]. Agricultural researchers
have successfully used CNN-2D in the past, so this structure was used in the current study
as well [18–21]. Moreover, in order to utilize the CNN architecture, the input data need to be
represented as images, which requires four dimensions. However, in the case of the current
study, the primary input data were one-dimensional. Therefore, a conversion process was
necessary to transform the data into image format prior to commencing the modeling phase.
This conversion allowed for the collected data for AAIR to be appropriately represented as
images, enabling the utilization of the CNN for further analysis and modeling.

At the onset of the convolutional layer in the employed network, a hundred filters
were utilized to capture and emphasize the correlations between nearby features within
the data. This approach is particularly suitable for data that exhibit high correlations
resembling image-like structures. A filter size of 10 × 1 was chosen to facilitate the
learning of correlations between features throughout the training phase of the network.
By incorporating this filter, the network could effectively extract and highlight correlation
features by considering the interplay among all features. The ReLU activation function
was employed in this layer to introduce non-linearity and enhance the expressive power of
the network.

This was followed by the normalization layer. Batch normalization, a widely adopted
technique in deep learning, was employed in this study. It served multiple purposes,
including accelerating the learning process by mitigating overfitting and providing regular-
ization. Unlike traditional normalization methods applied to raw data, batch normalization
operates between the layers of the neural network. Instead of analyzing the entire dataset
at once, it divides the data into mini-batches for analysis. Additionally, a dropout layer
with a rate of 50% was introduced. This layer plays a crucial role in the learning process by
randomly setting half of the outputs from the previous layer to zero during each iteration.
This dropout mechanism facilitates the learning of diverse aspects of the data and avoids
overfitting by preventing the inputs of the next layer from becoming overly dependent
on specific features. This layer was followed by a max pooling layer, which decreased its
dimensions. The max pooling filter size was 3 × 1. By using this layer, the weight of the
network was considerably decreased, and its computational load was extremely reduced.
The next layer was the fully connected layer, with the ReLU as its activation function. The
final layer was a fully connected layer consisting of one neuron and one regression layer to
generate the final result.
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2.2.2. Random Forest (RF)

The RF [22] is an ensemble learning technique that consists of multiple decision
classification trees. Each decision tree in the RF algorithm is built by randomly selecting a
subset of features from the available set. The predictions from these individual trees are
then combined using an average or majority voting approach, depending on the specific
problem being addressed. This ensemble strategy allows RF to make more accurate and
robust predictions compared with a single decision tree. The random feature selection and
aggregation of results contribute to the overall effectiveness of the RF algorithm. Consider
{G (x, βi), i = 1, . . . , L)} (where x is the characteristic variable, βi is the random variable, and
L denotes the number of decision trees) as the input data set and G (x, βi) as the result of the
single decision tree (SDT); then, the results of all SDTs are averaged to form the estimated
result of the RF:

G(x) =
1
L

L

∑
i=1

G(x, βi) (3)

where G(x) is the RF-based estimated value of the target variable.
The RF modeling process employs a bagging approach with replacement, where

samples are randomly drawn with replacement from the original set of samples. This is
carried out k times, ensuring that the sample size of each decision tree in the RF is the
same as the original training set. In the RF modeling process, out-of-bag (OOB) sampling
is used to create a sample consisting of data that were not selected during each iteration.
It is important to note that samples may be chosen multiple times or not chosen at all. A
certain percentage of all samples, typically two-thirds, is selected for model calibration
and is referred to as the in-bag (IB) samples. The RF model’s generalizability is assessed
through internal cross-validation using the remaining out-of-bag (OOB) samples. These
OOB samples are not used in the model training and serve as an independent evaluation
set to estimate the model’s performance.

