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Abstract: Global warming poses a serious threat to food security because of its impacts on ther-
mosensitive food crop production. Rice is of paramount significance due to the world’s three-billion-
population dependence on it as a staple food. It is well established that the high temperatures at day
or night times during the grain-filling period can reduce rice grain yield, although the intriguing
impact of high temperatures on head rice yields (HRY) is poorly discussed. This is because high and
stable HRY is vital to meet the demand for rice grain, which is a staple food for many developing and
developed nations. Hence, identifying the novel heat-tolerant rice germplasm with higher head rice
yields may help mitigate a critical problem threatening global food security resulting from climate
change. This review addresses the key factors, including pre-and-post-harvest scenarios related to
overall reductions in the HRY and how grain molecular composition can play a significant role in
determining head rice yields. Moreover, the underlying genetics of head rice is discussed as and
possible mechanism to breach the complexity of HRY before identifying the key alleles and genomic
regions related to the reduction in the HRY. Future research should focus on understanding the
mechanisms of tolerating heat stress in rice by combining modern statistical, physiological, and
molecular techniques to increase HRY. This may include high-throughput phenotyping techniques,
mapping quantitative loci affecting HRY loss processes and genomic prediction using a broad wild
and cultivated rice germplasm.

Keywords: climate change; high temperatures; rice; head rice yields; agronomy; soil moisture;
pre-and-post harvest factors; physiology; grain molecular composition and quantitative genetics

1. Introduction

Freshly harvested rice (Oryza sativa L.) grains, known as “paddy” or “rough” rice, are
usually milled before human consumption. Paddy typically comprises 20% husk, 11% bran
(aleurone layer) and 69% starchy endosperm [1–3]. Milling involves de-hulling the paddy
and polishing, where the bran layer and part of the embryo are removed from brown rice
to produce broken and un-broken (whole grain) starchy endosperm kernels, known as
polished rice [1]. Polishing is important because brown rice, produced after the removal
of the indigestible husk tissue, contains lipids and fatty acids in the bran layer, which is
problematic for long-term grain storage. They hydrolyze and oxidize to form aldehydes
and ketones, making the rice grain rancid over long-term storage periods [4,5].

In the context of the global rice production pattern, head rice yields derive from the
paddy (Table 1). Head rice yield is typically affected by the milling operations (dehulling
and polishing) and could result in grain breakage. The whole grain portion of the polished
white rice—the head rice yield—is typically around 60–65% of the paddy yield [6,7]. Head
rice is used for human consumption, while broken kernels are used for animal feed, rice
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flour, and the brewing industry [8]. The degree to which the aleurone layer (bran) and
embryo are removed in the polishing process has implications for the quality of the milled
product and depends on the milling intensity, length of time the rice is milled and grain
shape. For these reasons, milling time and intensity are generally optimized for individual
rice cultivars [9] to maximize head rice yield while meeting market requirements [10–12].

Table 1. Production patterns of head rice yields (million metric tons) across the globe in major
rice-producing regions Source: [13].

Countries Head Rice Yields (Million Metric Tons)

China 148.30
India 122.27

Indonesia 35.30
Bangladesh 34.60

Vietnam 27.38
Thailand 18.86
Burma 12.60

Philippines 12.42
Pakistan 8.42

Brazil 8

Other factors include grain moisture during harvesting and drying [14], and methods
used to dry down the grain/paddy (hot air or infrared drying) [15–17] have a critical
impact on head rice yield [14]. In addition, seasonal conditions have been linked to higher
grain breakage during milling [18–20]. High day/night temperatures, especially during
gametogenesis and early anthesis, result in substantial grain yield losses [9]. Moreover,
heat stress during early and late grain filling periods affects the grain yields and milling
outturn [14]. Grain breakage during milling is higher in immature grains [21], and it is
therefore likely that seasonal conditions affect the uniformity of grain-filling or reduce the
number of immature grains at harvest, increasing head rice yields. Further, some lines
of evidence suggest that rice grain molecular components (starch, seed storage proteins,
starch lipids) may be linked to grain breakage during milling [22–25]. Therefore, in addition
to reviewing known factors that influence head rice yields, we review the key molecular
components of rice grains, rice grain chalkiness and the impact of seasonal conditions
(including temperature) on grain molecular composition, chalkiness, and the uniformity of
grain-filling, with the view that these factors may ultimately have consequences on head
rice yield.

This review discusses the potential impact of high temperature on HRY in respect to
pre-and-post harvest scenarios. This review further resolves the effect of heat stress on
losses during milling operations associated with the reductions of HRY and elaborates on
genetic variation for the response of HRY and component traits, including grain molecular
composition, which could be exploited to map quantitative trait loci (QTLs) or single-
nucleotide polymorphisms (SNPs).

