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Abstract: A new satellite-enabled interoperable service has been developed to provide high spatio-

temporal and continuous time series of Growing Degree Days (GDDs) at the field. The GDDs are 

calculated from MSG-SEVIRI data acquired by the EUMETCast station operated by IAASARS/NOA 

and downscaled on-the-fly to increase the initial coarse spatial resolution from the original 4–5 km to 

1 km. The performance of the new service SENSE-GDD, in deriving reliable GDD timeseries at dates 

very close to key phenological stages, is assessed using in situ air temperature measurements from 

weather stations installed in Gerovassiliou Estate vineyard at Epanomi (Northern Greece) and an 

apple orchard at Agia (Central Greece). Budburst, pollination, and the start of veraison are selected as 

key phenological stages for the vineyards, whilst budburst and pollination for the apple orchard. The 

assessment shows that SENSE-GDD provided uninterrupted accurate measurements in both crop 

types. A distinct feature is that the proposed service can support decisions in non-instrumented crop 

fields in a cost-effective way, paving the way for its extended operational use in agriculture. 
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1. Introduction 

Heat units, expressed in the form of growing degree days (GDDs), have been exten-

sively used in agricultural research to monitor crop development and to assess potential 

differences in crop growth patterns [1]; changes in crop diurnal development rates [2]; and 

potential response of crop growth rates under short- and long-term future climate change 

scenarios [3–5]. Moreover, directly (as an indicator that signifies the beginning/ending of 

critical phenological stages/periods [6]) or indirectly (e.g., as an input to crop models [7,8]), 

GDDs are increasingly used to optimize the overall farming decision making, from variety 

selection to enhancing field management practices, such as irrigation and weed control. Spe-

cifically, in the case of irrigation, GDD accumulation can guide irrigation, e.g., from full irriga-

tion to mild regulated deficit irrigation [9,10], while for weed control, a certain accumulation of 

GDDs triggers the beginning and the end of critical weed-control periods [11,12]. This is the 

reason why GDD is often incorporated into irrigation models, such as the AquaCrop model 

[13–15], proposed variations of AquaCrop [16], and other models [17]. 

The calculation of GDDs is commonly based on in situ instrumentation, e.g., weather 

stations measuring air temperature (AT) [18–21]. However, in several cases, the high 

equipment costs, as well as the annual costs related to data transmission and storage ren-
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der the acquisition and maintenance of such equipment prohibitive (especially in 

small-scale farming). As an alternative, methods that calculate GDDs remotely via satellite 

data have been very recently reported in the literature [22–24]. For example, [22] use satel-

lite-derived evapotranspiration estimates, land surface temperature (LST) measurements, 

and crop phenological stage information for Nebraska maize crops to quantify how irriga-

tion covers water and temperature stresses. The calculation of the GDD and Extreme De-

gree Days (EDD) is conducted using daily 1 km LST data from the MYD11A1 data product, 

interpolated to hourly values using a sine function to characterize the maize crop surface 

temperatures during the period 2003–2016 [22]. The measurements are compared to daily 

minimum and maximum surface AT at 1 km resolution from Daymet version 3 [25] 

providing high to moderate accuracies. Moreover, [23,24] use temperature measurements re-

trieved from the Climate Date Store (CDS) of Copernicus Climate Change (C3S) Service [26], 

which provides information about the past, present, and future climate, on the global, conti-

nental, and regional scale from a variety of data sources, including satellite observations [26]. 

In particular, [23] exploit satellite-derived data to provide weekly global water-demand index 

maps for the period 2016–2020 based on a parameter-independent data-driven approach using 

available remote sensing products and weather data, such as soil moisture, normalized differ-

ence vegetation index (NDVI), and GDD measurements. In particular, the GDD data are cal-

culated using hourly AT estimates at 2 m above ground retrieved from CDS with temporal and 

spatial resolutions of 1 h and 0.1° × 0.1° (approx. 10 km), respectively. On the other hand, [24] 

test three models for a continuous in-season and/or post-season wheat yield assessments of 

wheat crops in Central Greece by fully exploring the Copernicus CDS data sets. In particular, 

GDD is calculated using gridded agrometeorological data for the 2019–2021 growing seasons 

at a spatial resolution of 0.1° × 0.1° and of 0.25° × 0.25° (approx. 25 km) derived from the 

ERA5-Land and ERA5 re-analysis, respectively, that are generated by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) and freely distributed through CDS. Measure-

ments include hourly data consisting of 2 m air temperature, aggregated into daily means 

and/or sums. 