Each randomly selected training set in the RF model generates a regression tree (RT)
with a specified number of input features, denoted as M. When constructing the RT, a
subset of m feature variables is chosen as candidates for the branch nodes, where m is
less than or equal to M. The selection of these feature variables is arbitrary. The branching
superiority principle is then applied to determine the optimal splitting strategy at each
node of the tree. This principle guides the selection of the feature variable and splitting
point that results in the most significant improvement in the model’s performance [23]. By
iteratively applying this process, a set of regression trees is generated in the RF model.

In each RT generated using the classification and regression tree (CART) method,
branches are allowed to grow freely from the top to the bottom without pruning [24]. By
applying this method, a set of k RTs is created to form a random forest. The prediction
results of each RT are then averaged to obtain the final results of the forest. This ensemble
approach combines the predictions from multiple trees to improve the overall accuracy
and robustness of the model. To assess the generalizability of the model, the OOB data,
which consist of the samples that were not selected during the training process, are used
for evaluation.

2.2.3. Hybrid Methodology

The conceptual framework depicting the structure of the hybrid model developed in
this study is presented in Figure 4. The initial step involved loading the data and catego-
rizing it into two main groups: the training and testing datasets. The widely recognized
random selection without replacement (RSWR) approach [25,26] commonly used in ma-
chine learning modeling was employed to accomplish this. Through RSWR, 30% of the
total samples were selected for the testing stage, while the remaining samples were utilized
for training the model. The testing dataset, which did not contribute to the model training,
was employed solely for evaluating the performance of the machine learning-based model.
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The second step involved defining user-defined parameters for both individual meth-
ods, the RF and CNN (refer to Table 1). Moving on to the third step, the training dataset was
utilized to generate distinct random vectors. These vectors served as input for producing
decision trees. Subsequently, the decision trees generated were used in a voting process to
determine the final results of the RF method. Indeed, the modeling process commenced
with the utilization of the random forest (RF) algorithm. The RF algorithm generated class
predictions as outcomes, which, in turn, facilitated the automatic division of the dataset
into distinct classes. In Figure 4, the class denoted as DT-1 corresponds to the initial class
produced by the RF algorithm. Subsequently, for each class generated by the RF, the CNN
was employed to conduct further analysis of the data within that particular class. Indeed,
the modeling process involved two distinct phases. Firstly, the random forest (RF) algo-
rithm was employed to identify the optimal classes. Subsequently, separate models were
developed for each organized class identified by the RF using the CNN. The number of
models developed for each scenario were denoted as S1 to S4 according to Equations (6)–(9),
which corresponded to the number of classes determined by the RF algorithm. The mod-
els described in Equations (6)–(9) share common input variables. These inputs include
the number of holes (NH), pesticide types (PT), coordinates (X and Y), precipitation (P),
and temperature (T). Furthermore, the output variable for all models is the actual active
ingredient rate (AAIR), as defined in Equation (1). Finally, the performance evaluation of
the model was extended beyond the training dataset and included the testing dataset. If
the obtained results met the required criteria, the modeling process concluded. However,
if the results were not satisfactory, the parameters of RF and CNN were readjusted. The
process of identifying optimal classes using RF and modeling each class using CNN was
repeated iteratively until acceptable results were attained. Ultimately, the RF and CNN
were integrated into a unified framework known as the RFCNN.

Table 1. The settings of the user-defined parameters for developed CNN.

Method Parameter Setting

CNN

Optimizer Adamax
Dropout rate 0.5
Learning rate 0.001
Weight decay 0.0005

Number of epochs 5000
Activation function ReLU
Initial learning rate 0.1

Max pooling kernel size 3 × 1
Convolutional kernel size 10 × 1

Number of convolution units 10

RF

Bag size percentage 100
Batch size 100

Maximum depth of the tree 5
Number of decimal places 2
Number of execution slots 1

Number of features 1
Number of iterations 100

Seeds 10

As mentioned in Table 1, the applied optimizer in CNN was “Adamax”, which
offers several advantages, including adaptive learning rates, effective handling of sparse
gradients, robustness to different scale parameters, memory efficiency, and convergence of
non-stationary objectives.

