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Abstract: Securing authentic cottonseed identity information is crucial for preserving the livelihoods
of farmers. Traditional seed identification methods are generally time-consuming, and have a high
degree of difficulty. Raman spectroscopy, in combination with machine learning (ML), has opened
up new avenues for seed identification. In this study, we explored the feasibility of using Raman
spectroscopy combined with ML for cottonseed identification. Using Raman confocal microscopy, we
constructed fingerprints of cottonseeds and analyzed their important Raman peaks. We integrated
two feature exploration methods (Principal Component Analysis and Harris Hawk optimization)
and three ML algorithms (Support Vector Machine, eXtreme Gradient Boosting, and Multi-Layer
Perceptron) into a Raman spectroscopy analysis framework to accurately identify cottonseed cultivars.
Through the utilization of SHapley Additive exPlanations (SHAP), we provide an in-depth explana-
tion of the model’s decision-making process. Our results demonstrate that XGBoost, a tree-based
model, exhibits outstanding accuracy (overall accuracy of 0.94–0.88) in cottonseed identification. No-
tably, lignin emerged as a pivotal factor that strongly influenced the model’s prediction of cottonseed
cultivars, as revealed by the XGBoost interpretation. Overall, our study illustrates the effectiveness
of combining Raman spectroscopy with ML to precisely identify cottonseed cultivars. The SHAP
framework used in our study enables seed-related personnel to better comprehend the model’s pre-
diction mechanism. These valuable insights are expected to enhance seed planting and management
practices in the future.

Keywords: cottonseed; Raman spectroscopy; explainable machine learning; SHAP; XGBoost

1. Introduction

Cotton occupies a significant position in the economic development of nations [1,2].
This crop is a sustainable source of employment and income for farmers worldwide. Ac-
cording to a report by the United Nations, the cotton industry supports the livelihoods of
28.67 million cotton farmers worldwide, with an average of five year-round employment
opportunities per ton of cotton, particularly in impoverished areas [3]. Hence, boosting cot-
ton production is crucial to elevating income levels and alleviating poverty in economically
challenged regions.

Researchers have primarily devoted their efforts to developing high-quality cotton
cultivars to fulfill the production demands of cotton-growing regions [4,5]. Nevertheless,
the cotton industry’s value chain is long and intricate. The opaque circulation of cotton-
seeds may result in the indiscriminate planting of various cotton cultivars in the same
production area, which has been overlooked to date [2,6]. In fact, confusion in planting
cultivars results in low uniformity, poor consistency, and uneven quality of the cotton fibers
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produced. Securing cottonseed identity information is crucial to guaranteeing profitability
and promoting the high-quality advancement of the cotton industry.

To date, some scholars have redirected their emphasis from laboratory-based to field-
oriented investigations. Traditional seed identification methods can be broadly divided into
two categories: protein analysis techniques and DNA analysis techniques. These include
high-performance liquid chromatography (HPLC), an enzyme-linked immunosorbent
assay (ELISA), gas chromatography (GC), and a polymerase chain reaction (PCR) [7–9].
These class techniques are generally considered time-consuming, with a high degree
of difficulty. The detection process for transgenic products is further complicated be-
cause the target components (proteins or DNA) are prone to degradation or damage [9].
In addition, these methods often require complex sample preparation, which can eas-
ily cause environmental pollution [10]. Thus, the development of an automated and
ecofriendly tool for identifying cottonseed has significant potential value for cottonseed
identity security.

Digital phenotyping based on Raman spectroscopy has opened up new avenues
for seed identification [11–13]. Raman spectroscopy utilizes the inelastic scattering of
monochromatic light (laser) to probe the energy levels and symmetry of molecules in the
sample [7,12]. Raman spectral fingerprints can provide information on specific chemical
bonds or functional groups owing to the properties of the Raman Effect [7]. Therefore,
Raman spectroscopy provides a natural optical probe for seeds, enabling the analysis
of seed biochemical components such as proteins, lipids, and starch. However, the high-
dimensional and complex nature of Raman spectroscopy presents a challenge for traditional
chemical metrology methods.

