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Abstract: The development mode of expanding agricultural scale will inevitably lead to an increase
in agricultural carbon emissions but the impacts of agricultural technology progress on agricultural
carbon emission and carbon sink are still not quite clear. This paper firstly discuss the definition of
agricultural technology level. Then the estimating methods of agricultural technology, agricultural
carbon emission and carbon sink are introduced. Based on the China’s provincial panel data with
31 province from 2000 to 2019, the indicators are calculated and statistically analysed. After that, the
representativeness of the three secondary classifications of the agricultural technology is empirically
checked. Panel data regression models especially the fixed effect model is employed to estimate the
effects of agricultural technology level as well as its components on agricultural carbon emission and
carbon sink. Results show that the agricultural carbon sink is approximately 10 times higher than
agricultural carbon emission. Agricultural technology level in general has significant effect on the
carbon emission rather than the carbon sink. Our suggestion is that (1) it is not necessary to worry
about the agricultural carbon emission since the net effect of agriculture is carbon neutrality; (2) the
development of agricultural production technology and agricultural management technology needs
strong support, and the two need to develop coordinated.

Keywords: agricultural technology progress; agricultural carbon emissions; agricultural carbon sink;
panel data analysis

1. Introduction

Agricultural technology progress is an important source of promoting agricultural
economic growth and even macroeconomic growth. Agricultural technological progress
has played an important role in ensuring China’s food security and promoting the long-
term sustainable development of agriculture and the national economy. Liang (2005) [1]
claimed that, in the 1990s and 2000s, although the contribution rate of China’s agricultural
technology progress to economic growth has reached to 45%, the contribution rate of
the developed countries such as Britain, France and Germany has already reached to
approximately 75%. It can be seen that the contribution of China’s labour and factor inputs
to agricultural economic growth is still more than half. So, there is still much room to
develop agricultural economy from the perspective of technological progress. On the other
hand, it is an objective fact that due to the limitation of cultivated land area, with the
development of agricultural economy, the contribution rate of labor and factor input to
agricultural economic growth will gradually decline. Therefore, to develop agricultural
technology is a sustainable and effective way for agricultural economic growth. As the third
largest land area country in the world, China’s agricultural technology progress plays a
more important role in promoting agricultural development. However, there will inevitably
be negative externalities in the agricultural production process, such as environmental
pollution and carbon emissions. General Secretary Mr Xi announced to the world at the
United Nations General Assembly in 2017 that China will strive to achieve carbon neutrality
from 2020 and to achieve carbon peak by 2030. If the main way to increase agricultural
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output is to expand agricultural scale, agricultural economic growth and carbon emission
reduction will inevitably conflict [2]. However, if we develop the agricultural economy in
the way of scientific and technological progress, it is not quite clear what will happen to
carbon emissions and carbon sinks. In light of this, the impacts of agricultural technology
progress on agricultural carbon emissions and carbon sinks need to be theoretically and
empirically studied. This is of great significance to the adjustment of agricultural structure,
the sustainable development of agriculture, the development of ecological agriculture and
the formulation of relevant policies.

2. Literature Review

The definition of agricultural technology is a issue that needs to be discussed and
clarified first. The theory of technological progress can be traced back to Adam Smith’s
thought of division of labor promoting economic growth. Generally speaking, the defi-
nitions of agricultural technology can be divided into two: “narrow sense” and “broad
sense”. Gong et al. (2020) [3] describes narrow sense of agricultural technology as the
natural science and technology used in agricultural production, such as mechanical tech-
nology, cultivation technology, biochemical technology and other substantive technologies.
Wu (1996) [4] stressed that these natural sciences and technologies must be applied in
practice and become value-added technologies for agricultural products. On this basis,
some scholars [4] believe that not only the natural sciences are agricultural technology,
but some social science such as management technology should also belong to the category
of agricultural technology. For example, under the condition that the natural science used
in agriculture remain unchanged, reasonable adjustment of labour force, factor inputs
and agricultural structure will lead to agricultural economic benefits. Some scholars even
expressed this view that high level of natural science and technology means nothing if there
is no use of the social science and technology in agricultural. In other words, the natural
science and social science used in agriculture should be considered jointly. After that,
more scholars joined into the discussion of the definition of agricultural technology and
found that not only the technologies directly used for agricultural development need to be
included in the agricultural technology, but also the technologies indirectly used in agricul-
tural development also need to be taken into account, such as communication technology,
transportation facilities and meteorological information. Therefore, a broad sense of the
definition of agricultural technology was proposed. Gong et al. (2020) [3] describes the
board sense of agricultural technology as the change in total agricultural output that cannot
be explained by the change in the quantity of physical production factors (e.g., labour and
capital) attributed to agricultural technology progress. Wu (1996) [4] simply described
the broad sense of agricultural technology as all agricultural technologies that lead to the
improvement of agricultural production efficiency. Some scholars support the definition of
agricultural technology progress in a narrow sense. This is because increasing agricultural
research support will mainly lead to the growth of agricultural technology in the narrow
sense, while social science such as management technology and other indirect technologies
such as meteorological technology will not be significantly affected by the agricultural
indicators. Some scholars support more on the definition of the board sense of agricultural
technology. One of the main reasons is that the board sense of agricultural technology is
theoretically easier to be measured. In short, after excluding the agricultural economic
growth caused by labour force and agricultural production factor inputs, the remaining
agricultural economic growth can be seen as the result of agricultural technology progress
in a broad sense. Here is a extra point that needs to be mentioned. By definition all technolo-
gies used in agricultural activities but the estimated board sense agricultural technology
progress refers to the agricultural production technologies. The technologies developed for
other purposes, such as improving taste and food safety technologies are not taken into
account in the for example Solow residual model [1]. This kind of models cannot measure
the level of technology developed for non-productive purposes.
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Technological progress has a long research history. In the classical economic growth
theory, for example Adam Smith proposed the theory of division of labour to promote
economic growth in The Wealth of Nations [5]. One of the reasons why labour division can
improve production efficiency is explained as the improvement of workers’ technical level.
At this stage, scholars have recognized the importance of technological progress for eco-
nomic growth, but they have not quantified and measured the technology progress. In neo-
classical economic growth theory such as the Solow-Swan economic growth model [6,7], eco-
nomic output is described as a Cobb-Douglas production function of technology progress,
labour force and capital input. Then the technology progress can be measured by Solow
residual model. Most of the methods of estimating the technology progress are developed
from the Solow residual model and the estimation methods will be discussed later. In the
endogenous growth theory [8], technology is regarded as an endogenous factor and is
affected by many factors such as labour and capital. For example, labour has direct effect on
output and will also indirectly affect output through technology. In other words, the residu-
als estimated from the Solow residual model are the exogenous part of technology progress.
For example, Liang (2005) [1] found that there is a very high correlation between the esti-
mated national technology progress and the estimated agricultural technology progress. So
she believes that the agricultural technology progress should be affected by the national
technology progress.