The Agricultural Interoperability and Analysis System (ATLAS) is a European H2020 

funded project, the goal of which is to develop an open interoperability network for agricul-

tural applications and to build a sustainable ecosystem for innovative data-driven agriculture 

(https://www.atlas-h2020.eu/; accessed on 24 April 2023). ATLAS network is based on a ser-

vice-oriented architecture which offers a high level of scalability from a single farm to a global 

community. The technology developed in ATLAS is tested and evaluated within pilot studies 

on a multitude of real agricultural operations across Europe. ATLAS involves all actors along 

the food chain, simplifying and improving the processes from farm to fork. Through the sup-

port of innovative start-ups, small and medium-sized enterprises (SMEs), and farmers, ATLAS 

enables new business models for the farmers and establishes sustainable business ecosystems 

based on innovative data-driven services. In parallel, the establishment of a Representational 

State Transfer (REST) architecture as the best standard to design and deploy internet of things 

applications (IoT apps) in server-cloud environments [27,28], in combination with secure 

transfer protocols, such as OAuth 2 (Open Authorization) [29], has rendered the interconnec-

tion and interoperability between IoT apps fast, reliable, and secure. 

Within the framework of its partnership with the ATLAS project, the Institute for As-

tronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS) of the National 

Observatory of Athens (NOA) developed and implemented an innovative, real-time, opera-

tional, interoperable temperature monitoring service that provides cumulative GDD time se-

ries for a given time and location, derived from satellite data. The present work overcomes the 

two main drawbacks of thermal infrared imagery, namely coarse spatial resolution and cloud 

coverage.  

In this paper, we present (a) the service methodology and communication schema within 

the ATLAS ecosystem; and (b) a service performance evaluation based on data collected from 

in situ weather stations installed in two different locations and crop types in Greece. 

https://www.atlas-h2020.eu/
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2. Materials and Methods 

2.1. Data 

2.1.1. Data Necessary for the Satellite Retrievals 

Satellite-derived services are developed using high spatiotemporal land surface and 

AT datasets that are combined with crop-specific characteristics to calculate the GDD. Four 

different types of datasets are used: 

1. Satellite Radiance at Top-of-Atmosphere data series acquired from the Meteosat Sec-

ond Generation Spinning Enhanced Visible and InfraRed Imager (MSG SEVIRI) in-

strument: SEVIRI is a 50 cm diameter aperture, line-by-line scanning radiometer, 

which provides image data in four Visible and Near-InfraRed (VNIR) channels and 

eight thermal InfraRed (TIR) channels. A key feature of SEVIRI is its continuous im-

aging of the Earth with a baseline repeat cycle of 15 min. The VNIR spectral range is 

0.4–1.6 µm and the TIR is 3.9–13.4 µm [30]. The TIR channels provide, among other 

information, continuous data about the temperatures of clouds, land, and sea surfaces. 

For the purposes of this work, the data from TIR channels are used. Due to the full 

disk viewing geometry, the spatial resolution of SEVIRI data varies with geographic 

latitude and over Europe it ranges from approximately 4 km at 35° to 6 km at 50° N. 

2. Elevation data from the Shuttle Radar Topography Mission (SRTM) global Digital 

Elevation Model (DEM): The elevation data are provided as 1° × 1° tiles with a spatial 

resolution of 30 m. Here, we use all the tiles that cover Europe and we resample them 

to 1 km using spatial averaging [31]. 

3. Numerical Weather Predictions: Atmospheric profiles of temperature and relative 

humidity are retrieved from the Global Forecasting System (GFS) and interpolated to 

hourly values [32]. 

4. Base temperature per crop: As temperature increases above the base temperature, 

plants develop progressively. This information is provided by the crop specialists. 