2. Factors Affecting Head Rice Yields
2.1. Rice Grain Size and Shape

There is wide variation in rice grain size and shape, which has necessitated the
construction of a system to classify the rice grains by size and shape. Rice grain is generally
grouped into one of the four grain length categories—short, medium, long and extra-
long/slender grain (Figure 1), where short grains are ≤5.50 mm in length, medium grains
are 5.51–6.60 mm, long grains are 6.61–7.5 mm and extra-long/slender grains are >7.5 mm
in length [26].

Rice grain size and shape are largely determined by genetics and a few quantitative
trait loci (QTLs). Rice grain size and shape are identified in Table 2. For example, the
QTL GS3 (Table 2) plays a major effect on QTL for rice grain length and weight and a
minor effect on QTL for rice grain width and thickness [27,28]. GL3.1 regulates the grain



Agriculture 2023, 13, 705 3 of 21

length and weight, while qgl3 has a favorable effect on grain length, filling and weight [29].
GW2 increases spikelet hull width and accelerates the grain-filling rate, grain width and
weight [30]. However, none of the QTLs for grain length and width (Table 2) have been
directly linked to head rice yield.
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Table 2. Quantitative traits loci of rice grain size and shape.

Plant
Material QTL Traits Cloning Chromosome

Number References

Rice lk3 Grain length 3 [32]
Rice gw3.1, gw3.2, gw9.1 Grain weight 3
Rice gw3.1 Grain weight Fine mapped 3

[33]Rice GS3 grain length and weight cloned 3
Rice GW2 Control grain width and weight cloned 2 [34]
Rice Lk-4 Grain length Fine mapped 4 [35]
Rice GW5 Grain width and weight Fine mapped 5 [36]

Rice DEP1 Reduce length of panicle for
better grain-filling 1 [37]

Rice qGL7 Grain length and size 7 [38]
Rice GL3.1 Grain length and weight cloned 3 [39]
Rice qGL4b Grain length and weight 4 [40]
Rice qSS7 Length, width and weight 7 [41]
Rice GW1, GS3, GS7 Grain weight and size Fine mapped 1, 3, 7 [42]
Rice GW7 Grain width OsSNB 7 [43]
Rice GW2, Gl12 Grain length and width Fine mapped 2, 12 [44]
Rice TGW6 Thousand grain weight cloned 6 [45]
Rice qgl3 Grain length, filling and weight cloned 3 [46]
Rice * Srs5 Cell elongation 5 [47]
Rice GS2 Grain weight cloned 2 [48]
Rice GS5-1, GS5-2 Grain width, filling and weight 5 [49]
Rice * BG1 Seed weight

cloned 1 [50]Rice * BG1 Source-size sink and heading date
Rice GLW7 Grain length Cloned OsSPL13 7 [51]
Rice GL1.3 Grain length and weight Fine mapped 1 [52]
Rice GL-6 Grain length Fine mapped 6 [53]
Rice TGW12 Grain weight Fine mapped 12 [54]
Rice MQTL3.1 Grain weight Meta QTL 3 [55]

* Indicates artificial mutants.

Head rice yield varies with the shape and size of the rice grain, but contradictory
findings have been reported. For example, [56,57] observed higher head rice yield in
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short grains than in medium and long grains. In contrast, [58,59] found higher head rice
yields in medium-grain cultivars than in short- and long-grain cultivars. The contradictory
findings could be due to the seasonal environmental conditions where rice cultivars were
grown and/or factors beyond physiological maturity or may be due to genetics. However,
ultimately, the reason for the discrepancy still needs to be solved.

2.2. Rice Grain Molecular Composition

Rice grain is mainly composed of starch (89–92%), seed storage proteins (6–8%) and
lipids (1–2%) [60,61], and these components largely determine the rice grain functional
properties, including gelatinization temperature, gelatinization index, flour viscosity and
RVA (rapid viscos analyzer) pasting properties [62,63]. The roles of starch, lipids and
seed storage proteins have been widely studied from a cooking and eating perspective.
However, the role of these grain components in determining the head rice yield still needs
to be determined despite several studies demonstrating a potential association between
one or more of these components and grain breakage, as reviewed below.

2.2.1. Starch

Starch, the dominant component of the rice grain endosperm, is a polymer composed
of glucose monomers and is found in one of two types: amylose (0–30%) or amylopectin
(75–80%) [64]. Amylose is primarily a linear molecule joined by α1-4 links while amy-
lopectin has α1-6 linkages in addition to α1-4 links [65]. The α1-6 linkage creates a branched
structure, and these structural differences affect physio-chemical properties such as solubil-
ity: amylopectin is water soluble, while amylose is not soluble in water. Structural analysis
of starch granules [66] shows that amylose molecules reside between the amylopectin
molecules (Figure 2), and their relative concentration is important for starch stability.
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Figure 2. Schematic representation of different structural levels of the starch granule and the involve-
ment of amylose and amylopectin in developing starch molecules [64].

Amylose is synthesized by a granule-bound starch synthase (GBSSI) coded by the
waxy gene (Waxy/wx) [67] while amylopectin is synthesized by (Sbe) starch synthase
branching and debranching enzymes [68,69]. DNA sequence differences within the rice
starch synthesis structural genes generate allelic diversity, which results in rice starch
composition differences. However, any of the changes caused by Wx and Sbe genes have
not been linked to head rice yield.