In the field of agricultural technology progress, there are many theories. The three
most famous theories are the induction theory, the tread milling theory and the technology
resource complementary theory. Induction theory believes that a breakthrough in a key
agricultural technology will bring a series of technological innovations then agricultural
technology progress will show a cyclical phenomenon [9]. Tread milling theory shows
that agricultural technology progress in one region will force neighboring regions to make
technology progress [4]. The technology resource complementary theory means that the
route of technological progress in each region/country is complementary to the local
resource situation. In other words, regional land quality, climate characteristics and other
endowments determine the direction of agricultural technology development [10]. These
different theories will result in a slight difference in the measurement method of agricultural
technological progress.

There are three main approaches to estimate the agricultural technology progress:
total efficiency method, Solow residual method and composite index method. The total
efficiency method is relatively simple. The agricultural technology is assumed to linearly
determines the total efficiency of agricultural production. The total efficiency of agricultural
production can be measured by the ratio of total agricultural input to the total agricultural
output. One of the advantages of the total efficiency method is that, since the total efficiency
is a ratio, both the input and output can be the nominal values. The disadvantages are also
quite clear. On one hand, the total efficiency of agricultural production perhaps is not a
proportion of the agricultural technology progress. On the other hand, to transfer all inputs
such as agricultural machinery and irrigation into monetary form is not quite easy. Solow
residual method is originally developed from the standard Solow economic growth model
where the production process can be described by the Cobb-Douglas production function
as Equation (1) where Y is total output; A is the technology level; K is capital; L is labour;
and α is coefficient.

Y = A · Kα · L1−α (1)

Y = A0eδt · Kα · L1−α (2)

Y = A0eδt · Xα1
1 · X

α2
2 · · · X

αn
n (3)

For the purpose of estimating the time varying technology level, Equation (1) can be
represented as Equation (2). In Equation (2), A0 is the technology level in the base period;
e is used to show the continuous type growth rate; t is time; and δ is the average growth



Agriculture 2023, 13, 793 4 of 21

rate for each period of time. This standard method can be used to estimate the technology
level for most of the production process including agricultural production process. Lots
of the very famous economists develop their own approaches to estimate the technology
level for different areas [1]. The popularly accepted approach typically for the issue of
agricultural technology progress is given by Equation (3) where Xi is the amount of i’s
input and αi is the coefficient for this input. Notice that, the sum of the coefficients is not
necessarily equal to 1 (Σn

i=1αi 6= 1). This equation is particularly useful for agricultural issue
since, as we have discussed in the first approach, the total input of agricultural production
is hard to be measured. In contrast, in Equation (3), we can estimate the coefficient δ
by econometric models and all possible cost variables can be put into the regression.
The third approach of estimating the agricultural technology progress is the composite
index method. This method is a pure statistical method. First of all, agricultural technology
progress is theoretically decomposed into hierarchical components. For instance, the second
hierarchy has three components: the directly used agricultural technology from natural
science, the directly used agricultural technology from social science and the indirectly
used agricultural technology. Then, for each second hierarchical components, a couple of
indicators should be prepared. For instance, for directly used agricultural technology from
natural science, the new crop varieties is a third component which can be approximated
by the ratio of cultivated area of new and old crop varieties [11]. Then use the weight
calculated by analytic hierarchy process and the fuzzy evaluation method to estimate the
composite index. In addition, there also have some other ways of estimating the agricultural
technology progress such as the application of the stochastic frontier analysis (SFA) and
data envelopment analysis (DEA) methods on the estimation but the theoretical supports
of them are relatively weak [12]. The three main approaches have some weaknesses.
The total efficiency method has an unrealistic assumption but lots of evidences suggest
that the effect of technology progress on total efficiency should be diminishing returns.
The Solow residual method cannot estimate the specific technology levels neither for each
period of time nor for each region. This method can only estimate a general growth rate of
technology. The composite index method has no economic background. There is no way
to check whether the derived composite has the ability to represent the technology level
or not.

According to the data in the 2020 World Energy Statistical Yearbook, China’s carbon
emission ranked first among the 72 countries being counted, and the per capita carbon
emission ranked 26th. According to estimates, China’s agricultural carbon dioxide emis-
sions account for about 16% to 17% of the total [13]. Therefore, China’s agricultural carbon
emission is an issue that needs to be concentrated. A couple of points should be discussed.
First, compared with other industries, agriculture not only emits carbon, but also neu-
tralizes carbon [14]. In other words, if agricultural carbon emissions increase, it does not
mean that agriculture will damage the environment as a whole, so it is necessary to study
agricultural carbon emission and carbon sink simultaneously [15,16]. Second, according
to the definition, the carbon generated by human activities such as the use of pesticides
and fertilizers in the agricultural production process is defined as the agricultural carbon
emission [17]. Third, there are two types of definitions for agriculture. Agriculture refers
to the planting industry in a narrow sense; Agriculture in a broad sense mainly includes
planting industry, animal husbandry, forestry and fishery. Because the carbon issues of
the last three categories are hard to be measured, in this paper we will mainly focus on
the planting industry. Fourth, the estimation methods of agricultural carbon emission are
basically consistent with those of other industries, which are usually obtained through
multiplying the amount of carbon source by the carbon emission coefficient [18–21]. Esti-
mation methods and the carbon emission coefficients are also given by the IPCC where six
related aspects are included: agricultural machinery power, cultivated area, agricultural
film, fertilizer, pesticide and irrigation. Some argue that the first two aspects should be
merged to be one source of agricultural carbon emission as the carbon emission from the
use of the agricultural machineries [22,23]. The agricultural carbon sink coefficient of the
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Chinese agriculture is measured and analyzed by some Chinese scholars [13,21]. They
provide a similar way to estimate the amount of agricultural carbon sink.