2.1.2. Validation Data 

The capability of the service to derive reliable GDD timeseries and thus support deci-

sions that depend on key phenological stages is assessed using temperature measurements 

from weather stations installed in the designated agricultural pilot areas of ATLAS. These 

pilot areas include vineyards located in a flat, coastal plain area at Epanomi (Northern 

Greece; 40.450645° N; 22.920283° E; elev.: 80 m a.s.l.) and an apple orchard located at Agia 

(Central Greece; 39.719385° N; 22.739093° E; elev.: 204 m a.s.l.), both shown in Figure 1. The 

vineyards at Epanomi are cultivated with the white grape variety Malagouzia and the red 

grape variety at Limnio, while the apple orchard of Agia with the Granny Smith variety. 

Both stations measure AT every 15 min, and then transmit the measurements, almost in 

real-time, to cloud data storage. In the case of vineyards, the station was installed in March 

2021, while in the apple orchard it was installed in February 2022. For the purposes of this 

study, the AT measurements of 2021 and 2022 are retrieved and used for the vineyards and 

measurements of 2022 are used for the apple orchard. 
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Figure 1. ATLAS agricultural pilot areas used as case studies for evaluating SENSE-GDD: (A) Epa-

nomi (vineyard with two grape varieties) and (B) Agia (apple orchard). 

2.2. Methodology 

The methodology for the calculation of the SENSE-GDD product and its integration in 

the ATLAS Ecosystem Interoperability Architecture is presented below. 

2.2.1. Satellite-Derived GDD Calculation 

AT data are retrieved from the satellite-based nowcasting service of IAASARS/NOA 

[33]. This service has been designed originally to monitor the urban environment [34–37] 

and is now customized for monitoring agricultural areas to support decisions relevant to 

irrigation needs and automated services. To achieve this purpose, four requirements have 

been identified:  

1. production of continuous time series of AT data with increased spatial and temporal 

resolution (1 km/1 h), 

2. operation in real time and online, 

3. ability to cover any part in Europe, and 

4. elimination of down-time and data gaps, as GDD is a cumulative measure of AT and 

days with missing data can cause significant deviations. 

To fulfil these requirements, a composite workflow was devised that relies on the 

combined exploitation of thermal remote sensing data from MSG-SEVIRI and an advanced 

spatial enhancement algorithm [33,34]. Geostationary satellite image data are a prominent 

data source, because (i) they cover a large area of the Earth; (ii) they are acquired with high 

frequency (1 image every 5 min); (iii) they can be retrieved in real time through data ac-

quisition antennas, instead of downloading from the satellite service providers; and (iv) 

they can be downscaled to finer spatial resolutions (1 km or even finer). The GDD calcula-

tion is performed in the following two stages. 

• Stage 1: Retrieval of AT data from satellite thermal images 

The process of retrieving the AT from the MSG-SEVIRI image data involves several 

steps. The first step is the real-time image acquisition and preprocessing. Next, a cloud 
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mask (CMa) is prepared by delineating all the areas covered by clouds. Then, the image 

segments that correspond to the ATLAS pilot sites are clipped and the land surface tem-

perature and AT of each pixel are retrieved using the data assimilation method proposed 

in [33]. Finally, the temperature data are downscaled to 1 km using statistical downscaling 

[33]. The downscaling algorithm is based on a support vector machine (SVM) coupled with 

gradient boosting and uses as predictors elevation data, vegetation indices, and infor-

mation about the LST annual climatology. The downscaling is performed on-the-fly and a 

new SVM model is created for each hourly AT image, as explained in [33,36]. To generate 

the spatially enhanced AT data, we train each SVM model to predict the hourly AT from 

the coarse-scale predictors (resampled to the coarse-scale SEVIRI grid) and then apply it to 

the original 1 km predictors. These five operations run sequentially each time the satellite 

transmits a new image to the ground. 

• Stage 2: Calculation of GDD 

Considering that GDD is used to estimate the growth and development of plants and 

weeds during the growing season, the basic concept is that development will only occur if 

the average daily temperature (Equation (1)) exceeds a certain air temperature threshold; 

called the base temperature (Tbase). Tbase may vary significantly between crops and varieties. 

If the daily mean AT (Tave) is equal or below Tbase, then the GDD value is zero, indicating 

that even though calendar time passed, plant development did not progress accordingly 

(Equation (2)). If Tave is above Tbase, then the GDD equals the difference between Tave and 

Tbase [38]. 