The importance of starch in determining head rice yield is somewhat unclear (Table 3).
A temperature stress study [70] reported that head rice yields declined with increasing
night-time temperature as amylopectin carbon chain lengths increased. In contrast, another
study [63] found no association between amylose:amylopectin ratios and head rice yield
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across a range of rice cultivars. Similar conflicting results have been reported for the
relationship between amylose and grain chalkiness, a trait linked to reduced head rice
yields, discussed in Section 2.2.4 below.

Table 3. Quantitative traits loci for endosperm starch and their importance in rice grain quality.

Plant Material QTL Traits Chromosome Number References

Seven indica
(T65,N8,108,C8669,C8005,221,T65wx),

three glaberrima (W025,GM1,GM2)
Wx gene (Wx a, Wx b) Amylose 6 [67]

Kinmaze and its mutant lines Flo-2 Regulates RBE1 gene for
starch synthesis 6

Japonica Soluble starch synthase Starch [71]
132 DH population via anther culture of

F1 hybrid between ZYQ8 (indica) and
JX17 (japonica)

qAC-5, Wx Amylose content 5, 6

Nipponbare, Koshiibuki, Tentakaku,
Sasanishiki and Hatsuboshi

GBSSI, GBSSII, SSI,
SSIIa, SSIIb, SSIIc, SSIIIa,

SSIIIb, SSICa, SSIVb

Starch synthase under
temperature stress 6, 7, 6, 6, 2, 10, 8, 4, 1, 5

[72]

BEI, BEIIb, Branching enzyme 6, 2
ISA1, ISA3, PUL Debranching enzyme 8, 9, 4

Amy1A,
Amy2A, Amy3A,
Amy3C, Amy3D,
Amy3E, Amy4A

Alpha-Amylase 2, 6, 9, 9, 8, 8, 1

Ramy1 Transcription factor for
amylase gene 1

Nipponbare Flo-2 Starch quality and
grain size 6 [73]

chromosome segment substitution lines
of a cross between 9311 and Nipponbare

starch paste viscosity
characteristics

Rapid viscos analyzer
profile of rice genotypes 1, 2, 4, 5, 6, 8, 10 [74]

a indicates the allele a produces the larger amount of amylose; b indicates the allele b produces smaller amount
of amylose.

2.2.2. Seed Storage Proteins

Seed storage proteins in rice endosperm are composed of glutelins (60–80%), prolamins
(20–30%) and globulins (5–6%) [60]. Seed storage proteins are traditionally defined by
their solubility, where glutelins are soluble in dilute acid or base, prolamins in aqueous
alcohol solutions, and globulins in salt solutions. These seed storage proteins, referred
to as protein body I (PB-I) and protein body II (PB-II) (Figure 3), are embedded between
the starch granules, helping them to bind [75]. Prolamins are found within PB-I and have
molecular masses of 10, 13 and 16 kDa [60,61,75]. The 13 kDa prolamins are the dominant
component of PB-I and are further classified based on Cys residues [76]. The Cys-poor
prolamins have one cysteine residue per molecule, while the Cys-rich have five to nine
cysteine residues per molecule. Prolamins accumulate within the smooth endoplasmic
reticulum [77], which then mature and form PB-I.

Globulins and glutelins are deposited into protein storage vacuoles, which then ma-
ture and form PB-II. Approximately 15 glutelin coding genes are divided based on DNA
sequence into four gene families: GluA, GluB, GluC and GluD [78–80]. Globulin is dom-
inated by a protein derived from a single-copy α-globulin encoding gene [81]. Several
studies have reported the QTLs for seed storage proteins, but none for rice grain seed
storage proteins (Table 4) have been linked to head rice yield.
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Table 4. Quantitative traits loci for rice grain proteins.

Plant Material QTL Traits Chromosome Number References

210 F10 RIL population derived from
Zhenshan 97 (maternal) and Minghui

63 (paternal)

Markers (C922, C1016, R1629
RM228, R19, C909B, TEL3, R496) Protein % 1, 4, 8, 10, 3, 11, 12 [82]

312 Double haploids from BC3F1
i.e., derived from Caiapo (Brazillian,

long grain) × Oryza glaberrima,
IRGC 103544

Pro1, pro2, pro6, pro11 Protein % 1, 2, 6, 11

81 DH lines from the F1 hybrid of a
cross between Gui 630 (indica) ×

02428 (japonica)

qRPC-1, qRPC-4, qRPC6,
qRPC-7, qRPC-10 Protein content 1, 4, 6, 7, 10 [83]

71 RILs, derived from a cross
between Asominori × IR24

qGLB-1, qGLB-2.1,
qGLB-2.2, qGLB-5 Globulin 1, 2, 2, 5

qPLA-1, qPLA-3, qPLA-10 Prolamin 1, 3, 10 [84]
qGLT-2, qGLT-10,
qGLT-11, qGLT-12 Glutelin 2, 10, 11, 12