Although there are many studies on carbon sinks, the definition of carbon sink, es-
pecially agricultural carbon sink, is not clear. As far as we know, there is no consistent
definition of agricultural carbon sink in textbooks and relevant academic papers. Inter-
government Panel on Climate Change (IPCC) provided the definition of carbon sink as
“any process, activity or mechanism which removes a greenhouse gas, an aerosol or a
precursor of a greenhouse gas from the atmosphere (UNFCCC Article 1.8 (UNFCCC,
1992))” [24]. Thus, agricultural carbon sink usually refers to the carbon fixed by crops from
the atmosphere in agricultural industry. So simply speaking, all processes of converting
carbon-containing gases (such as carbon dioxide and methane) into solid form should be
the carbon sink. It is noteworthy that many ecological scholars only refer to crop soil carbon
sinks as crop carbon sinks. This is because, ecological scholars usually use the carbon
footprint—a method for studying the flow traces of carbon—of crops to explain and solve
the carbon issues [25]. For example, Fan et al. (2019) [26] explained and measured the
carbon footprint of crops by the three main components: grains, straw and below-ground
residue. For crops, only soil carbon sink is stable for a long time. This is why many relevant
studies only focus on agricultural soil carbon sink [27] and only regard agricultural soil
carbon sink as agricultural carbon sink. This view has not problems for forest land since
the greenhouse gas absorbed by trees will exist in solid form for a long time. But for crops,
with the use of grain, it will become greenhouse gas again in a very short time such as one
or two years; the decay or burning of straw will also turn solid carbon into greenhouse gas.
Only the carbon on the surface of soil will be as stable as the forest land for a long time [28].
There are two implications for clarifying the definition and connotation of agricultural
carbon sink. First, we should not think that forest land and grassland can be replaced by
farm land because of the considerable carbon sink in the process of crop production [29,30].
As mentioned above, a large proportion of carbon sinks in crop production has been circu-
lating, and only soil carbon sinks are stable. Second, although only agricultural soil carbon
sink is stable, we should not consider agricultural soil carbon sink as the only carbon sink
and merely focus on this [31,32]. With the improvement of the economy and the quality
of life, the proportion of grain in agricultural products relative to other crops (such as
cotton and fruit trees) is slowly declining, which will increase the agricultural steady-state
carbon sink; With the improvement of agricultural technology, straw burning gradually
disappears and straw is gradually used to make organic fertilizer to achieve the goal of
replacing chemical fertilizer to reduce carbon emissions [33]. We have reasons to believe
that many external factors will directly and indirectly increase agricultural steady-state
carbon sink. To sum up, it is appropriate to define agricultural carbon sink as the amount
of gaseous carbon converted into solid carbon by crops through photosynthesis.

There are relatively few studies on the impact of agricultural technology progress
on agricultural carbon emission or carbon sink, and their results are also inconsistent.
Ismael et al. (2018) [34] found evidences that the agricultural carbon emission is significantly
affected by agricultural technology progress in Jordanian. Some studies found significant
effect of agricultural technology progress on agricultural carbon emission in China [35,36].
However, Tian and Yin (2022) [37] found that the effect of agricultural technology progress
on carbon emission in China is statistically significant but practically tiny. So they suggest
that government should strongly support the research of the agricultural technologies
which have a great impact on reducing carbon emissions. Furthermore, some focused on
the role of agricultural technology on the spatial effect of agricultural carbon emission [38].
For example, He et al. (2022) [39] found that the agricultural technology progress does not
only reduce the local agricultural carbon emission but also reduce the agricultural carbon
emissions of the surrounding regions.

Some gaps in this area still need to be focused further. First, most of the estimation
methods can only measure the overall level of the agricultural technology progress but we
hope to measure the data at each time points and regions. Second, in most of the studies
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on agricultural carbon emission, the issue of carbon sink is neglected. This research per-
spective is biased. Third, because the fundamental driving force of agricultural technology
progress is to increase agricultural output, the roles of various agricultural technologies in
agricultural carbon emissions and carbon sinks may be significantly different.

Therefore, this article is organized as follows. In Section 3, some theoretical concepts
are discussed which include the definition of agricultural technology, the estimation method
of agricultural technology progress and the estimation methods of agricultural carbon
emission and carbon sink. Section 4 is the empirical section where the estimated values of
agricultural technology progress, carbon emission and carbon sink are statistically analyzed
first. Then the components of agricultural technology progress are checked. After that the
effects of the agricultural technology progress as well as its components on agricultural
carbon emission and carbon sink are explored through panel data regressions. At the end,
conclusions, policy suggestions and limitations of this study is given in Sections 5 and 6.

3. Theoretical Base

In this section, there are three subsections. In the first subsection, we will theoretically
discuss the definition and compositions of the agricultural technology progress corre-
sponding to previous studies. In the second subsection, the methods of estimating the
agricultural technology progress will be introduced and discussed. In the third subsection,
the methods of estimating the agricultural carbon emission (ACE) and carbon sink (ACS)
will be introduced.

3.1. Definition of the Agricultural Technology Progress

Agricultural technology progress is one of the important factors to promote agricul-
tural economic growth. The two important factors that cause the growth of agricultural
economic output are: agricultural scale and agricultural production efficiency. For relatively
underdeveloped regions, the former is the main way to expand agricultural output. When
the agricultural scale expands to a certain extent, such as the land constraints, improv-
ing agricultural efficiency becomes the leading factor in improving agricultural output.
Although the focus of our research is on the impact of agricultural technology progress
on agricultural carbon emission and carbon sink, the fundamental reason for agricultural
technology progress is to increase agricultural output. From this point of view, some
components of agricultural technology progress may result in increased carbon emissions
and reduced carbon sinks, or vice versa. Therefore, there may not be a stable and inevitable
relationship between the overall agricultural technology progress and carbon emission
and carbon sink [2]. However, it is possible that there are stable relations between some
compositions of the agricultural technology progress and the agricultural carbon emission
and carbon sink.

According to Zhao and Zhang (2005) [40], the agricultural technology progress should
include three main secondary classifications, which are the agricultural production technol-
ogy, the agricultural management technology and agricultural service technology, given
by Figure 1. Agricultural production technology is easier to understand, and this clas-
sification can also be called as the technological progress in natural science. It refers to
the technologies which developed from natural sciences such as physics, chemistry and
biology that directly used in agricultural production. Agricultural management technology
can also be called as the technological progress of social science. In other words, when
relevant social science and technology can directly improve agricultural production, these
technologies should be included in this classification. Agricultural service technology is
relatively abstract. It refers to technologies that indirectly and possibly lead to increased
agricultural production. In order to facilitate understanding, agricultural service technology
can be regarded as the quality of information generated by the economic market and nature.
For example, the former includes the price and demand of agricultural products and other
economic market information; and the later refers to the temperature, humidity and wind
speed and other natural environmental information. It is called “indirect” because, on the
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one hand, improving the quality of these information is not caused by the purpose of
improving agricultural production, on the other hand, only part of the information is useful
for agricultural production.

Agricultural 

Technology

Progress (ATP)

Agricultural 

Management 

Technology

Agricultural 

Production 

Technology

Agricultural 

Service 

Technology

Breeding technology

Cultivation techniques

Soil improvement technology

Pest prevention technology

Adjustment of crop structure

Market characteristics of agricultural products

Government policy

Agricultural facilities management

Agricultural product information 

Agricultural environmental information 

Figure 1. The composition of agricultural technology progress.

In Figure 1, we just list some of the main components in the third classifications of
the agricultural technology progress of production, management and service. For the
perspective of the macro economy, the improvement of these technologies will extend the
agricultural product but their effects on agricultural carbon issues should be different.