The advent of the big data era has seen machine learning (ML) as a formidable
tool for analyzing vast datasets. With the aid of various cutting-edge algorithms in ML,
remarkable potential has been demonstrated in areas such as land cover classification and
smart farm [14,15]. These advances have yielded significant benefits, including enhanced
efficiency, improved resource management, and increased productivity. In particular, the
integration of ML with Raman spectroscopy has yielded impressive results in various fields
such as food analysis, drug detection, and bacterial identification [12,16]. Despite these
achievements, there is a growing concern among scholars that many ML models are opaque
and lacking interpretability; hence, they are dubbed as “black boxes” [17]. In the realm of
seed identity information security, understanding the decision-making processes of these
models is crucial. An insightful identification scheme not only aids in accurately identifying
critical biochemical components associated with seeds but also provides valuable insights,
enabling improvements in planting and management strategies.

To the best of our knowledge, the use of Raman spectroscopy in conjunction with
ML to investigate cottonseed-related issues must be explored. Current investigations into
identification methodologies are limited to the post hoc analysis of Raman spectroscopic sig-
natures. This hinders the dissemination of pre-existing knowledge regarding the analyzed
substance in the broader scientific community.

In light of these challenges, we present a pioneering cottonseed Raman spectroscopy
exploration model that leverages the synergistic application of ML and explainable artificial
intelligence (XAI) (Figure 1). Our methodology comprises two key elements: (1) We present
a comprehensive Raman spectroscopic analysis framework for the identification of cotton-
seeds. This framework encompasses various stages, including data preprocessing, feature
exploration, and the application of three diverse supervised ML models. (2) SHapley
Additive exPlanations (SHAP) was used to quantitatively assess the underlying bridge
between the model’s predictions and features. This facilitated in-depth analysis of the
crucial features necessary to establish highly efficacious and lucid cottonseed identifi-
cation models. Therefore, our study provides a paradigm for broader applications of
Raman spectroscopy.
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synthetic components of cottonseed. Exploratory analysis: The clustering trends and significant 
wavenumbers of the Raman spectra are explored using PCA and HHO, respectively. Dataset split-
ting: Data are randomly partitioned into 80% for training and 20% for testing. Classification: Cot-
tonseed identification is performed using the SVM, XGBoost, and MLP classification algorithms. 
Evaluation: Common metrics (accuracy, ROC, and AUC) in multiclass classifiers are used to gauge 
the predictive performance of the algorithms. Interpretation: SHAP technology is leveraged to 
identify the contribution of features to the ML algorithms. 

  

Figure 1. Workflow for cottonseed identification based on Raman spectroscopy and explainable ML
algorithms. (a) Sample processing: The collected cottonseeds are meticulously inspected and treated
with acetone to wash off the coating agents adhering to the seed surface. Raman spectroscopy mea-
surements: Raman spectra of the cottonseeds are obtained based on Raman confocal microscopy. Data
preprocessing: The spectra are processed using smoothing, baseline correction, and standardization.
(b) Tentative assignment: Assignment of Raman peaks according to the chemosynthetic components
of cottonseed. Exploratory analysis: The clustering trends and significant wavenumbers of the
Raman spectra are explored using PCA and HHO, respectively. Dataset splitting: Data are randomly
partitioned into 80% for training and 20% for testing. Classification: Cottonseed identification is
performed using the SVM, XGBoost, and MLP classification algorithms. Evaluation: Common metrics
(accuracy, ROC, and AUC) in multiclass classifiers are used to gauge the predictive performance of
the algorithms. Interpretation: SHAP technology is leveraged to identify the contribution of features
to the ML algorithms.
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2. Materials and Methods
2.1. Sample Collection

The selection of cottonseed cultivars is a crucial step towards developing a robust
and reliable identification model. To ensure the model performance is not compromised
by any limitations, it is imperative to include a diverse selection of cultivars from various
growing regions, breeding techniques, and traits. In this study, three cottonseed cultivars
were investigated and analyzed: Zhongmian 88 (ZH-88), Zhongmian 75 (ZH-75), and
Zhongmian 70 (ZH-70). These cultivars are primarily grown in China and exhibit certain
disparities in their cultivar characteristics (Table 1).

Table 1. Summary of cotton cultivar characteristics.

Cultivar Breeding Growth Period
(Days)

Micronaire
(MIC)

Resistance/
Tolerance Growing Region

ZH-75 Transgenic Bt hybrid 123 5.1
Fusarium wilt (t)

Verticillium wilt (t)
Cotton bollworm (r)

Yellow River
basin

ZH-70 Transgenic Bt + CpTI hybrid 121 4.3
Fusarium wilt (t)

Verticillium wilt (t)
Cotton bollworm (r)

Yellow River
basin

ZH-88 Hybridization 145 4.1 Fusarium wilt (r) Northwestern
inland

r = resistance, t = tolerance.