Two BC3F2 populations, NILs and
197 accessions (indica and japonica) * qPC1

Glutelins, prolamins,
globulins, albumins and

starch. encodes a
putative amino acid
transporter OsAAP6

1 [85]

25 BC1F1 lines were developed by
crossing “ARC 10075” × Naveen qGPC1.1, qSGPC2.1, qSGPC7.1 Grain protein content 1, 2, 7 [86]

Mutants rice lines rice asparagine synthetase 1 Grain protein content
and grain yield 1 [87]

193 recombinant inbred lines were
developed by crossing Japonica rice

Nipponbare with Indica super rice YK17
qPC6, qPC7 and qGLU6 Crude protein and

protein contents 6, 7 [88]

* Only this gene has been cloned.

2.2.3. Starch Lipids

Typically, brown rice is composed of 1–2% lipids [89–91], which are generally classified
as non-starch lipids and starch lipids [92–94], as shown in Figure 4. The non-starch lipids
are found in the bran and embryo that are removed during milling, while starch lipids
are located within the starchy endosperm portion of the rice grain. The starch lipids
are chiefly composed of surface lipids, lysophosphatidyl choline, free fatty acids and
lysophosphatidyl ethanolamine [95]. The surface lipids contain surface acylglycerols
that are hydrolyzed through lipase action into free fatty acids [4,96] and are considered
important for grain cracking during milling. For example, [22] observed high amounts
of surface lipids in polished broken kernels compared to head rice (whole-grain polished
kernels). Puroindoline proteins in wheat are lipid-binding proteins that play a key role in
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determining wheat hardness and flour milling yield [97], a trait that is analogous to grain
breakage in rice. Several studies in rice have reported the QTLs for lipid contents (Table 5),
but none of these have been linked definitively to head rice yields.
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Table 5. Quantitative traits loci for grain lipids in rice.

Plant Material QTL Traits Chromosome
Number References

81 DH lines from the F1 hybrid of a
cross between Gui 630 (indica) ×

02428 (japonica)
qRFC-1, qRFC-2, qRFC-5 Fat content 1, 2, 5 [98]

71 RIL cross of Asominori (japonica) ×
IR24 (indica)

qFC-1-2, qFI-1-2, qFC-2-2, qFI-2,
qFC-4, qFI-4, qFC-9, qFI-9 Fat contents and fat index 1, 1, 2, 2, 4, 4, 9, 9 [99]

190 DH lines, derived
From anther culture of an F1 hybrid

between Wuyujing2 (japonica) ×
Zhanshen 97B (indica).

qCFC1a, qCFC1c, qCFC3a,
qCFC3c, qCFC5abc,

qCFC6a, qCFC7ac, qCFC7b,
qCFC8b, qCFC9a

Fat content in brown rice 1, 1, 3, 3, 5, 6, 7, 7, 8, 9 [100]

RIL population derived from
Xieqingzao B ×Milyang 46 qFC-3, qFC-5, qFC-6, qFC-8 Crude fat content 3, 5, 6, 8 [101]

190 DH lines derived from F1 hybrid
Wuyujing2 (japonica) × Zhanshen

97B (indica).
BCF1 developed by crossing DH with
both parents: 149 from Zhanshen 97B

and 143 from Wuyujing2

qCFC5 detected in both
populations: DH and BCF1 Crude Fat content 5

120 DH lines developed by anther
culture, F1 cross Samgang × Nagdong qLC6.1, qLC7.1, qLC9.1 Lipid content brown rice 6, 7, 9 [102]
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Table 5. Cont.

Plant Material QTL Traits Chromosome
Number References

182 backcross inbred lines (BILs),
backcross (“Koshihikari” × “Kasalath”)

and 39 chromosome segment
substitution lines (CSSL)

qFC7.1 and qFC7.2 Crude fat content brown rice 7 [103]
pal4, ara5, oil3 encodes enzymes:
Ketoacyl–ACP Synthase I(KAS I),
Ketoacyl–CoA Synthase (FAE1)

Fatty acid composition

4, 5, 3

[104]

pal6, ste4, ole1, oil1 encodes
enzymes: Acyl–ACP

Thioesterase (FatB), Acyl–CoA
Thioesterase, ER

2-Lysophosphatidate
Acyltransferase (LPAAT)

6, 4, 1

myr2-2, lin6-1, ole6, lin6-2
encode enzyme:

Acyl–CoA:Diacylglycerol
Acyltransferase (DGAT)

2, 6, 6

133 DH lines cross Cheongcheong
× Nagdong qLip-3, qLip-6 Lipid contents brown rice 3, 6 [105]

533 diverse O. sativa accessions PAL6, LIN6, MYR2, and ARA6 Oil biosynthesis in rice 2, 6 [106]
Rice mutant population OsLTPL23 Lipid transfer protein 1, 2 [107]

2.2.4. Chalkiness

Chalkiness refers to an opaque area of the rice endosperm instead of a translucent
endosperm in non-chalky rice. Chalkiness is considered a highly undesirable trait because
the chalky appearance lowers the marketability of rice and causes significant milling
losses [108–115].