𝑇ave =
𝑇max − 𝑇min

2
 (1) 

GDD = {
𝑇ave − 𝑇base if 𝑇ave > 𝑇base

0 if 𝑇ave ≤ 𝑇base
 (2) 

Subsequently, the cumulative GDD (GDDs) over a target period (e.g., from budburst 

to flowering) were calculated according to Equation (3): 

GDDs = ∑ GDD𝑖

𝑛

𝑖=1

 (3) 

where, i is the calendar date. Despite the name, Growing Degree Days are cumulative 

temperature differences and are therefore expressed in temperature units. Often in prac-

tice, the units are omitted. 

2.2.2. ATLAS Ecosystem Interoperability Architecture 

The structural components of the ATLAS ecosystem are the individual services, which 

are grouped according to their functionality. For instance, all services that potentially pro-

vide temperature data and related parameters (such as SENSE-GDD) are placed under the 

“temperature monitoring” services. An individual service communicates and exchanges 

data with the other services via RESTful API architecture, as demonstrated in the following 

example. Say that a farmer uses the ATLAS ecosystem to get the GDDs for his/her farm. 

The first step is to register his/her farm in ATLAS’s “field data” service. For the 

SENSE-GDD to be able to access the farm, the two services must be “paired”. Pairing is a 

procedure that retrieves assets from both services (in this example the “field data” and 

“temperature monitoring” services) and stores them automatically in a database. The as-

sets will be later used to obtain all necessary farm info by calling the backend of each ser-

vice with the relevant authorization flow. This procedure is implemented using a web app. 

Pairing is accomplished after successful service logins. Likewise, if the farmer wishes to 

acquire irrigation advice based on the GDD information, he/she must register for the rele-

vant service. In this case, SENSE-GDD will get farm data from the “field data” service and 

provide data to the “irrigation advisor” service with similar authorization procedures. 
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The above-mentioned example presents just a fraction of the service pools that are 

hosted within the ATLAS ecosystem, as well as a simplified example of the potential in-

teroperable communication paths (Figure 2). A detailed description of the system archi-

tecture, required authentication protocols during requests and analytical guidelines about 

how the services of each pool must implement their APIs can be found at 

https://github.com/atlasH2020-templates and https://github.com/atlasH2020 (both ac-

cessed on 24 April 2023). 

 

Figure 2. A simplified example of potential interoperable communication paths in the ATLAS eco-

system that use SENSE-GDD. 

• SENSE-GDD basic functions within ATLAS ecosystem 

The role of SENSE-GDD within the ATLAS ecosystem is to provide individual ser-

vices with cumulative GDD timeseries for a given location and time period. In brief, the 

service accepts REST API POST method requests. The POST request body must be a Ja-

vaScript Object Notation (JSON) script with the following keys: 

• field_unique_ref_code 

• base_temperature 

• start_date 

• end_date 

where, “field_unique_ref_code” is the field-ID in a string format; “base_temperature” an inte-

ger whose meaning is explained in detail in Section 2.2.1; and “start_date” and “end _date” 

the first and last date of requested time series, provided in ISO 8601 format, respectively. 

The service then calculates the GDD on the fly and returns an array of JSON objects, 

whose number is equal to the number of days between “start_date” and “end_date”. For 

example, for “start_date” 1 April 2021 and “end_date” 31 May 2021, an array of 61 JSON 

objects will be prepared and returned. Each JSON object includes the keys 

“gdds_cumulative” and “date”, with the former representing the value cumulative GDDs 

and the latter the corresponding date.  

2.3. Assessment of SENSE-GDD Product Performance 

The SENSE-GDD’s capability to derive accurate and precise GDD time-series is eval-

uated from two different perspectives. Initially, the daily GDD time-series that are derived 

from SENSE-GDD are compared with corresponding GDD data obtained from the in situ 

AT measurements. The difference between the two GDD time-series is quantified using the 

coefficient of determination (R2); the Root Mean Square Difference (RMSD; Equation (4)) 

and the Mean Absolute Deviation (MAD; Equation (5)): 

https://github.com/atlasH2020
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RMSD = √∑ (GDDs,𝑖 − GDDr,𝑖)
2𝑛

𝑖=1

𝑛
 (4) 

MAD =  
1

𝑛
∑|GDDs,𝑖 − GDDr,𝑖|

𝑛

𝑖=1

 (5) 

where, n is the number of measurements, GDDs  is the daily GDD calculated by 

SENSE-GDD using Equation (2) and GDDr is the reference in situ GDD.  