Specifically, ZH-88 is a cotton cultivar developed through a hybridization selection
process aimed at addressing the issue of inadequate heat accumulation in production
regions. The cultivar ZH-75, on the other hand, is differentiated by its rapid germination
and satisfactory growth performance throughout its entire growing period. ZH-70 exhibits
robust growth during the middle growth period, although it may have weaker growth
during the seedling stage.

All the samples were provided by the Institute of Cotton Research of the Chinese
Academy of Agricultural Sciences.

2.2. Sample Preparation

A meticulous examination of the cottonseeds was conducted. For each cultivar,
20 seeds were selected based on stringent criteria, including proper preservation, uni-
form shape and size, and the absence of deformations or fractures.

To ensure the acquisition of unadulterated Raman spectral signals of the cottonseeds,
a 60% acetone concentration was used to wash the seeds for 2 min, thereby eliminating the
majority of coating agents. Residual acetone on the seed surface was quickly removed using
pure water to minimize its impact on the resulting Raman spectra [18]. To prevent sprouting
in actively growing dry cottonseeds, the seeds were dried using a water-absorbent paper
after coating removal and then stored in properly labeled self-sealing bags under controlled
laboratory conditions (temperature, 4 ◦C; relative humidity, 20%).

2.3. Raman Measurements of Cottonseed

Raman spectra of cottonseeds were obtained using LabRAM Soleil Raman Microscope
(HORIBA, Paris, France). A 785 nm laser was used to excite the Raman spectra, avoiding
interference from a strong fluorescence background. Raman spectra (range: 400–2500 cm−1,
resolution: 1.15 cm−1) were obtained under stringent measurement parameters (laser
power: 75 Mw, scanning time: 30 s, Raman grating: 500 nm, 50× objective lens, 100% lens).
Three measurements were taken by randomly selected points on the surface of each seed
and retained the averaged spectrum. Furthermore, Raman measurements were performed
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in a controlled laboratory environment at a temperature of 20 ± 1 ◦C and a humidity of
60% to minimize any potential perturbations from the external environment.

2.4. Data Preprocessing

Raw Raman spectra obtained from the instrument are often characterized by the pres-
ence of fluorescence and systematic and environmental noise [19–21]. The Raman spectrum
of cottonseed exhibits a strong fluorescence background and substantial noise, despite
the application of confocal microscopy with a low-fluorescence wavelength excitation
source (Figure 1a). Consequently, all spectra were preprocessed using Origin software,
including smoothing, baseline correction, and normalization. Cosmic rays were manually
removed, and Savitzky–Golay (SG) filtering was applied to mitigate noise and enhance
the signal quality. Subsequently, asymmetric least squares smoothing (ALS) was used
to effectively eliminate the fluorescence spectral background. Finally, the Raman spectra
were normalized to prevent errors due to sample instability and enhance the reliability of
the analysis.

2.5. Exploratory Analysis of Features

Feature exploration is a critical step in the analysis of the complex Raman spectra. This
enhances the efficiency and effectiveness of the algorithms used and facilitates the analysis
of meaningful conclusions regarding the nature of the sample under investigation [22].

We conducted an exploratory analysis of the Raman spectra, using Principal Com-
ponent Analysis (PCA) and Harris Hawk optimization (HHO) as our analytical methods.
These two techniques differ significantly in their attributes and objectives, leading to
different results in their analyses, although both aimed at characterizing the nature of
the samples.

We utilized PCA to analyze the clustering trend of the Raman spectra and effectively
projected high-dimensional data onto two-dimensional planes, thus reducing the com-
plexity of the original data. PCA enables effective analysis and interpretation of spectral
information by identifying the principal components as a new feature space.

The HHO algorithm is a metaheuristic optimization technique designed to identify
optimal features. Nonetheless, in the context of feature selection research based on Raman
spectroscopy, the implementation of optimization algorithms aims to efficiently determine
the optimal features, specifically the best subset of features, to address the challenges of
NP-hard problems [23,24]. By strengthening the information within the feature subset,
HHO effectively selects the most crucial Raman shifts, thus providing a comprehensive
evaluation of the impact of chemical composition in identifying cottonseeds.