Chalkiness is a highly undesirable trait that favors grain cracking during milling
operations (dehusking and polishing), which ultimately reduces head rice yields [113]. The
reason for the development of chalky grains has not been fully resolved yet [116]. Therefore,
the following points need to be considered regarding the effect of rice crop physiology
coupled with high-temperature stress for chalkiness.

(1) High-temperature stress during grain filling [69,113,117] was considered a major
contributing factor to the development of chalky grains.

(2) However, other seasonal conditions such as wetting and drying cycles, are also
associated with the development of chalky grains [118,119].

(3) Previous literature also suggested that loosely packed starch molecules cause chalki-
ness, possibly due to variations in amylose content [108,120,121].

(4) Other studies suggested that amylose and chalkiness are negatively
correlated [113,114,122,123].

(5) Environmental factors such as temperature, transpiration rate of canopy and evapora-
tion rate contribute to developing chalkiness. Therefore, future studies are required
to investigate which factors, environmental and genetic (in the context of Table 6),
contribute to developing the chalky grains and finding the possible link between the
rice grain molecular components and chalkiness.

Table 6. Quantitative traits loci for chalkiness in rice grain.

Plant Material QTL Traits Chromosome
Number References

132 DH population via anther
culture of F1 hybrid between

ZYQ8 (indica) and JX17 (japonica)

Ratio of white-core kernels to
total number of observed kernels qPGWC-8, qPGWC-12 8, 12

[124]

Ratio square of the white core to
square of white-core kernel. qSWC-3 3

241 F2:3 segregating population
C161-R753, RG360-C734a,

RG528-C1447, R1952-C226,
R2625-C223

Chalkiness in milled rice 3

238 F10 (Recombinant Inbred lines) RG360-C734a, R1245-R1789,
RG360-C734a, Wx-R1952

Brown rice white belly (First two
marker intervals), brown rice white
core (Second two marker intervals)

3
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Table 6. Cont.

Plant Material QTL Traits Chromosome
Number References

66 CSSL lines (BC3F1), derived
from the cross Asominori IR24
(Asominori recurrent parent)

qPGWC-8, qPGWC-9, qPGWC-1,
qPGWC-7

Percentage of grains with chalkiness
(PGWC) 1, 5, 5, 6, 10

[125]qACE-8, qACE-2, qACE-9 Area of chalky endosperm (ACE) 8, 9
qDEC-8, qDEC-9, qDEC-1a,

qDEC-1b, qDEC-2
Degree of endosperm chalkiness

(DEC) 5, 7, 5, 6

NIL (near-isogenic lines), Transgenic Chalk 5 Increased chalkiness 8, 9, 1 [126]
two single-segment

substitution lines qPGC5, qPGC6 Lower percentage of chalkiness 5, 6 [127]

184 BC5F2 lines were developed
by crossing indica cultivar J23B (the

recurrent parent) and a japonica
cultivar BL130

qWCR4 White core rate 4 [128]

Meta QTL analysis 64 MetaQTL Grain chalkiness 1, 2, 3, 4, 5, 6, 7,
9, 10, 11, 12 [129]

2.3. Rice Plant Morphology and Grain Breakage

During milling operations, immature and partially filled grains are easily broken,
leading to reduced head rice yields [9,14,57,58]. The extent to which grains are filled with
assimilates during grain filling is driven by source–sink relationships and plant morpholog-
ical traits. These morphological traits include synchrony in tillering, panicle architecture
and the annual/perennial nature of a rice cultivar, which alters the source–sink relation-
ships [21]. For example, the GIF1 (grain incomplete filling 1) gene is associated with
perennial nature in rice and downregulates the cell wall invertase that restricts carbon par-
titioning to grains during the early stages of grain filling, leading to immature or partially
filled grains [14,130]. This gene appears to have arisen in cultivated rice (O. sativa) through
introgression from the perennial wild rice O. rufipogon [130]. Panicle architecture also influ-
ences the rate and uniformity of grain filling within and between the panicles. For example,
panicle length greater than 22% of plant height is associated with higher uniformity of grain
filling within panicles [131]. The shorter panicle length to plant phytomass ratio could
increase grain filling and development uniformity within and between the panicles, which
could potentially increase head rice yield [57]. If genes controlling panicle architectural
traits that are associated with more uniform grain filling could be identified, a pyramiding
of these genes with genes associated with reduced perennial nature and more synchronous
tillering into elite rice lines may help to lower the number of immature or partially filled
grains, leading to higher head rice yields.