The functional relationship between the inputs and outputs in the current study was
defined as follows:
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AAIR = f (Characteristic of Golf Courses, Coordinates, Meteorological Variables) (4)

Considering the number of holes and pesticide types as characteristics of golf courses,
as well as precipitation and temperature as meteorological variables, the above relationship
was rewritten as follows:

AAIR = f (NH, PT, X, Y, P, T) (5)

where NH is the number of holes, PT is the pesticide types, X and Y are the longitude and
latitude of the golf courses, respectively, P is the precipitation, T is the temperature, and
AAIR is the actual active ingredients rate (kg 100 m−2).

Meteorological parameters provided in the functional relationship in Equation (4)
are total precipitation and average temperature. However, the period during which these
parameters are to be considered can have an influence on the algorithm output, so different
scenarios were evaluated. The different scenarios are detailed in Equations (6)–(9):

S1 : AAIR = f (NH, PT, X, Y, PSeason, TSeason) (6)

S2 : AAIR = f (NH, PT, X, Y, PSummer, TSummer) (7)

S3 : AAIR = f (NH, PT, X, Y, PWinter, TWinter) (8)

S4 : AAIR = f (NH, PT, X, Y, PWinter, TWinter, PSummer, TSummer) (9)

where NH is the number of holes, PT is the pesticide type, PSeason and TSeason are total pre-
cipitation and average temperature, respectively, recorded during the golf playing season
(May to November), PSummer and TSummer are total precipitation and average temperature,
respectively, during the summer months (April to October), and PWinter and TWinter are total
precipitation and average temperature, respectively, during the winter months (November
to March).

2.3. Goodness of Fit

Appraising models based solely on one criterion does not suffice due to the stochastic
nature of the target variable (i.e., AAIR in the current study). The developed models for
AAIR forecasting were, therefore, checked using a group of quantitative measurements,
including coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), root mean
square error (RMSE), mean absolute error (MAE), normalized RMSE (NRMSE), and the
percentage bias I (PBIAS). The mathematical definitions of the mentioned indices are
defined as Equations (10)–(15):

R2 = 1 −

SSR = ∑N
i=1
(

AAIRO
i − AAIRM

i
)

SST = ∑N
i=1

(
AAIRO

i − AAIRO
)
 (10)

NSE = 1 −

k
∑

i=1

(
AAIRE

i
− AAIRO

i

)2

k
∑

i=1

(
AAIRO

i
− AAIRO

)2
(11)

RMSE =

√√√√1
k

k

∑
i=1

(
AAIRE

i
− AAIRO

i

)2
(12)

MAE =
1
k

k

∑
i=1

∣∣∣AAIRE
i
− AAIRO

i

∣∣∣ (13)
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NRMSE =
RMSE

AAIRO
(14)

PBIAS =

k
∑

i=1

(
AAIRE

i
− AAIRO

i

)
k
∑

i=1
AAIRO

i

× 100 (15)

where SSR is the sum of squares due to regression, SST is the total sum of squares, AAIRO
i

and AAIRE
i

denote the value of the ith observed and estimated (respectively) samples

of the actual active ingredient rate (AAIR), AAIRO is the average of the observed AAIR
samples, and k is the number of samples.

The R2 was applied to measure the difference between the variance and mean of the
observed and estimated samples. Using it alone for model evaluation is not recommended
due to its sensitivity to outliers [27,28]. The difference between the observed and estimated
and its squared were represented by MAE and RMSE, respectively. These indices could
be compared simply since the error was computed in the same units as the estimated
target variable. By using the average magnitude and size of the error, MAE calculated the
errors without considering their direction. The most significant errors were given more
weight by RMSE. Similar to MAE, the error directions were not considered. In addition,
the NRMSE was applied to use RMSE as a dimensionless index [29], sometimes called the
scatter index. As a result, the RMSE, NRMSE, as well as MAE should be used in conjunction
with other indices.