For the Malagouzia and Limnio varieties, Tbase is set equal to 10°C, based on consulta-

tion with the agronomist of Gerovassiliou Estate, and in agreement with the value pro-

posed by the FAO Irrigation and Drainage Paper 66: Crop yield Response to Water for 

wine grapes [39]. The same base temperature (10°C) is selected for the apple orchard, ac-

cording to previous reported experimental data [40]. 

The cumulative GDD and the date of key phenological stages of the three crop types 

are also used for assessing the performance of SENSE-GDD. Budburst, pollination, and the 

start of veraison are selected as key phenological stages for the two wine grape types in 

Epanomi (Malagouzia and Limnio) and budburst and pollination for the Granny Smith 

apple orchard in Agia. Observations in vineyards were performed in situ by the winery 

agronomists to determine the calendar date that each key stage started in the 2021 and 2022 

cultivation periods. A network of field-installed cameras was used to monitor the apple 

trees canopy development in 2022 and the photos were used to determine the budburst 

and flowering stages. The analysis of the camera photos showed that the buds of the 

Granny Smith apple trees burst on 4 March 2022, while tree flowering phase began just 10 

calendar days later, on 13th April. To assess the SENSE-GDD’s capability to provide the 

phenological stages based on GDDs as closely as possible to a weather station, we first 

calculated the cumulative GDDs (Equation (3)) from the in situ data, using as start date the 

observed budburst date and as end date the flowering or veraison (only for vineyards) 

dates. Then, we compared the in situ cumulative GDD calculated for each phenological 

stage against the corresponding data retrieved from SENSE-GDD, in order to identify on 

which calendar date the SENSE-GDD and the in situ estimates are approximately equal: 

argmin
𝑖 ∈ ℐ

{|GDDss,𝑖 − GDDsr,𝑖|} (6) 

In Equation (6), GDDss,𝑖 and GDDsr,𝑖 are the cumulative GDD calculated from the 

SENSE-GDD and the in situ data (both using Equations (1)–(3)), respectively, i is the cal-

endar date, and ℐ the set of all calendar dates between the start and end date. Finally, to 

assess if the SENSE-GDD assessment drifts, we calculate the absolute and relative differ-

ences between the SENSE-GDD and in situ cumulative GDDs at the end date. 

3. Results and Discussion 

3.1. Sense-GDD Web Service 

In addition to the REST API, a web service has also been developed for obtaining and 

visualizing the GDD from any device, as shown in Figure 3. To use the web service, the 

user must start by selecting his/her field from map panel ① and then set the start and end 

dates noted with ②. In the example of Figure 3, which focuses on the Malagouzia vineyard 

of Gerovassiliou Estate in 2021, the start date is set to the date of budburst (07 April 2021) 

and the end date is set to a date after veraison (31 July 2021), while the base temperature is 

set to 10°C (shown with ③ in Figure 3). To display the result, the user has to click the 

“GDDs” button noted with ④, and the GDD result will be presented by means of a cu-

mulative plot (⑤ in Figure 3) and a counter showing the resultant GDD on the end date 

(⑥ in Figure 3). 
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Figure 3. Example of the SENSE-GDD web service: ① the location of the crop shown on map; ② the 

start and end date provided by the user; ③ the base temperature for the specific crop; ④ the button 

for GDDs calculation; ⑤ the cumulative GDDs plot; (6) the counter view of the GDD for the end 

date. 

3.2. Evaluation against in situ Daily GDD 

For the three case studies and crop types, the daily GDD (calculated using Equation 

(2)) issued from SENSE-GDD are compared with the corresponding ones measured by the 

in situ weather stations (Figure 4).  

 

Figure 4. Scatterplots of daily GDD calculated from SENSE-GDD versus in situ daily GDD and cor-

responding linear fit equations and performances for Gerovassiliou Estate vineyard at Epanomi 

spanning (A) April–July 2021 and (B) April–July 2022; and (C) apple orchard at Agia spanning 

mid-June to July 2022. 