2.4. Pre-Harvest Factors That Affect Head Rice Yield
2.4.1. Temperature

Rice is highly sensitive to high-temperature stress (day/night), especially during
gametogenesis and early anthesis (booting up to 50% flowering) stages, and heat stress
during these stages results in substantial grain yield losses [6,19,132–136]. Heat stress
during early grain filling downregulates the starch synthase and prolamin genes, which
affects rice grain quality and yield [137]. The development of chalky grain, a main factor
that has been reported that reduces head rice yields, is a result of high-temperature stress
during grain-filling periods [18,19,69,118,138–144]. Other than this, rice grain functional
properties such as setback viscosity, porosity, gelatinization temperature, pasting value
and alkali spreading values are affected by high day and night-time temperatures [19], but
whether any changes to these parameters are associated with the increased grain cracking
during milling is not known.

2.4.2. Soil Moisture during Grain Filling

Soil moisture showed a considerable effect in altering the grain yield across the cereal
crops following grain-filling stages in rice [145,146] and wheat [147]. Soil moisture level
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might affect the source-to-sink relationships where the remobilization of pre-stored carbon
and nitrogen assimilates either increased or decreased from the source (vegetative parts)
to the sink (grain) under soil moisture stress. However, agronomic practices, such as
post-anthesis (50% days after flowering) soil drying, have the potential to increase the
amount of carbon partitioning from the flag leaf to grains by regulating key plant hormones
such as abscisic acid, cytokinins in leaves [148–153] and trans-zeatin-type cytokinins in
the roots [154]. Grain-filling period proved to be the dominant factor that influences head
rice yields [14]; therefore, soil drying practice during mid- and late grain-filling periods
upregulated the starch branching and debranching enzymes (SuSase, AGPase, SSS, GBSS,
SBE) and genes (SuS2, SuS3, SuS4, AGPS2b, AGPL1, AGPL2, SSSIIb, SSSIIc, GBSSI, GBSSII,
SBEI, and SBEIIb) [69]. There is a possibility to investigate the effect of post-anthesis soil
drying during the grain-filling periods (mid-and-late grain filling) that influence head rice
yields by altering carbon partitioning from the flag leaf to developing grains.

2.4.3. Nitrogen

Nitrogen plays a key role in determining grain yield and protein contents [24]. Ni-
trogen fertilizer application typically leads to increasing grain protein content, albeit this
is not always the case, and substantial genotype × environment interactions were ob-
served [155–162]. The importance of nitrogen fertilizer application across various growth
stages of rice plants (ranging from vegetative growth phases to gametogenesis and grain
filling periods) in terms of rice grain cracking has not been extensively studied. However,
some field studies reported nitrogen fertilizer application before flowering increased the
amount and density of seed storage proteins and reduced chalkiness, which coincided with
reducing grain cracking during milling operations [163–165].

2.5. Factors beyond Physiological Maturity Affecting Head Rice Yield

Head rice yield may vary with relative humidity (RH) or vapour pressure deficit
(VPD), but contradictory findings have been reported. For example, [118] observed a lower
head rice yield under high relative humidity and a high negative correlation between RH
and HRY (r = −0.693). In contrast, [23,129] found a very weak positive correlation between
RH and HRY (r = 0.168) over two-crop growing seasons across multiple growing locations.
Both studies measured the RH following the entire period, grain ripening, and maturity
stages (from heading/50% flowering to harvesting). The contradictory findings could be
due to variation in grain moisture content at harvesting that has a confounding impact
on HRY.

Paddy harvesting is normally recommended at moisture contents of about 20–25%, as
a slow drying process from these levels down to around 14% (used for milling) helps to
reduce fissuring and grain breakage during milling operations [16,17]. Generally, paddy
drying involves the use of flat beds in hot air and/or infrared radiation chambers to reduce
the grain moisture content to around 14% for dehusking and polishing [166,167]. The
temperature of hot air and infrared chambers is recommended at 55 ◦C or less, selected
based on the rice grain glass transition temperature, which is about 60 ◦C [14,16]. Glass
transition temperature is defined as the state when polymers of starchy rice endosperm
shift from soft rubbery material to hard glassy material and vice versa. Therefore, the
paddy drying at or below the temperature of 55 ◦C makes the starchy endosperm soft
and rubbery, which assists in reducing the fissuring and grain cracking during milling
operations [168,169].

During milling operations, the degree of milling strongly affects head rice yield [11,12].
The degree of milling reflects how many passes are required for polishing [168]. Generally,
a lower degree of milling achieves higher head rice yields and favours the retention of key
nutrients in the polished grain [10]. The optimum degree of milling is generally different for
short-, medium- and long-grain cultivars [169]; therefore, each grain type is recommended
to be milled separately.
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2.6. Genetics of Head Rice Yield

As discussed above, a wide range of rice plant morphological traits, grain size and
shape, and grain molecular composition components such as chalkiness and seed storage
proteins have been associated with head rice yield. Genetic variation exists for many of
these traits, and the associated genes and QTLs that contribute to these traits have been
identified (Table 7). However, it needs to be clarified if any of these QTL/genes have led to
quantifiable improvements in breeding programs and thus to enhanced head rice yields.
Given the range of environmental (temperature) and nutritional (nitrogen) factors that are
associated with head rice yield, many of the mapped QTLs may be specific to the given
environment (Table 7) under which the phenotyping was conducted and may not be robust
across environments.