The range of NSE is [−1, 1], with NSE = 1 being the perfect value for this index. The
condition NSE = 1 is achieved when the estimation error variance is zero. The PBIAS
was applied to check the mean tendency of the developed model, lower or higher than
the observed value. These metrics reflected the descriptive performances of the R2 [30],
NSE [31], NRMSE [32], and PBIAS [33] provided in Table 2. It should be noted that there is
no descriptive performance for MAE and RMSE because they are dimensional indices, and
the lower the values of these indices, the higher the performance of the model.

Table 2. Descriptive performance of various indices.

Index R2 NSE PBIAS NRMSE

D
es

cr
ip

ti
ve

pe
rf

or
m

an
ce Unsatisfactory R2 < 0.5 NSE < 0.4 PBIAS > ±25% 30% < NRMSE

Acceptable - 0.4 < NSE < 0.5 - -
Satisfactory 0.5 < R2 < 0.6 0.5 < NSE < 0.65 ±15% > PBIAS > ±25% 20% < NRMSE < 30%

Good 0.6 < R2 < 0.7 0.65 < NSE < 0.75 ±10% > PBIAS > ±5% 10% < NRMSE < 20%
Very Good 0.7 < R2 < 1 0.75 < NSE < 1 ±5% > PBIAS NRMSE < 10%

3. Results and Discussions
3.1. RFCNN-Based Estimation of AAIR in Different Scenarios

Figure 5 shows the scatter plots of the RFCNN in AAIR forecasting at both training and
testing stages through four different scenarios (i.e., S1 to S4, defined as Equations (6)–(9),
respectively). Table 3 provides the statistical indices of the RFCNN in AAIR forecasting at
both the training and testing stages for the four different scenarios. The main difference
between these scenarios was related to the period considered for the total precipitations
and mean temperature. The other input variables, including the number of holes (NH),
pesticide type (PT), and geographical coordinates (X, Y), were constant in all scenarios.
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Figure 5. Scatter plots of the RFCNN in AAIR forecasting at both training and testing stages through
four different scenarios.
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Table 3. Statistical indices of the RFCNN in AAIR forecasting at both training and testing stages
through four different scenarios.

Index
Training Testing

S1 S2 S3 S4 S1 S2 S3 S4

R2 (—) 0.997 0.982 0.984 0.992 0.997 0.982 0.985 0.991
NSE (—) 0.997 0.978 0.979 0.991 0.997 0.978 0.981 0.990

RMSE (kg/100 m2) 0.047 0.120 0.118 0.080 0.046 0.114 0.106 0.078
MAE (kg/100 m2) 0.026 0.053 0.056 0.041 0.026 0.053 0.055 0.041

NRMSE (—) 0.457 1.177 1.153 0.780 0.454 1.136 1.057 0.777
PBIAS (%) −0.470 −1.881 −2.638 −0.952 −0.443 −1.870 −2.730 −0.903

Green denotes the best, and red denotes the worst.

The provided scatter plot for S1 in Figure 5 indicates that the RFCNN model performed
well for this scenario at both the training and testing stages. This is confirmed by the
quantitative evaluation of the RFCNN presented in Table 3. According to the index of
model performance presented in Table 2, R2, NSE, NRMSE, and PBIAS of the model
using S1 are qualified as “very good”. In addition, the RMSE and MAE of this model are
extremely close to zero, indicative of good model performance. It should be noted that
the difference between the statistical indices for the two stages (training and testing) is
insignificant in this scenario. Indeed, these results suggest that the developed model for
AAIR forecasting using S1 has good generalizability, and its use of data that did not play a
role in model training, such as data that will be recorded in the future, will perform well.