2.6. Machine Learning Methods

A substantial number of ML algorithms have been verified to be effective methods
for spectral information analysis. However, finding the optimal approach to achieve the
research goal often requires repeated experimentation, as no algorithm is perfect. Therefore,
we used three different supervised classification algorithms with varying capabilities in this
study, including Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost),
and Multi-Layer Perceptron (MLP).

SVM is an optimization-based discriminative algorithm that finds the optimal decision
boundary in the problem space to divide data into different categories [14,25]. The principle
of SVM classifier is as follows:

Assuming the optimal hyperplane is represented as wTxi + b = 0, the weight vector w
and bias b must satisfy the following constraints:

yi

(
wTxi + b

)
≥ 1− ξi (1)

where ξi in Equation (1) is the slack variable that reflects the degree of deviation between
the model and the ideal linear situation. The goal of SVM is to find a hyperplane that
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minimizes the average error of misclassification of training data. Therefore, the following
optimization problem can be derived:

φ(w, ξ) =
1
2

wTw + C
N

∑
i=1

ξi (2)

where C is a positive parameter (penalty parameter) that needs to be set, which represents
the degree of punishment for misclassified samples by the SVM.

In contrast, XGBoost is a tree-based learning algorithm that adopts the concept of
ensemble learning, making it highly effective in handling large-scale high-dimensional
data [26]. The principle of XGBoost can be summarized as follows:

Assuming a training dataset D = {(xi, yi), i = 1, . . . , n} with size n, where
xi = (xi1, xi2, . . . , xim) represents an m-dimensional feature vector and the correspond-
ing (output) class label yi:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (3)

where K in Equation (3) represents the number of trees, fk(xi) denotes the scores associated
with the kth tree of the model, and F denotes the space of available scoring functions for all
boosting trees.

MLP, on the other hand, is a feed-forward neural network with a complex structure but
excellent performance in solving nonlinear problems compared with the models mentioned
above [14].

The output of the hidden neurons is computed as follows:

Hk = ∧
(

∑
i

wikxk + µi

)
(4)

In Equation (4), xk is the value of the kth input variable, µi represents the bias of the ith

neuron, wik represents the interconnection weight between the kth input variable and the
ith hidden neuron, and ∧ denotes the activation function.

Three multiclass classification algorithms were implemented using the publicly avail-
able standard library in Python 3.10. The dataset was randomly divided into a training set
containing 80% of the samples and a test set containing the remaining 20%. To assess the
performance of these algorithms on both the training and test datasets, we calculated three
key metrics: accuracy, receiver operating characteristic (ROC), and area under the curve
(AUC) [27]. These metrics comprehensively evaluated the ability of the model to predict
cottonseed cultivars accurately.

2.7. Model Interpretation

SHapley Additive exPlanations (SHAP) is a methodology used to explain the pre-
diction of ML models [28,29]. The calculated SHAP values were used to assess the mean
marginal contribution of the input features, that is, to gauge the mean impact of the
features on the model’s outcome [28]. Remarkably, the SHAP value allocates an indi-
vidual contribution to each feature of each sample, with the mean absolute value of
these contributions constituting the mean marginal contribution. Furthermore, SHAP
is a model-agnostic framework that provides a universal approach for explaining the pre-
dictions of any ML model [30]. In this study, we used the SHAP methodology to gain a
deeper understanding of the decision-making process of the optimal model and to identify
key features.
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3. Results and Discussion
3.1. Visual Characteristics Analysis of Cottonseed

As depicted in Figure 2, minimal variation in morphological characteristics was
observed among the cottonseeds. All seeds exhibited an irregular fusiform, featuring a
sharp protrusion (micropyle) at one end and a more rounded contour (chalaza) at the
opposing end. In addition, discernible veins were evident in the outer layer of the hull. The
scarcity of pronounced morphological distinctions between cultivars makes manual visual
analysis a formidable task for accurately identifying cultivars.
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3.2. Raman Analysis of Cottonseed