Table 7. Quantitative traits loci for percentage head rice yield (the amount of whole grain polished
white rice of the paddy from which it is derived and then multiplied by 100).

Plant Material QTLs Chromosome
Number References Climate Zone

212 RILs developed by crossing Lemont
(japonica) × Teqing (Indica) QHr6, QHr7 6, 7 [170] Temperate zone (China)

312 double haploids of an interspecific cross of
O. sativa × O. glaberrima.

hr1,hr3,hr6,hr8,
hr11 1, 3, 6, 8 [171] Tropical Zone (Columbia;

Tropic of Cancer)
165 F6 RILs of a cross between Asominori

(japonica) × IR24 (indica). qMHP-1,MHP-3, qMHP-5 1, 3, 5 [172] Temperate zone (Japan)

190 DH lines from the cross of Zhenshan 97
(indica) ×WYJ-2 (japonica)

RM570-RM85
RM38-RM25 3, 8 [83] Temperate zone (China)

254 BC4F1 of a cross between Teqing (Indica) ×
Lemont (Japonica) QHr1, QHr5, QHr6 1, 5, 6 [173] Temperate zone (China)

137 F11 RILs developed from a cross of two
long-grain rice Cypress (japonica) ×

Panda (japonica)
hr6 6 [174] Temperate zone (USA)

286 F8 RILs developed from
a cross between Chuan7 (Indica) and

Nanyangzhan (japonica)

qHRR-3 3
[175] Temperate zone (China)

RM6283 and RM16 * 3

154 BC3F2 derived from cross between
Koshihikari (japonica) and Nona Bokra (Indica) qHRP-1, qHRP-6, qHRP-8 1, 6, 8 [176] Temperate zone (China)

MY1: 129 RILs derived from (Cypress ×
RT0034) grown in 2005 on four locations),

and MY2: 298 RILs (Cypress × LaGrue) grown
in 2006, 2007 on four locations)

qhr_6.1, qhr_9.1 (MY1) 6, 9 [177] Temperate zone (USA)
qhr_1.1, qhr_5.1, qhr_9.1,

qhr_10.1 (MY2) 1, 5, 9, 10

231 RILs derived from L-204 (japonica) ×
01Y110 (japonica)

qhr_6.1, qhr_6.2,
qhr_8.1, qhr_9.1, qhr_9.2,

qhr_10.1, qhr_11.1
6, 8, 9, 10, 11 [178] Temperate zone (USA)

258 rice accessions (Indica, japonica,
aus, aromatic) qHMRR3, qHMRR9 3, 9 [179] Temperate zone (China)

529 plants F2 population were developed by
crossing Koshihikari (japonica) with Nona

Bokra, (indica)
HRY10 10 [116] Temperate zone (China)

* This study also looked at the traits of grain length and grain length to width ratio, in addition to head rice yield.

2.6.1. QTL Mapping for Head Rice Yield

The genetics of head rice yield has not been fully resolved, and the prediction power
of QTL mapping requires trait variation decomposition to determine whether it is due to
the main effect QTL (QTL × QTL, QTL × epistatic) and/or environmental (QTL × envi-
ronment, epistatic × environment) effects. In the case of head rice yield, the environmental
effects are not only confined to field variation but are also linked to variation associated
with storage and milling operations. Dehusking and polishing (milling operations) are
two distinct processes, and grain breakage during each step could be associated with head
rice yield. Various QTLs for head rice yield have been reported, with most found on chro-
mosomes 1 and 6 (Table 7). However, none of the studies listed in Table 7 clarify whether
these are linked to grain breakage during the dehusking or polishing step. Therefore,
“QTL ×milling environment” could be included as a separate parameter while performing
QTL mapping for head rice yield.
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A further consideration is that the embryo is diploid, while the endosperm is triploid,
and the present QTL models are designed for a diploid inheritance, with no software
available for triploid inheritance. The development of triploid models that could be used to
capture the associated endosperm variation in relation to head rice yield may be beneficial.

2.6.2. GWAS (Genome-Wide Association Mapping)

Genome-wide association mapping is a recently developed tool in plant breeding that
can capture the variation associated with candidate genes and/or SNPs to related traits.
GWAS is based on linkage disequilibrium to identify trait–SNP association underlying
complex traits. In rice breeding, the use of GWAS for head rice yield is limited. Most of the
studies sampled their materials from the 3000 resequenced rice genome populations with
population sizes ranging between 200 and 404 indica or japonica rice accessions [180–187].
These studies combined detected over one hundred loci associated with head rice yield
and chalkiness-related traits distributed throughout the rice genome. However, none of
these QTL overlapped among different studies with interval distance between any two
adjacent QTL > 0.5 Mbp, except for one chalkiness QTL on the beginning of chromosome 3
that was detected in japonica [185] and indica germplasm [186]. This indicates that these
studies detected environment-specific QTL.