For S2, the scatter plot (Figure 5) and the statistical indices (Table 3) obtained for both
the training and testing stages show the acceptable performance of the RFCNN model
in the AAIR estimation using the input variables defined in Equation (7). According to
Table 2, the descriptive performance of the RFCNN in AAIR estimations using S2 based
on the R2, NSE, NRMSE, and PBIAS is qualified as “very good”. However, R2 and NSE
of S2 were, respectively, 1.51% and 1.88% lower than those for S1, and the RMSE, MAE,
and NRMSE of the model using S2 were, respectively, 150.15%, 107.84%, and 150.51%
higher than those for S1. In addition, the PBIAS of S2 was three times higher than those
obtained for S1. Furthermore, using total precipitation and average temperatures from
April to October (PSummer, TSummer) (S2) instead of May to November (PSeason, TSeason) (S1)
resulted in a significant reduction in the performance of the model for the AAIR estimated
at the test stage, which negatively affected the model generalizability. This reduction of
performance indicates that some of the samples were estimated to be lower than the actual
AAIR with high error, especially in the range of 0 < AAIR (kg 100 m−2) < 6. Therefore, it
can be concluded that the use of meteorological variables recorded only for summer cannot
predict AAIR values with reasonable accuracy in all ranges of the AAIR.

The RFCNN model using S3 generally performed well in AAIR forecasting (Figure 5),
with R2, NSE, PBIAS, and NRMSE at both the training and testing stages (Table 3) qualified
as “very good” according to the classification presented in Table 2. However, a comparison
of the mentioned indices for S3 with those obtained with S1 indicates that the R2 and NSE
of S3 were, respectively, 1.23% and 1.55% lower than those for S1, and the RMSE, MAE,
and NRMSE of the S3 were, respectively, 132.815%, 112.83%, and 132.82% higher than
those for S1. In addition, the PBIAS of S3 (training and testing) are five times higher than
those for S1. A comparison of S2 with S3 indicates that the R2, NSE, and MAE of S3 were,
respectively, 0.28%, 0.34, and 2.35% higher than those for S2, and the RMSE and NRMSE of
the S3 were both 7.45% lower than those for S2. However, in both the training and testing
stages of S3, different samples were underestimated with high relative error, especially
in the range of 0 < AAIR (kg 100 m−2) < 6, similar to what was observed with S2. Thus,
the use of total precipitation and average temperature from April to October (PSummer and
TSummer) or November to March (PWinter and TWinter) (i.e., S2 and S3) led to a decrease in
the performance of the model compared with the scenario that considered the value of
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these two variables from May to November (i.e., S1). Moreover, the results of all statistical
indices except MAE showed that using total precipitation and average temperature from
November to March (winter) resulted in a more accurate model than using the values of
these parameters from April to October (summer).

The provided scatter plots in Figure 5 demonstrate that the estimated AAIR by S1 and
S4 were very similar, performing well in all ranges of AAIR. The number of input variables
in S4 was higher than in the other scenarios because total precipitation and the average
temperature in S4 combined the summer (April to October) and the winter (November to
March) periods. The descriptive performance of R2, NSE, PBIAS, and NRMSE for S4 at
both training and testing stages (Table 3) are qualified as “very good” according to Table 2.
The statistical indices of S4 and S1 provided in Table 3 indicate that S1 had higher R2 and
NSE than S4 by 0.6% and 0.64%, respectively, and its RMSE, MAE, and NRMSE were lower
by 71.03%, 58.91%, and 71.03%, respectively, than S4. Additionally, the PBIAS values of
S4 (training and testing) were approximately two times greater than those of S1. On the
basis of the explanations provided, the scatter plots presented in Figure 5, as well as the
statistical indices in Table 3, the model developed in scenario 1 (Equation (6)) was selected
as the best model.