The daily GDD calculated by the satellite-enabled service SENSE-GDD and the in situ 

measurements show a strong agreement for both crop types with a R2 ≥ 0.86 (Figure 4). The 

highest agreement is observed for Epanomi site in 2021 (R2 = 0.98) and the lowest for the 

Granny Smith apples at Agia (R2 = 0.86). The RMSD for all crop types is low. For Epanomi 

(Figure 4A,B), the lowest value is observed for 2021 (0.7°C) and it increases slightly in 2022 

(1.0°C). The RMSD for the Agia site is higher (1.8°C) than that of Epanomi (as does MAD), 

something we attribute to the more pronounced topography of the Agia region. Generally, 

the results for 2021 are slightly better than that for 2022, but in both cases the performance 

of SENSE-GDD is considered highly adequate for any operational use. 
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3.3. Cumulative GDD and Crop Phenological Stages 

The comparison between the cumulative GDD derived from SENSE-GDD and the in 

situ data for the three crop types with the corresponding phenological stages is presented 

in Figure 5. The dates of each key phonological stage for each crop type are presented in 

Table 1. Concerning cumulative GDD, the two GDD curves, namely the one generated 

from SENSE-GDD data and the one from in situ measurements, coincide at the beginning 

of the growing seasons for all cases. Due to the nature of cumulative variables, the differ-

ences between the satellite-enabled and in situ GDD slightly increase with time as any 

discrepancy is added up. 

Table 1. Dates of the key phenological stages for the grape vine varieties and apples issued from in 

situ measurements and SENSE-GDD. Calendar days of budburst, pollination and veraison stages are 

observed in Malagouzia and Limnio vineyards during 2021 and 2022 cultivation seasons. For the 

Granny Smith apple orchard budburst and pollination stages are observed for 2022. 

Crop 
Phenological 

Stage 

Date in 2021 Date in 2022 

In situ SENSE-GDD In situ SENSE-GDD 

Limnio 

Budburst 09/04 09/04 07/04 07/04 

Pollination 26/05 26/05 24/05 26/05 

Veraison 22/07 24/07 20/07 22/07 

Malagouzia 

Budburst 07/04 07/04 05/04 05/04 

Pollination 21/05 21/05 19/05 21/05 

Veraison 18/07 19/07 16/07 18/07 

Granny Smith 

Apples 

Budburst - - 03/04 03/04 

Pollination - - 13/04 15/04 

 

Figure 5. Cumulative GDD derived from SENSE-GDD and in situ data for the three crop types with 

relevant important phenological stages. 

Specifically, for Malagouzia in 2021, the cumulative SENSE-GDD values agree well 

with the in situ ones (Figure 5), but after May the differences between the two curves 

gradually increase to reach a cumulative discrepancy of −23.3°C on 31 July 2021. This cor-

responds to a relative difference of −1.7%. In 2022, the cumulative difference for 

Malagouzia at end date reaches −34.2°C, which corresponds to a relative difference of 

−2.4%. For Limnio, the differences are of similar magnitude and direction. Overall, at Ep-

anomi, we observed (i) relative differences lower than 2.5% at the end of the season for 
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both years, (ii) slightly higher differences at the end of the period in 2022 than in 2021, and 

(iii) the early start of discrepancies between the two methods in 2022 than in 2021.  

Concerning the Gran Smith apples (Figure 5), the difference between satellite-enabled 

and in situ GDD is negligible up to 25/05 but then starts to increase, reaching +110°C at the 

end of the studied period (27/07/2022). The relative difference between SENSE-GDD and 

the in situ data for the apple orchard at the end of the season is +9.5%.  

In terms of the phenological stages, in 2021, the beginning of flowering and the start of 

veraison in the Malagouzia vineyard were observed on 21/05 and 18/07, respectively, while 

the corresponding dates in 2022 occurred just a few days earlier on 19/05 and 15/07 (Table 

1). Limnio is found to develop slower than Malagouzia, as flowering and veraison started 

roughly 4–5 days later for both years. Using SENSE-GDD, the corresponding GDDs for 

flowering and pollination in 2021 are estimated to occur at the same dates with the in situ 

measurements while veraison is estimated to occur one day later (Table 1). For 2022, the 

budburst date is estimated to occur at the same date while the flowering and veraison are 

estimated to occur two days later for both grape types. 

For the Gran Smith apples, the pollination estimated by SENSE-GDD seems to occur 

two days later than according to the in situ observations (Table 1). This practically means a 

two-day offset in the irrigation schedule.  