All previous studies used a single trait mixed linear model to detect associated QTL.
Therefore, to detect stable QTL across environments, future studies should adopt more
advanced statistical models such as the multi-trait mixed linear model [187,188] or MetaG-
WAS model [189,190]. The latter would be more appropriate when raw data cannot be
shared among different institutes, as it only requires sharing summary statistics. The major
difficulty associated with combining the results of multiple studies is the ability to synchro-
nize the SNPs used in all of them. However, this can be easily solved for a crop such as
rice for which a large genomic stock exists in the 3000 resequenced genome projects, which
facilitate the imputation from different genotyping platforms to a common high-density
genotyping [191] or by imputing missing summary statistics [192], given that grain size
and shape are strongly linked to head rice yields. Since milling is generally optimized for
each grain shape, it will be interesting in future studies to fit these traits (or preferably the
first few principal components of them to avoid their correlations) as covariates to ensure
detecting loci for head rice yields that are independent of grain characters.

2.6.3. Genomic Selection

Genomic selection has the advantage of exploiting the whole genetic variation ex-
plained by the SNPs over QTL mapping and GWAS, which usually detect a small number
of QTL with a large enough effect to pass the significance threshold [193]. However, the
cumulative effect of these small numbers of QTL could not be enough to make informative
long-term selections for complex quantitative traits. Therefore, QTL with a small effect can
be captured with the genomic selection, which usually explains most of the phenotypic
variation of the complex traits that are usually controlled by hundreds to thousands of
genes. To the best of our knowledge, only two studies were conducted by the same group
that investigated the potential of genomic selection to improve head rice yield and grain
chalkiness [194,195]. Both studies worked on the same data, which involved 327 indica
elite rice lines and 309/320 japonica elite rice lines. Both populations were phenotyped for
multiple seasons in a single location.

The former study [194] investigated the prediction accuracy using two cross-validation
schemes (CV1 and CV2) for five traits, including head rice yield and grain chalkiness, using
different prediction models that exploit genotype by environment interactions. The indica
and japonica populations were phenotyped in three seasons in a single location. In CV1, they
completely masked a subset of the studied accessions to calculate the accuracy of predicting
them. This approach mimics the case of introducing new materials to the breeding program.
In CV2, they masked random plots across different field trials to mimic the case where
different trials have different sets of lines to predict phenotypes for all lines in all trials.
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The heritability for head rice yield and chalkiness was considerably high, with 0.87 and
0.63 average values across all seasons for indica and japonica populations, respectively. The
prediction accuracies for the top model ranged between 0.51 and 0.66 for head rice yield and
between 0.33 and 0.61 across different seasons for both populations, with average values of
0.56 for head rice yield and 0.44 for chalkiness. Given the small reference population used
in the study, the prediction accuracy could be further improved if more data were used to
train the prediction equation.

In a later study [195], the authors used the same previous data with two extra seasons
for the japonica population (a total of five seasons versus only three seasons for the indica
population) to test the advantage of using environmental covariates simultaneously with
their molecular variants in predicting the performance of their population in unobserved
environments. Environmental covariates were recorded from the daily weather data for
each rice accession on the day it reached a specific developmental stage, e.g., flowering.
They used the “one-environment-out” cross-validation scheme in which they dropped
the environment from the reference to be predicted. Across different seasons and applied
models, the prediction accuracy reached a maximum of 0.5 for head rice yield and 0.3
for chalkiness for the indica population, while the accuracies were much higher for the
japonica population with a maximum of 0.8 for head rice yield and 0.7 for chalkiness. This
is not unexpected given that the reference japonica population had four seasons while the
indica reference population had only two seasons. A major drawback of their study is
their assumption that the phenology data (such as the flowering date used to calculate the
environmental covariates) may not be possible to use for untested environments. Future
studies should investigate the effect of predicted phenology traits on the prediction accuracy
of untested environments. Alternatively, untested or future climates can be predicted in
a more straightforward CGM-WGP, which integrates crop growth models and genomic
prediction [196].

3. Conclusions and Outlooks

Several factors potentially affect the yields of head rice, including day and night-time
temperatures across various growth stages including vegetative, reproductive, and grain
filling periods, nitrogen fertilizer applications at days to 50% flowering and during key
grain developmental stages, harvest moisture contents, paddy storage conditions and
paddy moisture contents before milling operations (including dehusking and polishing).
Among these factors, the temperature is critical because of the predicted changes in day
and night-time temperatures expected to arise due to climate change. However, the
study of rice crop physiology needs to be accounted for, for a better understanding of
the heat stress that affects rice plant yield in terms of grain yields and head rice yields.
Moreover, the measure of association is required between chalkiness and several other
factors including temperature, nitrogen application and milling operations across the
different genetic backgrounds including japonica, temperate japonica, indica, aus, aromatic, and
wild types to develop potential links between chalkiness and grain breakage. Moreover,
applying advanced statistical models such as metaGWAS and CGM-WGP will be required
to accelerate the genetic development of head rice yield.
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