3.2. Methods of Estimating the Agricultural Technology Level

As we have discussed, the Solow residual method is the fundamental model of mea-
suring the agricultural technology level. However, the agricultural technology level in
the standard Solow residual model is assumed to be fixed at that shown in Equation (3).
Now, we change this assumption slightly that the agricultural technology level (A) varys
across individual at different time as Ai,t. So, for the region i at time t, the agricultural
production function is described as Equation (4) where i = 1, 2, 3, ..., n refers to different
individuals; t = 0, 1, 2, ..., T refers to different time periods; and j = 1, 2, 3, ..., K refers to
different agricultural inputs. Equation (5) is the logarithm form of Equation (4) which
provides a log-linear type function.

Yi,t = Ai,t ·ΠK
j=1X

αj
i,j,t (4)

ln(Yi,t) = ln(Ai,t) +
K

∑
j=1

αjln(Xi,j,t) (5)

It seems that Equation (5) is estimable by econometric models such as the panel data
model. However, for example, given by the annually provincial panel data with n provinces
and T periods, there are n× T observations, but we cannot estimate n× T numbers of
the Ai,t. One possible approach is to have more individuals such as using the city level
panel data to estimate the provincial issue. Another possible approach is to have more time
periods such as using the daily panel data to estimate the annual issue. In practice, for a
couple of reasons such as the geographic differences and the seasonal effect, we believe
that the annually provincial panel data is the best data set for Chinese agricultural issue.
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Perhaps this is the reason why most related studies would like to measure the national
level or a few years agricultural technology progress.

For the purpose of estimating the annually provincial level agricultural technology
progress, a relatively simple idea is to estimate the time fixed effect and the individual fixed
effect by the least square dummy variable (LSDV) method, given by Equation (6). Instead
of n× T number of the Ai,t, here we can achieve T number of the time fixed effects and
n− 1 number of the individual fixed effects. Notice that, when we add dummy variables
in the regression, only x− 1 numbers of the dummies is allowed for x events in order to
avoid the perfectly collinearity issue. For example, when we generation seasonal dummies,
we usually add Q2, Q3, Q4 in the regression and the Q1 is the base. In light of this, we
can select the initial period t = 0 as the base for time and first province i = 1 as the base
for individual dimension. The advantage of this method is quite clear that less estimators
are derived from the regression and thus the estimators are more consistent and efficient.
The disadvantage of this method is also quite clear. Only the temporal and regional average
levels rather than the specific levels of the agricultural technology progress are achieved.

ln(Yi,t) =
T

∑
t=1

ln(Āi) +
n

∑
i=2

ln(Āt) +
K

∑
j=1

αjln(Xi,j,t) + εi,t (6)

Since we suggest the view that different kinds of the agricultural technology progress
have different effects on agricultural carbon emission and carbon sink, the approximations
of the annually provincial level agricultural technology progress should be calculated
through the estimated time fixed effects and individual fixed effects. Because we set the
i = 1 and t = 0 as the base, ln(Āt=0) = ln(Āi=1) = 0, the approximation of the agricultural
technology progress can be calculated by Equation (7). For illustration, when the annual
effect in 2000 is 0.333, the average of the individual effect is 0.200, and the individual effect
of province numbered 7 is −0.100, the provincial effect should be −0.300 compared with
the national average and then the total effect of the province 7 at year 2000 should be
0.033. For simplicity, when the estimators of the individual effects and the time fixed effects
are generally donated by parameter c and θ, then ln(Āi) = ci and ln(Āt) = θt. And the
average individual effect can be written as c̄. Then the finally matrix of the agricultural
technology progress is shown by Equation (8). Notice that it is not necessarily remove the
average time effect in Equation (8) since the index of the agricultural technology progress at
the initial period (t = 0) can be definition as any value we like such as ln(Ai,t=0) = 1, 100
or other values. Thus, the average of each column of the matrix is equal to the time fixed
effect we estimated but the average of each row of the matrix is not equal to the individual
fixed effect we estimated.

ln(Ai,t) = ln(Āi)−
1
n

n

∑
i=1

ln(Āi) + ln(Āt) (7)

ln(AAA) =


−c̄ −c̄ + θ1 · · · −c̄ + θT

c2 − c̄ c2 − c̄ + θ1 · · · c2 − c̄ + θT
...

...
. . .

...
cn − c̄ cn − c̄ + θ1 · · · cn − c̄ + θT


n×(T+1)

(8)

Simulation method is employed to check whether this approximation is representative
or not. For a 30× 30 matrix, we randomly generate their values from −100 to 100 corre-
sponding to the average distribution in which the probability of all values are equal. Then
we calculate the individual averages, time averages and total average. Then pure individual
effects and time effects can be computed. Given by above method, we generate a new
30× 30 matrix and check the correlation between the two matrices. We replicate the process
for 10 times and the mean and standard derivation of the 10 correlations respectively are
0.42 and 0.047. The approximation matrix of the agricultural technology progress has the
ability to capture the characteristics of the practical agricultural technology progress.



Agriculture 2023, 13, 793 9 of 21

Next, depend on this relatively representative matrix and the theoretical classifications
of the agricultural technology progress shown in Figure 1, we can find and identify the
determinants of the agricultural technology progress by panel data regressions.

3.3. Methods of Estimating the Agricultural Carbon Emission and Carbon Sink

Since agriculture is consisted of crop planting, forestry, livestock husbandry and
fishery, both of the agricultural carbon emission and carbon sink are the sum of all the
carbon emissions and carbon sink of these four categories [41]. In academic area, there is
little works about the carbon emission and carbon sink issues about forestry and fishery.
One of the main reasons is that we are not sure which trees are cropped and which fish
are cultured. For instance, we cannot treat all trees in a newly demarcated forest area as
the consequence of agriculture. These trees may have existed for many years. In light
of this, the carbon emissions and carbon sinks caused by trees and fish should not be
considered as the consequence of agricultural activities. In China, compared the carbon
issues between corp planting and livestock husbandry, the majority of the agricultural
carbon emission is determined by the crop planting and only corp planting industry has
the ability to eliminate carbon [15]. So, we can simply regards the crop planting industry as
the agricultural industry for carbon issues.

By components, there are five sources of agricultural carbon emission: the carbon
emission of the agricultural machinery (ACEAM), the carbon emission from the production
and use of agricultural plastic film (ACEPF), the carbon emission from the production and
use of pesticide (ACEPE), the carbon emission from irrigation (ACEIR), and the carbon
emission from the production and use of fertilizers (ACEFE). The total amount of agricul-
tural carbon emission (ACE) is the sum of the amount of the carbon emissions of these five
components, given by Equation (9). Notice that the scales of all of ACE and the five should
be the same which is usually measured in kilograms (kg).