3.2. Sensitivity Analysis

To check the effect of each input variable on the AAIR forecasting on the basis of
the best scenario (i.e., S1), four different sub-scenarios were defined and are presented
in Table 4. Each sub-scenario has five inputs, so the difference between S1-1 and S1-4 is
the lack of using either the number of holes, the pesticide type, the total precipitation,
or the average temperature as an input variable. The effect of each independent input
variable on the AAIR forecasting using the developed RFCNN is presented in Figure 6.
Removing the average temperature from May to November as the model input (i.e., S1-1)
had a negative effect on the modeling results, so that the correlation-based indices of the
S1-1 (R2 = 0.81; NSE = 0.78) decreased by more than 19% compared with S1. Despite the
decrease in the values of these two indices, their descriptive performance still is “very
good” according to Table 2. The relative differences in statistical indices of S1 with S1-1,
S1-2, S1-3, and S1-4 are presented in Figure 7. The RMSE, MAE, NRMSE, and PBIAS of the
S1-1 (RMSE = 0.36; MAE = 0.13; NRMSE = 3.63; and PBIAS = −8.09) were more than 6, 4, 6,
and 16 times the values of these indices for S1 (RMSE = 0.05; MAE = 0.03; NRMSE = 0.45;
and PBIAS = −0.47), respectively. According to Table 2, the descriptive performances of
this model based on the NRMSE and PBIAS are “very good” and “good”, respectively.

Table 4. Definition of the input parameters for sensitivity analysis.

Model Y X NH PT PSeason TSeason

S1-1 4 4 4 4 4 -
S1-2 4 4 4 4 - 4

S1-3 4 4 4 - 4 4

S1-4 4 4 - 4 4 4

The use of 4 for each variable indicates consideration of that variable in the desired model.

Removing PSeason as an input in the model (S1-2) decreased the RFCNN performance
in the AAIR forecasting (R2 = 0.73; NSE = 0.64; RMSE = 0.43; MAE = 0.11; NRMSE = 4.24;
and PBIAS = −4.84). As shown in Figure 6, the S1-2 not only provided weaker performance
compared with the S1 but also the performance of this model in terms of R2, NSE, RMSE,
and NRMSE was weaker than S1-1.

After evaluating the effect of the meteorological variables (i.e., total precipitations and
average temperature), the effect of golf course characteristics was assessed. Removing the
pesticide type as an input variable (S1-3) significantly decreased the modeling accuracy so
that the R2 and NSE of the S1-3 were decreased by more than 14% and 19%, respectively,
compared with S1 (Figure 6). These relative differences between S1-3 and S1 for other
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indices were in the range of 294% to 799% (Figure 7). The effect of the number of holes
was higher than the pesticide type, so that the R2 and NSE of the S1-4 were decreased by
more than 16% and 20%, respectively, compared with S1 (Figure 6). The relative differences
between S1-4 and S1 for the other indices were in the range of 313% to 856% (Figure 7).
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AAIR forecasting using the developed RFCNN.
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and S1-4.

On the basis of the provided explanations and results in Figures 5–7, it can be seen
that removing any golf course characteristics and meteorological variables resulted in a
remarkable reduction in modeling accuracy. The total precipitation from May to November
(PSeason) and the number of holes (NH) were the most effective variables related to the
meteorological variables and gold course characteristics, respectively. Generally, the total
precipitation during the golf season (PSeason) had the highest impact on the AAIR forecasting
using the developed RFCNN method.

As shown in Table 4, both longitude (X) and latitude (Y) were considered in all sub-
scenarios. The model discussed in this context had the capability to be applied in various
locations by incorporating latitude and longitude information. However, if latitude and
longitude were excluded from the model, its performance would be greatly diminished.
Indeed, the omission of latitude and longitude resulted in a significant decrease in model
performance. The R2 values for the models with all provided inputs in Equation (6), except
latitude or longitude, were 0.57 and 0.45, respectively. Hence, it is evident that taking into
account the specific characteristics of the study area held substantial importance when
modeling pesticide usage on the golf courses.