Raman spectra of ZH-88, ZH-75, and ZH-70 in the range of 400–2500 cm−1 were sub-
jected to analysis (Figure 3). To the best of our knowledge, a comprehensive interpretation
of the Raman spectra of cottonseeds has yet to be established. Hence, our focus was directed
toward the tentative assignment of Raman shifts. Our preliminary analysis focused on the
chemosynthetic components of cottonseed, which include the chemical functional group
vibrations of lignin, cellulose, and proteins [31].
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and coating agents, following appropriate preprocessing procedures. The spectral preprocessing
methodology involved the implementation of the SG algorithm for noise reduction, the ALS approach
for baseline correction, and normalization to enhance the reliability of the analysis.
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The two Raman peaks were attributed to lignin and centered at 1029 and 1610 cm−1.
The first Raman band near 1029 cm−1 corresponds to lignin CH3 wagging and aro-
matic skeletal vibrations. The second peak, near 1610 cm−1, may belong to lignin aro-
matic skeletal vibrations [32,33]. Of note is the relatively high intensity in the Raman
spectra of cottonseeds near 1610 cm−1. Lignin, a potent Raman scattering agent, ex-
hibits a prominent deposition within the palisade layer of the seed coat [31,33–35]. This
serves as compelling evidence in corroboration with our findings from cottonseed Raman
spectra analysis.

In general, the Raman signal at 607 cm−1 is attributed to the torsional vibrations of
cellulose in the CCH bond. In addition, the Raman signals in the vicinity of 1037 cm−1,
1092 cm−1, and 1121 cm−1 are assigned to the stretching vibrations of the CC and CO bonds
of cellulose [33].

The Raman peak near 1238 cm−1 is attributed to protein vibrations of coupled CN
stretching and NH bending of the peptide group, as evidenced by the Amide III signal [36].
However, our results differ from those of previous reports, as no distinct Amide I signal
was detected in the range of 1650–1680 cm−1 [37]. This discrepancy could be due to the
presence of a high-intensity lignin peak at 1610 cm−1, which may have overshadowed the
contribution of Amide I to the spectra.

Additionally, in the Raman spectra obtained from cottonseed, two heightened and
broadened peaks were observed at approximately 1813 cm−1 and 2170 cm−1, respectively.
Despite diligent efforts, these peaks could not be attributed to any of the primary com-
pounds present in the cottonseed. The anomalous peaks could be attributed to the residual
coating agents near the sampling location. The remarkable adhesive properties of the
coating agents may have contributed to interference in the spectra [38]. Consequently,
we extended our investigation to include Raman spectra of the coating agents present
on the surface of the cottonseed. The specific sampling locations are shown in Figure 3.
The impact of the coating agent spectra was primarily observed in the 1813 cm−1 and
2160 cm−1 regions, whereas the effect on the spectra within the 400–1800 cm−1 range was
minimal. Given the crucial role of coating agents in the commercial distribution of seeds,
we preserved this signal component.

The overall Raman spectroscopic analysis of cottonseed depicted in Figure 3 shows
variations in the intensities of the spectral bands. Notably, a marked disparity was noted
near 1610 cm−1, with the Raman peak intensity of ZH-75 surpassing those of ZH-88 and ZH-
70. Additionally, slight variations can be discerned in the spectral ranges of 690–750 cm−1,
930–940 cm−1, 1160–1230 cm−1, and 1400–1570 cm−1. These observations suggest that
these bands may be instrumental in the classification of cottonseed cultivars; however, the
exact cause of these variations remains unclear.

In summary, the Raman spectra demonstrated a marked level of similarity among
different cultivars. Therefore, identifying these Raman spectra by visual inspection alone
is challenging and highly subjective. The implementation of more objective chemometric
methods is crucial for extracting meaningful information from the data. Subsequently, in
the following section, we conduct a comprehensive exploratory analysis of the spectra to
further explain cottonseed characteristics.

3.3. Exploratory Analysis of Raman Features
3.3.1. Exploratory Analysis of Clustering Trend

All Raman spectra were subjected to Principal Component Analysis (PCA) to assess
the clustering trend of cottonseed (Figure 4). The cumulative contribution of the first three
principal components was 78.8%, effectively encompassing most spectral characteristics.
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We contrasted the projections of the three sample groups onto the first three principal
components, where PC1 and PC3 demonstrated distinct clustering patterns (Figure 4b).
Specifically, PC1 and PC3 roughly divided the data into three separate clusters, including
ZH-88 and ZH-70, distinguished along PC3. ZH-75 in PC1 displayed a distinct clustering
trend compared with those of the other samples. The substantial degree of dispersion
observed in the distribution of ZH-75 in the scatter plot underscores its considerable
variability, which is likely due to the heterogeneous composition of the samples.