ACE = ACEAM + ACEPF + ACEPE + ACEIR + ACEFE (9)

According to Duan et al. (2011) [13], the carbon emissions of all these five components
are generally equal to the carbon emission coefficient multiplied by the amount of the
component. Only for agricultural machinery is ACEAM = αAM1 × AM + αAM2 × SA
where AM = total agricultural machinery power, SA = total sown area, αAM1 and αAM2 are
the related carbon emission coefficients. For instance, if the carbon emission coefficient
of irrigation is 200 kg/hectare and the irrigation size is 1000 hectares, then the carbon
emission caused by irrigation is 200,000 kg. The related carbon emission coefficients are
given in Table 1. The practical equations of calculating the ACEi as well as the ACE will be
discussed in the empirical section.

Table 1. The carbon emission coefficient.

Coefficient Value Scale Source

AM1 0.18 kg·kw−1 West and Marland (2002) [20]; He and Zhang (2012) [42]
AM2 16.47 kg·hectare−1 West and Marland (2002) [20]; He and Zhang (2012) [42]

PF 5.18 kg·kg−1 Wang and Zhang (2016) [43]
PE 4.9341 kg·kg−1 West and Marland (2002) [20]
IR 266.48 kg·hectare−1 Duan et al. (2011) [13]
FE 0.8956 kg·kg−1 West and Marland (2002) [20]

ACS 5.0925 ton·hectare−1 Duan et al. (2011) [13]

As we know, crops, as a kind of plant, will produce and emit carbon dioxide through
respiration, and also absorb carbon dioxide through photosynthesis. The respiration
always works but the photosynthesis usually works at day time. It is very difficult to
distinguish the carbon emission and carbon sink of the plants. Practically, since the net
effect of crop is carbon sink [25,26], some scholars call this net effect as the carbon sink of
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agricultural production process and measure the carbon sink coefficient of China [13,21]. So
the agricultural carbon sink (ACS) can be roughly measured by the carbon sink coefficient
(αACS) multiplied by the size of the cultivated area (SA) where the αACS is also given in
Table 1. Initially, we feel that the 5 ton/hectare is too large. We can roughly estimate the
among as follows: 1 hectare of soil will produce approximately 15 tons of wheat every
year; about 1/3 (=C6/C6H12O6 = 72/180 = 0.4) of 15 tons of starch is carbon and thus it is
reasonable to sink about 5 tons of carbon per hectare.

4. Empirical Result and Implication

In this section, we will firstly introduce the variables. Then, given by the theoretical
guidance, the annually provincial level of the agricultural technology progress will be
evaluated (ATP) and the determinants of it will also be empirically discussed. After that,
the annually provincial level of the agricultural carbon emission (ACE) and agricultural car-
bon sink (ACS) will be calculated and statistically analyzed. Finally, corresponding with all
necessary variables, the effects of the components of the evaluated agricultural technology
progress (ATPi) on ACE and ACS will be analysed by panel data econometric models.

4.1. Data Description

Since the research object in this paper is Chinese issues, 15 variables are selected and
obtained from China Statistical Yearbook provided by the China’s National Statistical Office.
Based on the data quality, the annually provincial panel data with 31 provinces (expect
Taiwan, Macao and Hong Kong) is decided. As the significant influence of the COVID-19,
the end of the research period is selected to be 2019; also due to the trade-off between more
observations and less missing values, the start of the research period is selected to be 2000.
The variable names, meanings and the scales are provided in Table 2.

Table 2. Data description.

Variable Full Name Scale

AM Total Agricultural Machinery Power 10,000 kW (kilowatt)
SA Total Sown Area 1000 hectares; 107 m2

PF Agricultural Plastic Film ton; 1000 kg
PE Pesticide 10,000 tons; 107 kg
IR Irrigated Area of Cultivated Land 1000 hectares; 107 m2

FE Consumption of Chemical Fertilizers 10,000 tons; 107 kg
AGDP Total Output of the Primary Industry 100 million yuan; current price
POP Total Population (year-end) 10,000 persons
CPI Consumer Price Index (1995 = 100) –
AGGS Sown Area of Grain Crops 1000 hectares
AGS Total Sown Area 1000 hectares
AGAI Average Wage of Employed People in Agricultural Industry yuan
AI Average Wage of Employed People yuan
AGWA Number of Agricultural Meteorological Station unit
AGWB Number of Eco-agricultural Meteorological Station unit
ATP Evaluated Agricultural Technology Progress logarithm, ln(Ai,t), measured in Equation (8)
TECA Approximation of Agricultural Production Technology ratio; TECA = 1− AGGS/AGS
TECB Approximation of Agricultural Management Technology ratio; TECB = AGAI/AI

Notes: Given by the definition provided by the National Statistical Office (GB/T 4754–2017), Agricultural GDP is
the Total Output of the Primary Industry, which is the Gross Output Values of Agriculture, Forestry, Animal Husbandry
and Fishery excluding the Gross Output Values of the Supporting activities of Agriculture, Forestry, Animal Husbandry
and Fishery.

Table 3 provides the statistical description of the organized panel dataset. Since there
are 31 provinces and 20 years from 2000 to 2019, the number of observations should be
31× 20 = 620 if there is no missing values in the variables. Clearly, there are approximately
one third of the values are missing in TECB, AGWA and AGWB. When we check where the
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missing values come from, TECB has no missing values from 2006 to 2019 (31× 14 = 434),
AGWA has no missing values from 2005 to 2019 (31 × 15 = 465), and there are some
missing value in AGWB for the period from 2005 to 2019. In general, our panel data set is a
strongly balanced panel for each research section.

Table 3. Data description.

Variable Obs Mean Std. Dev. Min Max

AM 620 2730.985 2675.105 93.97 13,353.02
SA 620 5141.767 3720.329 88.55 14,902.72
PF 620 67,341.859 63,435.875 128.33 343,524
PE 620 5.099 4.255 0.06 17.35
IR 620 1946.462 1523.878 109.24 6177.59
FE 620 169.627 138.681 2.5 716.09

AGDP 620 1297.067 1178.461 36.4 5477.1
POP 620 4298.669 2762.571 258 12,489
CPI 620 137.638 22.485 99.637 216.553
ATP 620 0.453 0.917 −1.969 2.219

TECA 620 0.337 0.130 0.029 0.646
TECB 434 0.589 0.138 0.147 0.934

AGWA 465 22.667 13.420 1 121
AGWB 419 14.456 15.503 1 100

Notes: Obs = number of observations; Std. Dev. = standard deviation.