3.3. Advantages, Limitations, and Future Improvements

In the current investigation, the introduced hybrid RFCNN as an integration of the
random forest (RF) and convolution neural network (CNN) was exceptionally successful
in forecasting the pesticide actual active ingredient rate (AAIR) (kg 100 m2) used on golf
courses in Québec. The main advantages of the current research study were threefold:
(1) precise estimation of the AAIR, (2) automatic classification of the data to overcome
existing problems in the range of the AAIR values (the third quartile of the AAIR was
lower than the average of all samples, see Figure 3), and (3) testing of different scenarios
combining golf course characteristics and meteorological variables, as was recommended
in a recently published paper [9]. The developed model based on the selected scenario
(i.e., S1) can be used as a practical tool for forecasting AAIR for future years on the basis of
the different climate change scenarios. Indeed, the values of the meteorological variables
(i.e., total precipitations and average temperatures) can be obtained on the basis of the
different climate change scenarios to calculate and report the AAIR value and its trend
in future years.
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In the current study, a CNN was used to map the input variables to the AAIR non-
linearly for each class that the RF automatically created. The main advantages of the RF
were its exceptional accuracy in classification, its ability to determine the significance of
variables, and its non-parametric nature [34]. In comparison with the traditional artificial
neural network, a CNN is capable of automatically detecting crucial features without the
need for human involvement. Indeed, this makes the training of the model more accurate
and requires fewer parameters to be learned through the training phase.

One limitation of the present study is that a trial-and-error process was used to deter-
mine the user-defined parameters of the CNN. To find the optimal values of this technique,
a newly developed optimization algorithm, such as the cooperation search algorithm [35],
fire hawk optimizer [36], or white shark optimizer [37], could be integrated with the CNN.
The results of the current study could then be compared with the CNN optimized us-
ing optimization algorithms to determine whether it would affect model performance.
The challenges in the AAIR analysis and developing an effective ML-based model are
categorized into two main groups: data and modeling challenges. The main challenges
with data were not only a large number of samples (i.e., 40,715) but also the wide range
of the AAIRs so that the average of all samples was higher than the 3rd quartile of the
samples. Therefore, it was time-consuming to model many samples, especially for the
current study for which modeling needed a high number of iterations to achieve the most
optimum results in all automated created groups of samples by the RF. The main modeling
challenges for a computer with an Intel Core i7 processor and 16 GB RAM were (1) the high
number of iterations required for the developed hybrid model, (2) low memory in using
the newly developed hybrid machine learning model for the forecasting of the golf course
characteristics [9], and (3) finding the optimum values of the developed RFCNN.

4. Conclusions

The current study developed a new hybrid machine learning model known as RFCNN
to accurately forecast pesticide application rates on golf courses, expressed as the actual
active ingredient rate (AAIR), in the Québec province of Canada. The RFCNN is an
integration of the random forest (RF) and the convolution neural network (CNN). The RF
was used to classify all samples in order to overcome the existing problems in working
with a wide range of AAIR values, while the CNN was applied to map the independent
input variables to the dependent target variable (i.e., AAIR). Sensitivity analysis of the
developed model revealed that the meteorological parameters played an important role in
the pesticide AAIR forecasting. Total precipitations and average temperatures recorded
during the golf season (May to November) ranked first and second in importance in the
RFCNN model, while pesticide types and the number of holes of the golf course ranked
third and fourth, respectively.

By using this model, golf course managers in Québec may be able to forecast pesticide
use more accurately and set pesticide-reduction targets in accordance with existing legis-
lation. In addition, this model can be used by regulatory authorities and agronomists to
refine and improve pesticide reduction processes on golf courses. For example, beneficial
economic measures could be implemented for golf courses that use fewer pesticides than
expected by the model, thus encouraging them to reduce their reliance on pesticides.

This model is a conditional method to predict the impact of climate change. While
this current model was limited to pesticides used on golf courses in Québec, it could
be adapted to other crops in different regions if data on pesticide applications and farm
characteristics are available. Considering the spatial importance and pesticide use on some
crops, using such a model could help us to understand better the factors affecting pesticide
use and, thus, direct public policies to reduce the use of these products. Finally, this tool
could also be used to predict the impact of climate change on pesticide use by applying
contrasting temperature and precipitation scenarios on the basis of different greenhouse
gas emissions models.
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