These results suggest that the Raman spectra of the different cottonseed cultivars
displayed clustering tendencies, despite their similarities in the spectra. However, the find-
ings also illustrate that the relationship between cultivars remains complex, as evidenced
by the lack of a definitive separation between ZH-75 and the other cultivars in PC2 and
PC3 (Figure 4c). Thus, the obtained Raman spectral data establish a robust foundation for
cottonseed identification. However, the use of supervised models may be imperative for
precisely differentiating subtle variations among samples.

3.3.2. Exploratory Analysis of Critical Raman Wavenumbers

The Harris Hawk optimization (HHO) algorithm was applied to discern the most
critical spectral bands. To enhance the precision and detectability of our analysis, we
subjected the results of 100 runs (each run 100 iterations) to an in-depth analysis [39].

The Raman shifts reveal high frequencies centered around 1616 cm−1, 1459 cm−1,
1244 cm−1, 1111 cm−1, and 1748 cm−1 (Figure 5). These selected wavenumbers with
high-frequency modes may facilitate the identification of cottonseeds, and are primarily
attributed to lignin, cellulose, protein, and pectin. In particular, the Raman peaks at
1616 cm−1 and 1459 cm−1 correspond to the aromatic skeletal vibrations and methoxy
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deformations of lignin, respectively. The peak near 1111 cm−1 indicates the CC and CO
stretching of the cellulose. The Raman feature centered near 1244 cm−1 is predominantly
associated with Amide III bands. The Raman signal near 1748 cm−1 is correlated with the
CO stretching of pectin [33].
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The complexity of cottonseed identification poses challenges in determining which
component plays a crucial role, owing to the broad coverage of features selected by the
HHO algorithm (Figure 5). Although the frequency calculation of the selected features
is applicable, it may not always yield an optimal subset of features. To address these
limitations, we propose using SHAP for a more comprehensive evaluation of selected
features, with the ultimate goal of obtaining reliable and robust experimental results.

3.4. Model Analysis

In this section, we present the classification results obtained using several methods
to compare the performance of our proposed hybrid approach with that of filtered sets
obtained through PCA and HHO. Three commonly used metrics, namely, accuracy, re-
ceiver operating characteristics (ROC), and area under the curve (AUC), were used to
evaluate the classifier’s performance. Accuracy serves as a measure of the efficacy of a
classifier’s predictions to match actual results. The ROC, with its associated AUC metric,
was used to assess the ability of each method to discriminate between counterexamples
(misclassified samples).

The performance of the three classifiers, XGBoost, MLP, and SVM, was evaluated
for cottonseed identification using the filtered sets obtained through PCA (Table 2 and
Figure 6). Our comparison reveals that XGBoost outperforms the other classifiers in terms
of identification performance, achieving an identification accuracy of 0.94 on the test set
accuracy. Moreover, XGBoost showed exceptional performance for cottonseed cultivar
identification (AUC = 1). These outstanding metrics demonstrated the accuracy and
robustness of the XGBoost model for cottonseed identification. MLP has the advantage of
faster prediction accuracy when handling large feature datasets, owing to its architecture
and back-propagation [14,40]. Given the limited size of the dataset used in our study,
it is unsurprising that the test set accuracy of MLP (0.89) is slightly lower than that of
XGBoost. Finally, SVM obtained the lowest classifier accuracy. This is likely due to the
“rbf” kernel function not capturing the underlying structure of the data well, leading to
subpar discriminative accuracy for ZH-70 (AUC = 0.95) and ZH-88 (AUC = 0.97). However,
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SVM still showed excellent identification performance for ZH-75 (AUC = 1), indicating its
relative effectiveness in cottonseed identification.
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Figure 6. Comparative analysis of the performance prediction for each cottonseed cultivar using ML
models. The ROC curves in (a–f) illustrate the true positive and false positive rates of the model’s
predictions for each cottonseed cultivar. For each curve, AUC was calculated to assess the overall
performance of the model. The plots in (a–c) display the performance of XGBoost (a), MLP (b), and
SVM (c) on the PCA-filtered dataset that was trained to identify cottonseed cultivars. The plots in
(d–f) show the ROC curves and AUC of XGBoost (d), MLP (e), and SVM (f), respectively, utilizing
the HHO-filtered dataset to scrutinize the performance differences between PCA and HHO.
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Table 2. Cottonseed identification using different filtered sets using ML algorithms based on
Raman spectroscopy.