4.2. Estimation and Determinants of the Agricultural Technology Progress

The theoretical equation of describing the agricultural production is Equation (6).
According to the theoretical guidance, the empirical equation is given by Equation (10). Em-
pirically, we generate individual dummy variables Di (i = 2, 3, 4, ..., 31) for the 31 provinces
and generate time dummy variables Dt (t = 2001, 2002, ..., 2019) for the 20 years from 2000
to 2019. Thus, the corresponding estimators ci are the estimated individual fixed effects
and estimators θt are the estimated time effects of the agricultural technology progress. We
initially use the number of employed peoples in agricultural industry as the labour force.
However, the data quality is too weak. So, total population is used as a proxy of the agricul-
tural labour force. The agricultural capital is tracked by four variables: the horsepower of
agricultural machinery (AM), the size of sown area (SA), the size of irrigation (IR) and the
consumption of agricultural chemical fertilizer (FE). Since the agricultural GDP (AGDP)
is nominal, the consumer price index (CPI) is also considered as one of the explanatory
variable. All these six control variables take logarithms in the regression.

ln(AGDP)i,t = β0 + ∑ ciDi + ∑ θtDt + β1ln(POP)i,t + β2ln(AM)i,t + β3ln(SA)i,t
+ β4ln(IR)i,t + β5ln(FE)i,t + β6ln(CPI)i,t + εi,t

(10)

When this temporal-regional fixed effect model is regressed by least square method,
all the individual fixed effects except Shanghai are significant under 0.05 significance level,
all the time fixed effects except 2001 are significant under 0.01 significance level, and all the
six control variables except ln(AM) are significant under 0.001 significance level. In general
the adjusted R2 is 0.9917 meaning that all the explanatory variables can explain the change
in the dependent variable ln(AGDP). It is not necessarily to show these estimators one by
one. For a more vivid approach, the individual fixed effect (ATP, ci) is shown in Figure 2
and the time fixed effect (ATP, θt) is shown in Figure 3.
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Figure 2. Map of the ATP in China (2000–2019).
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Figure 3. Trend of the ATP in China (2000–2019).

Figure 2 shows the evaluated regional agricultural technology progress for the period
from 2000 to 2019. Higher ci provinces have deeper red. Clearly, compared with the
northern China, the agricultural technology progresses of the southern provinces are
relatively high; meanwhile, compared with the western China, the agricultural technology
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progresses of the eastern provinces are relatively high. In general, this figure provides a
obvious spatial distribution of the agricultural technology progress. This may be caused by
temperature, economic development or even geographic factors.

Figure 3 shows the national level of the evaluated agricultural technology progress
for the period from 2000 to 2019 (θt), and its growth rate (%). Generally, the θ series has a
growing trend. In contrast, the growth rate of it is relatively stable at approximately 6%
before 2010. After that, the growth rate falls from 7% to 1% for the period from 2010 to
2015, and rise from 1% to 5% for the period from 2015 to 2019.

Now, we should try to find and judge what are the determinants of agricultural
technology progress. According to the components of agricultural technology progress
shown in Figure 1, we are going to find suitable variables for each of the three secondary
classifications. For agricultural production technology, some previous studies [11] treat
the proportion of sown area of the new varieties to total sown area (=SAnew/SA) as one of
the main components of the agricultural production technology. However, the annually
provincial level panel data of the sown area of the new varieties is not counted after 2015.
So it is insufficient for us also to apply this data. Instead, the proportion of the sown
area of the non-grain crops to total sown area (TECA = 1− SAgrain/SA) is applied as the
approximation of the agricultural production technology since growing vegetables, fruit
trees, fungi and other kinds of the non-grain crops requires higher production technology.
For agricultural management technology, the ratio between average income of agricul-
tural practitioners and resident average income (TECB = AGAI/AI) is used as the proxy
of the agricultural management technology. On one hand, the income ratio can represent
the relative human capital of the agricultural practitioners; on the other hand, the income
ratio should also relate to the labour input of the agricultural practitioners. Simply speak-
ing, relative high income implies more professional managers and more management time.
For agricultural service technology, two suitable variables, AGWA and AGWB, are found
as the components of agricultural service technology which are respectively the number
of agricultural meteorological station and the number of eco-agricultural meteorological
station. Simply speaking, the former mainly detect temperature, precipitation and wind
speed and the later can also detect light intensity, humidity and soil temperature in a higher
frequency (e.g., minute and hour data) which are particularly helpful for for example the
greenhouse planting. Although whether the meteorological information is useful at the
micro level depends on the quality of the individuals, it is definitely an important part of
the agricultural service technology. Since the individual effect, the fixed effect panel model
is applied to estimate the effects of these four variables on agricultural technology progress.
Estimated results of the related regressions (1)–(5) are given by Table 4.

According to the results shown in regressions (1) and (2), both the production technol-
ogy and management technology are significant determinants of the evaluated agricultural
technology progress. The estimator of the interaction term is negative implying that the
marginal effect of both the TECA and TECB are affected by the other. In other words,
the level of the production technology and the level of the management technology has
best shares. For illustration, when the production technology keeps constant, the increase
in management technology will directly cause high overall technology level but, due to
the mismatch between production and management technology, the positive effect will be
reduced. Results of regressions (3) and (4) point out that both of the AGWA and AGWB
are determinants of ATP. And, the insignificant interaction term means that they have
neither substitution effect nor complement effect. Regression (5) is the final regression in
this part where all significant components are considered. The R2 (within) is 0.508 which
implies that these selected explanatory variables have the ability to capture the change in
the evaluated agricultural technology progress (ATP).
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Table 4. Determinants of the ATP.

Regression: reg. (1) reg. (2) reg. (3) reg. (4) reg. (5)
Dependent: ln(A) ln(A) ln(A) ln(A) ln(A)

TECA 0.550 ** 2.419 *** 1.444 ***
(0.232) (0.538) (0.415)

TECB 0.650 *** 1.604 *** 0.679 ***
(0.121) (0.276) (0.215)

TECA× TECB −3.082 *** −1.310 **
(0.804) (0.613)

AGWA 0.003 ** 0.003 ** 0.002 **
(0.001) (0.001) (0.001)

AGWB 0.008 *** 0.008 *** 0.007 ***
(0.001) (0.001) (0.001)

AGWA× AGWB 0.00013
(0.00051)

constant 0.026 −0.546 *** 0.460 *** 0.462 *** −0.123
(0.11) (0.184) (0.027) (0.028) (0.146)

Observations 434 434 419 419 395
R2 0.075 0.108 0.469 0.469 0.508

Notes: |t| in parentheses; *, **, and *** are significant at the 10%, 5% and 1% levels.

4.3. Estimation of the Agricultural Carbon Emission and Carbon Sink

Corresponding with the theoretical interpretations, the empirical equations of calcu-
lating the agricultural carbon emission (ACE) of the five sources are respectively given
by Equations (11)–(15). The empirical equation of calculating the agricultural carbon sink
(ACS) is given by Equation (16). The related coefficients of ACE and ACS are shown in
Table 1. Meanwhile, the scales of the coefficients and the variables are also shown in the
brackets where the scales of the coefficients can be found in Table 1 and the scales of the
variables can be found in Table 2.