Overall, the phenological stages that are associated with the observed GDDs are suc-

cessfully calculated by SENSE-GDD for all three crop types, with a maximum offset of two 

days, making SENSE-GDD a reliable service for irrigation planning and other crop-related 

interventions that depend on GDDs. 

3.4. Novelty and Limitations 

SENSE-GDD overcomes two main issues related to the operational usage of temperature 

data derived from satellites. The first one is the presence of clouds in the TIR images that can 

result in missing data. To address this issue, a hybrid system is established [33] that seamlessly 

integrates satellite and weather prediction data into gapless AT datasets that allow the calcula-

tion of cumulative metrics, such as the GDD. The second issue is the coarse spatial resolution of 

geostationary satellites, for which an on-the-fly downscaling algorithm has been developed to 

enhance the spatial resolution of the AT image data. Due to their coarse resolution, geosta-

tionary data are rarely used in land applications, even though they offer an unparallel tem-

poral resolution that enables the continuous monitoring of the surface of the Earth. 

SENSE-GDD employs a fast, lightweight, SVM-based downscaling algorithm that increases 

the spatial resolution of the AT data to 1 km, which allow for a more detailed analysis of envi-

ronmental patterns and microclimatic variations. While finer-resolution data (e.g., 10 m) are 

preferred in agriculture applications, we consider the 1 km resolution adequate for monitoring 

the spatiotemporal variation of AT in rural areas and a major improvement compared to most 

numerical weather predictions and reanalysis data. The use of geostationary data, however, 

limits the use of SENSE-GDD to fields located only in Europe and Africa. This is because geo-

stationary satellites are positioned at a specific point above the equator and can image an area 

that is typically limited to a specific hemisphere or a portion of it. 

By definition, the accuracy of GDD retrieval is independent of the crop type. Different 

crops will only differ in base temperature. Therefore, the performance of the presented meth-

odology depends on the assessment of AT which indeed can be different in different climatic 

conditions, but also depends on the time of the day, the season, and other dynamic factors. The 

performance of the AT retrieval has been exhaustively assessed in [33] in 15 selected areas in 

different climatic zones, where the main climatic factor is either Mediterranean Sea (Cairo, 

Athens, Barcelona, Cyprus, Istanbul, Lisbon, Mallorca, and Rome), Atlantic Ocean (Brussels, 

Hamburg, London, and Paris), or the continental part of Europe (Berlin, Madrid, and Zurich). 

Although the urban areas were the main focus of [33], other land cover types had also been in-

cluded in the evaluation process (the land cover information was retrieved from the GlobCov-

er). Specifically, 55 areas that were evaluated against station data corresponded to rural land 

cover type. The evaluation process also took into consideration the proximity to water as well 
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as the elevation. The evaluation considered hourly temperatures, a variable with higher vari-

ance than the daily average used in GDD, and demonstrated the good performance of the AT 

retrieval. 

4. Conclusions 

Α new satellite-enabled interoperable service to provide high spatiotemporal and con-

tinuous time series of GDD data with a resolution of 1 km/1 h has been presented. The service 

covers designated agricultural pilot areas of the European project ATLAS. The capability of 

SENSE-GDD to derive reliable GDD time-series and to accurately predict key phenological 

stages is assessed using in situ air temperature measurements from weather stations installed 

in Epanomi (Northern Greece) and Agia (Central Greece) for the growing seasons of 2021 and 

2022. Budburst, pollination and start of veraison are selected as key phenological stages for the 

wine grape vineyards at Epanomi; and budburst and the beginning of pollination for the apple 

orchard at Agia. The assessment shows that SENSE-GDD can provide reliable calculations of 

GDDs for all crop types with a maximum offset observed of two days. At the end of the season, 

the cumulative discrepancies in GDD were less than 2.5% for Epanomi (vineyards) and lower 

than 10% for Agia (apple orchard). The reader must acknowledge that point in situ measure-

ments and satellite gridded values are, by definition, different. The question to answer with the 

performed evaluation is whether the satellite service can provide a trustworthy alternative to 

calculate GDDs in any non-instrumented field. With the presented evaluation and considering 

that the proposed service is fully automated and operational, we conclude that it can be espe-

cially valuable in non-instrumented crop fields, supporting decisions in a cost-effective way, 

and thus paving the way for its extended operational use in various agricultural applications. 
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