Methods Training Accuracy Testing Accuracy

Machine learning

SVM + PCA 0.90 0.78
SVM + HHO 0.67 0.63

XGBoost + PCA 1.00 0.94
XGBoost + HHO 1.00 0.89

Deep learning MLP + PCA 0.98 0.89
MLP + HHO 1.00 0.78

The evaluation of classifiers using the HHO-filtered dataset revealed a consistent order
of performance: the best was XGBoost, followed by MLP and SVM (Table 2 and Figure 6).
Unlike the PCA results, the accuracy of the classifiers based on the HHO-filtered set
demonstrated varying degrees of degradation. In particular, SVM demonstrated a limited
ability to distinguish between ZH-70 (AUC = 0.55) and ZH-88 (AUC = 0.71). Additionally,
the accuracy of XGBoost and MLP test sets decreased to 0.89 and 0.78, respectively. These
outcomes suggest that the selected Raman shift subset after HHO optimization may have
lost crucial information, leading to a reduced ability of the classifiers to accurately identify
inter-sample relationships.

Overall, these results illustrate the effectiveness of combining Raman spectroscopy
with ML for cottonseed identification. We present evidence that XGBoost-PCA and
XGBoost-HHO can accurately predict the cottonseed cultivars in this dataset. Given the
limited size of the dataset, the performance of the MLP aligns with expectations. However,
when applied to larger datasets, neural networks can potentially demonstrate a higher
utility. It is worth highlighting that numerous researchers have integrated deep learning
with diverse digital phenotyping methods to tackle the challenge of seed qualitative and
quantitative analysis [12,41–44]. Notably, Lei Feng et al. effectively combined hyperspectral
imaging with deep learning to identify cottonseed cultivars, achieving an impressive accu-
racy of 0.89 using the CNN-SoftMax method [45]. Hence, we anticipate that the growing
demand for large-scale seed phenotype data analysis will drive the future utility enhance-
ment of neural networks. Our results suggest that tree-based ML models, particularly
XGBoost, represent the most efficient cottonseed identification strategies currently available.
We anticipate that our findings will pave the way for the development of more advanced
and accurate ML techniques for cottonseed identification.

3.5. Model Interpretation

In this study, our emphasis was on objectively and impartially analyzing the impact of
input features on XGBoost predictions, despite prior evidence of the algorithm’s outstand-
ing discriminatory capability (Table 2). The analysis of feature contributions not only offers
insights into the model’s decision-making process but also has the potential to further our
understanding of the underlying mechanisms of the sample.

The importance of the input features can be obtained through the invocation of
the built-in API interface of XGBoost. However, the calculated results may be prone to
inaccuracies and subjectivity owing to the high sensitivity of XGBoost to multicollinearity
and noise in the dataset [29].

The SHAP based on cooperative game theory effectively addresses this issue [29,46,47].
Therefore, we used the TreeExplainer algorithm within the SHAP library to efficiently and
accurately interpret XGBoost outputs. In this instance, the computed SHAP values can
establish the feature ranking.

Figure 7 illustrates the XGBoost-PCA model interpretation, displaying the cumulative
absolute average SHAP values for each principal component: PC1 and PC3 emerged as the
most influential features in the XGBoost predictions across the principal components. The
distribution of the SHAP values for the ZH-75, ZH-70, and ZH-88 identification models are
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shown in Figure 7a–c, respectively. The samples exhibiting elevated PC1 scores negatively
influenced the discrimination of ZH-75 (Figure 7a). High PC3 scores had a positive effect
on the identification of ZH-70 but a negative effect on ZH-88 (Figure 7b,c). These results
are consistent with the experimental outcomes of the PCA analysis. The identification
of ZH-75 by XGBoost primarily depends on the lower PC1 scores in the samples, and
the identification of ZH-70 and ZH-88 is contingent upon the clustering tendencies of
PC3. These findings emphasize the effectiveness of XGBoost in learning the clustering
trends of cottonseed Raman spectral mapping across PCs, thus resulting in remarkable
classification efficiency.
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Figure 7. Quantifying the impact of PCs on XGBoost prediction through analysis of the SHAP.
(a–c) For each cottonseed cultivar, ZH-75 (a), ZH-70 (b), and ZH-88 (c), the distribution of the SHAP
values of the PCs is presented. The color of each point (according to the color bar; blue represents low
feature values, and red represents high feature values) indicates the feature value, which represents
the magnitude of each PC score. The plot in (d) shows the sum of the absolute SHAP values averaged
across each PC (i.e., the average influence of each PC on the XGBoost predictions). All plots in
(a–d) were sorted by the mean absolute SHAP value of the PCs, from the highest to the lowest.