ACEAM(kg) = 0.18(kg · kW−1)× AM(10000 kW)× 10000
+16.47(kg · hectare−1)× SA(1000 hectares)× 1000

(11)

ACEPF(kg) = 5.18(kg · kg−1)× PF(1000 kg)× 1000 (12)

ACEPE(kg) = 4.9341(kg · kg−1)× PE(107 kg)× 107 (13)

ACEIR(kg) = 266.48(kg · hectare−1)× IR(1000 hectares)× 1000 (14)

ACEFE(kg) = 0.8956(kg · kg−1)× FE(107 kg)× 107 (15)

ACS(kg) = 5.0925(ton · hectare−1)× 1000(kg/ton)× SA(1000 hectares)× 1000 (16)

Figure 4 provides the average levels of the the ACS and ACE, and the five sources
of the ACE in 2019. In general, the first pie graph shows that the ACS is approximately
10 time bigger than the ACE. It implies that the net effect of agricultural activities is carbon
sink. Developing agricultural scale helps to reduce carbon emissions since the carbon in
agricultural carbon sink can be the carbon which generated from agricultural activities.
The second pie graph gives us the shares of each components of the ACE. The main source
of the carbon emission is caused by the production and use of the chemical fertilizer.
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Figure 4. Average levels of the ACS and ACE, and the five components of the ACE in China (2019).

We also calculate the national levels of the agricultural carbon emission and carbon
sink which are the sum of the provincial values. For both of the two, the logarithm
form is taken, shown in Figure 5. Compared between the two series, the ACS is always
10 times bigger than ACE (ln(ACS)− ln(ACE) ≈ ln(10) = 2.3). For ACS, it is relatively
stable before 2008 and increases from 2008 to 2015, and is basically unchanged after 2015.
For ACE, there is a steady upward trend before 2015 and a steady downward trend after
2015. Although it is not shown here, data shows that this upward and downward trend is
caused by the upward and downward trend in the use of the chemical fertilizer.
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Figure 5. Time trends of the national ln(ACS) and ln(ACE) in China (2000–2019).

4.4. the Effects of Agricultural Technology Progress on Agricultural Carbon Emission and
Carbon Sink

Now we are going to estimate the effects of agricultural technology progress on agri-
cultural carbon emission and agricultural carbon sink. Clearly, the logarithms of the ACE
and ACS are the two dependent variables (ln(ACE) and ln(ACS)); the explanatory variables
are the evaluated agricultural technology progress (ACE = est.ln(A)) and its three com-
ponents: the agricultural production technology approximated by TECA, the agricultural
management technology approximated by TECB, and the agricultural service technology
approximated by AGWA and AGWB.
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The span of 20 years is not short and thus the stationarity of all these 7 variables—
ln(ACE), ln(ACS), ATP, TECA , TECB, AGWA and AGWB—should be checked before
regression analysis. Since all these 7 variables are panel set, the stationarity of them should
be tested by panel data stationary tests. There are four commonly used tests: Levin-Lin-
Chu (LLC) unit-root test, Im-Pesaran-Shin (IPS) unit-root test, ADF-Fisher type unit-root
test, and Hadri LM stationary tests. Beyond the econometric technique, actually the null
hypothesis of these four tests are different. Here the LLC unit-root test is applied. All these
variables except AGWB are stationary (p < 0.001). The variable AGWB cannot be tested by
the LLC test since this variable has some missing values. Due to the similarity between
AGWA and AGWB, AGWB should also be a stationary panel variable.

Five regressions, regressions 6–10, are conducted to focus on agricultural carbon
emission (dependent = ln(ACE)) and estimated results are shown in Table 5; another five
regressions 11–15 are conducted to estimate the determinants of the agricultural carbon
sink (dependent = ln(ACS)) and the estimated results are shown in Table 6. For both of
the two dependents, we firstly check the effect of the evaluated agricultural technology
progress (ATP) on the dependents and then check the effects of the components of the ATP
on the dependents. Meanwhile, since the theoretical suggestions such as the inverted U
shape relation described in the environmental Kuznets theory and the empirical evidences
that the marginal effects on agricultural carbon indicators are declined, we are going to
check these non-linear relations through the application of the squares of the variables.
We also check the interactions among possible explanatory variables but none of them are
significant. For each estimated relation, Hausman test is applied to check between the fixed
effect or random effect panel models, and results (p < 0.01) show that the fixed effect model
is more appropriate. The effects of lagged variables are also checked and almost all of them
are insignificant.

Table 5. Effects of agricultural technology progress on ACE.

Regression: reg. (6) reg. (7) reg. (8) reg. (9) reg. (10)
Dependent: ln(ACE) ln(ACE) ln(ACE) ln(ACE) ln(ACE)

ATP 0.452 *** 0.482 ***
(0.022) (0.024)

ATP2 −0.036 ***
(0.012)

TECA −2.028 *** −0.795 0.060
(0.487) (0.585) (0.566)

TECA2 4.249 *** 1.115 0.085
(0.660) (0.763) (0.716)

TECB −0.608 *
(0.342)

TECB2 0.670 **
(0.285)

AGWA 0.024 ***
(0.004)

AGWA2 −0.00017 ***
(0.00035)

AGWB 0.0077 *** 0.0046 ***
(0.0009) (0.0009)

AGWB2 −0.00010 *** −0.000071 ***
(0.000014) (0.000013)

Constant 21.087 *** 21.112 *** 21.385 *** 21.494 *** 21.051 ***
(0.011) (0.014) (0.084) (0.110) (0.167)

Observations 620 620 620 419 395
R2 0.422 0.431 0.114 0.178 0.265

Notes: |t| in parentheses; *, **, and *** are significant at the 10%, 5% and 1% levels.
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For ACE, the R2 of regressions 6 and 7 are significantly higher than the R2 of regressions
8–10. This is acceptable since the explanatory power of the components of ATP should be
lower than ATP. Otherwise, if the R2 of the components of ATP is higher, it implies other
mechanisms from the components of ATP to the dependent variable ln(ACE). Results
of regressions 6 and 7 implies that there is a inverted U shape effect of ATP on ln(ACE).
The peak of this inverted U relation is at ATP = 6.7 (=0.5 × 0.482/0.036). However,
practically the minimum and maximum of ATP shown in Table 3 are −1.97 and 2.22.
Hence, for recent situation, rise in agricultural technology progress leads to higher amount
of agricultural carbon emission. In the future, when ATP can keep rising to about 6.6 times
the current level (6.7− 0.5× (−1.97 + 2.22) ≈ 6.6), the continued growth of ATP will
cause the decline of ln(ACE). Because ATP has a long-term upward trend, accelerating
the development of agricultural technology level is an inevitable way to reduce ACE from
the trade-off between short-term and long-term. As we have discussed in the theoretical
part, different kinds of the technologies perhaps cause different effect on agricultural
carbon emission. The estimated results of regressions 8–10 have some implications. First,
the agricultural production technology is insignificant. One of the possible reasons is that
agricultural production technology only developed for agricultural development rather
than agricultural environmental protection. Second, the effect of agricultural management
technology on ln(ACE) is a significant U shape relation. At present, the development of
agricultural management technology will help reduce agricultural carbon emissions. Third,
both effects of AGWA and AGWB on ln(ACE) are inverted U shape. The peak of AGWA
is 71 and the practical interval is [1, 121]; the peak of AGWB is 32 and the practical interval
is [1, 100]. One of the acceptable interpretations is that the agricultural production as well
as the generate carbon is diminishing increased but the environmental protect effect is
proportionally increased with the rise in agricultural service technology.