A comprehensive interpretation of XGBoost-HHO (Figure 8) shows the impact of the
top ten most significant Raman wavenumbers on cottonseed identification. According to
a synthesis of the analysis of the influence of Raman wavenumbers on the average out-
put amplitude of XGBoost (Figure 8d) and the distribution of SHAP values (Figure 8a–c),
1615 cm−1 and 1137 cm−1 are the most critical features in the Raman spectroscopic fin-
gerprints of cottonseeds. Specifically, XGBoost identifies ZH-75 and ZH-70 based on the
intensity differences of the Raman signals at 1615 cm−1: positive SHAP values (red) for the
prediction of ZH-75 and negative SHAP values (blue) for ZH-70 samples. The identifica-
tion of ZH-88 using XGBoost was primarily based on the intensity of the Raman peak at
1137 cm−1. The Raman peaks at 1615 cm−1 and 1137 cm−1 can be attributed to the aromatic
skeleton vibrations of lignin.
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analysis. (a–c) For each cottonseed cultivar, ZH-75 (a), ZH-70 (b), and ZH-80 (c), the SHAP value
distribution for each Raman wavenumber is presented. The plot in (d) shows the average impact of
each Raman wavenumber (the top 10 most impactful Raman features) on the XGBoost predictions.
In all images (a–d), the Raman wavenumbers are sorted from top (most significant) to bottom (least
significant) based on their predicted importance.

Consequently, the deposition of lignin in cottonseeds is likely a key factor in cottonseed
discrimination according to the model interpretation results. Therefore, future research
on lignin in cottonseeds may have significant implications for enhancing the accuracy of
cottonseed discrimination and managing cottonseed genetic resources. Lignin is a complex
polymer present in the cell walls of many plants, including cotton [35]. In cottonseeds, lignin
plays a crucial role in protecting the seeds from damage and biological and nonbiological
stresses [48,49].

The conclusion and discussion of the XGBoost model interpretation based on SHAP
analysis are as follows: XGBoost-PCA is capable of effectively deciphering the intricate
nonlinear relationships between the sample data, with significant superiority in terms
of stability and precision. Meanwhile, the XGBoost-HHO model provides more robust
interpretation results that are chemically meaningful, although it exhibits slightly lower
classification accuracy than XGBoost-PCA. Our research complements recent efforts to
use Raman spectroscopy for cottonseed cultivar identification [37]. Our study presents
an interpretable approach to identifying schemes that use ML models, thereby clarifying
the impact of multiple variables on model output amplitude. Importantly, our work
emphasizes the potential of the interpretation of the model, particularly post hoc Raman
feature importance ranking, in generating new hypotheses for designing prospective
studies on future seed identification. We believe that using explainable ML for seed
identification will contribute to the development of more advanced and targeted seed
identification methods.

4. Conclusions

In this study, we contribute to the growing research on the use of Raman spectroscopy
for cottonseed identification. We presented a novel cottonseed identification model that
combines Raman spectroscopy, ML, and XAI. Our findings highlight the feasibility of using
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ML for accurate cottonseed identification, and the interpretability of complex ML models
to guide the design of future cottonseed identification methods.

First, we provide a comprehensive analysis of the Raman spectra of cottonseeds,
followed by an exploration of the complex relationships among cottonseed cultivars. To
achieve this, we used PCA and HHO to establish a Raman spectral exploration model.
Subsequently, we applied three different ML models of varying complexity to perform
cottonseed discrimination and demonstrated that XGBoost outperformed the other models
in terms of accuracy. Finally, we used the SHAP method to analyze the decision-making
process of XGBoost and to gain insights into the intricate relationships between cotton-
seed cultivars. Our results suggest that lignin may hold promise in the design of future
cottonseed identification methods.

This study provides a precise approach for cottonseed identification based on Raman
spectroscopy. This approach can expand the scope of seed cultivar identification and is a
valuable tool for seed practitioners.
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