Table 6. Effects of agricultural technology progress on ACS.

Regression: reg. (11) reg. (12) reg. (13) reg. (14) reg. (15)
Dependent: ln(ACS) ln(ACS) ln(ACS) ln(ACS) ln(ACS)

ATP −0.025 −0.022
(0.020) (0.022)

ATP2 −0.004
(0.011)

TECA −0.689 *** −0.321 * −0.033
(0.167) (0.169) (0.522)

TECA2 −0.381
(0.660)

TECB 0.148 * 0.075 −0.211
(0.087) (0.078) (0.315)

TECB2 0.248
(0.263)

AGWA 0.0092 ** 0.0093 **
(0.0037) (0.0037)

AGWA2 −0.000066 ** −0.000067 **
(0.000032) (0.000033)

AGWB 0.0015 * 0.0015 *
(0.0008) (0.0008)

AGWB2 −0.000019 * −0.000019 *
(0.000012) (0.000012)

Constant 23.545 *** 23.548 *** 23.672 *** 23.504 *** 23.531 ***
(0.01) (0.013) (0.079) (0.097) (0.154)

Observations 620 620 434 395 395
R2 0.003 0.003 0.051 0.060 0.063

Notes: |t| in parentheses; *, **, and *** are significant at the 10%, 5% and 1% levels.
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The mechanisms implied in Table 6 are obviously different compared with that shown
in Table 5. First, given by the results of regressions 11 and 12, the effect of agricultural
technology progress on agricultural carbon sink is not significant. For the components of
the ATP, regression 14 is the most accurate regression among regressions 13–15 according to
the trade-off between the explanatory power and the significance of the variables. Therefore,
from now on, since the ATP in regressions 11 and 12 are generally insignificant, we are
not sure whether the significant effects in regression 14 are true or are caused through
other mechanisms. But if these are true, higher agricultural production technology means
lower level of agricultural carbon sink; agricultural service technology has inverted U
shape effect on ln(ACS). The peaks of AGWA and AGWB are 70 and 39, and their practical
intervals are [1, 121] and [1, 100]. These two peaks are quite closed to the peaks estimated in
regression 10. This similarity implies that, although some of components of the agricultural
technology progress have significant effect on agricultural carbon indicators, those are
incidental consequences of agricultural technology progress.

5. Discussion
5.1. Decomposition of Agricultural Technology Level

First of all, because the empirical results of this paper show that the impact of agricul-
tural technology level on agricultural carbon sinks is both economically and statistically
insignificant, here we only discuss the impact of agricultural technology level on agricul-
tural carbon emissions.

For the research of agricultural technology level, most of them regard agricultural
technology level as a whole, which is mainly caused by two reasons. One is the lack of
data on the components of agricultural technology level, and the other is the habitual
assumption left by borrowing macroeconomic models. As for the research problem in this
paper—the impact of agricultural technology level on agricultural carbon emissions—we
cannot take agricultural technology level as a whole. Some agricultural technologies are
developed to promote production, but some are aimed at food safety. The impact of these
technologies on agricultural carbon emissions will vary greatly.

The research results of this paper show that although the current development of
agricultural production technology will lead to an increase in carbon emissions, agricultural
carbon emissions will be reduced when agricultural production technology develops to
a certain extent. This suggests that unswerving development of agricultural production
technology is the feasible way to reduce carbon emissions in the long term. At present,
the development of agricultural management technology will significantly inhibit agricul-
tural carbon emissions. Developing agricultural management technology is also one of the
feasible ways to reduce agricultural carbon emissions. However, it should be noted that
agricultural production technology and agricultural management technology interact with
each other on the issue of agricultural carbon emissions. It is better for the two to develop
in synergy.

One limitation of this paper is that the components of agricultural technology level
involved are slightly less. We hope to find more numbers and more representative variables
of agricultural technology level, and get more convincing results in the future.

5.2. Measurement Method and Empirical Model

In two aspects, this study also has some limitations. Despite the developed model can
estimate the temporal and spatial levels of the agricultural technology level, the simulated
results reflect that the approximations are generally not strongly representative. We decide
to repeat this research by the city level panel data in the future. Another issue is that there is
a very significant regional distribution shown in the map but the regional effect such as the
neighbourhood effect has not been considered in the empirical analysis. Next, we decide to
explore the reasons and the influences of spatial spillover in agricultural technology level.
This is perhaps also helpful for the agricultural carbon issues.
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6. Conclusions

This study aims to explore the effect of agricultural technology progress on agricultural
carbon emission and carbon sink in China. According to the theoretical methods typically
the Solow residual models, we firstly develop a method to estimate the temporal and spatial
levels of the agricultural technology progress. The method of estimating the agricultural
carbon emission and carbon sink are also introduced. Given on the China’s provincial
panel data of the 31 provinces from 2000 to 2019, for each province and each year, all of
the evaluated agricultural technology progress (ATP), the agricultural carbon emission
(ACE) and carbon sink (ACS) are calculated. Basic statistical analysis points out that the
ATP has a steady upward trend and the growth rate is approximately 4% per year; ATP is
relatively high in the south-east of China; ACS is generally 10 time higher than ACE and
the main component of the ACE is caused by chemical fertilizer. Since we believe that the
agricultural technology is developed for the purpose of the agricultural economic growth,
the effects of the three components of the agricultural technology—agricultural production
technology, agricultural management technology and agricultural service technology—on
agricultural carbon indicators are different. Empirical results imply that in general ATP as
well as its three components have significant effect on ACE but no on ACS.

Corresponding with all the findings in this research, we suggest that: (1) Government
should continue to vigorously promote the development of agricultural technology. When
the level of agricultural technology crosses the inflection point, the progress of agricultural
technology will reduce agricultural carbon emissions. So in the long run, agricultural tech-
nology progress is a feasible way to reduce carbon emissions. (2) Government should not
ignore the ability of technological progress in agricultural management to solve the current
carbon emission problem. Government can improve agricultural management technology
through education and talent policy, but it should be noted that agricultural management
technology needs to develop in coordination with agricultural production technology.
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