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Abstract: Spraying pesticides using row alignment in the maize seedling stage can effectively improve
pesticide utilization and protect the ecological environment. Therefore, this study extracts a guidance
line for maize crops using machine vision and develops an automatic row-oriented control system
based on a high-clearance sprayer. First, the feature points of crop rows are extracted using a vertical
projection method. Second, the candidate crop rows are obtained using a Hough transform, and
two auxiliary line extraction methods for crop rows based on the slope feature outlier algorithm
are proposed. Then, the guidance line of the crop rows is fitted using a tangent formula. To greatly
improve the robustness of the vision algorithm, a Kalman filter is used to estimate and optimize the
guidance line to obtain the guidance parameters. Finally, a visual row-oriented spraying platform
based on autonomous navigation is built, and the row alignment accuracy and spraying performance
are tested. The experimental results showed that, when autonomous navigation is turned on, the
average algorithm time consumption of guidance line detection is 42 ms, the optimal recognition
accuracy is 93.3%, the average deviation error of simulated crop rows is 3.2 cm and that of field
crop rows is 4.36 cm. The test results meet the requirements of an automatic row-oriented control
system, and it was found that the accuracy of row alignment decreased with increasing vehicle
speed. The innovative spray performance test found that compared with the traditional spray, the
inter-row pesticide savings were 20.4% and 11.4% overall, and the application performance was
significantly improved.

Keywords: maize; machine vision; pesticide application; navigation tracking

1. Introduction

As the main food in the world, maize has made outstanding contributions to human
survival, occupying a significant strategic position for food security [1]. In the early maize
growth stage, farmers spray pesticides three–five times a year to treat pests, but this method
leaves a large amount of pesticides deposited on the soil surface. Therefore, some key
problems urgently need to be solved to protect planting ecology by reducing pesticide waste
and improving pesticide utilization [2]. The lack of precision in pesticide application has
aroused wide concern in agricultural science, so intelligent pesticide application equipment
has become an important tool to improve efficiency [3–5]. Plant growth and canopy
changes tend to misalign the spraying nozzle and the plant canopy when relying on
manual operation for row alignment, resulting in repeated or missed spraying by the
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sprayer [6,7]. Maize is a row drill crop, so visual sensors can be used to extract image
information according to planting features, achieving precise pesticide application to rows
of crops, improving the pesticide utilization rate and reducing pesticide residues [8–10].
The key technologies for realizing automatic row alignment based on machine vision are
sensing and tracking.

In terms of sensing, machine vision has a low cost and large information carrying ca-
pacity, but the stability of row guidance in fields is often limited by the time-consuming and
changeable outdoor environment [11–13]. Therefore, row guidance development should
find ways to design a real-time crop row extraction algorithm with high identification
accuracy and smooth operation [14–19]. In recent years, scholars have proposed many row
guidance methods, including grayscale images, binary images, feature point extraction and
crop row fitting.

In the process of row guidance extraction, because crop rows are not displayed in
parallel in an image, it is difficult to identify crop rows. Therefore, on the basis of strip
segmentation, the corresponding feature points can be obtained through vertical projection.
Zhou et al. [20] used a horizontal stripe to determine the initialization midpoint, divided
the region of interest with the initial midpoint as the center, and determined the feature
points of crop lines through the vertical projection in the region of interest. This method can
reduce the non-characteristic area of an image and improve operation efficiency. Ospina
and Noguchi detected the crop centroid in a horizontal strip, found the geometric center of
the crop rows, and fit the geometric center based on the least squares method to obtain a
guidance line [21]. A Hough transform distinguishes image features by geometric shapes
and has become a common method for crop row identification. It is beneficial for avoiding
weed noise, but the method takes a long time to process. Rovira-Más uses a Hough
transform to extract crop rows in the region of interest. To improve the efficiency and
quality of image processing, Rovira-Más adjusted the appropriate threshold range, set
up target points in the region of interest, and found the best path using connectivity
analysis [22]. Chen proposed a crop row fitting method based on an automatic Hough
transform accumulated threshold. The parameter points on the accumulated plane were
clustered using K-means, and the best accumulated threshold was obtained based on
the difference in distance of the cluster centroid and the variance within the group. The
centroid of the accumulated plane cluster under the best accumulated threshold was used
as the fitting line of the crop rows. This method had a high identification success rate, but
the clustering algorithm increased the overall time consumption [23].

For tracking, Bakker designed an automatic navigation system based on a real-time
differential global positioning system (RTK-DGPS) and developed a row guidance method
combining RTK-DGPS with machine vision, achieving path tracking using a PID control
algorithm [24]. Based on its Robocrop system, Garford Company adjusts the lateral hoe
offset using a hydraulic side shift, and realizes interrow tracking [25]. The American
company John Deere designed the AutoTrac sprayer navigation system [26] by adopting a
sensing scheme combining machine vision with mechanical sensors to address the seeder
navigation system drift and “wavy” crops in the artificial planting field problems. Zhang
used LiDAR and a new type of mechanical alignment sensor to build a crop row sensing
system for maize harvesters and designed an automatic row alignment control system
for maize harvesters based on fuzzy PID control and a tracking model. The average
deviations of a lateral offset test using LiDAR and a multisensor test in the field were
0.0775 m and 0.146 m, respectively, and the average deviation of the mechanical sensor
test was 0.0876 m [27]. Although hydraulic control has a fast response speed, the control
process is complicated and difficult to realize in practice. Therefore, an urgent engineering
problem that needs to be solved is to select an appropriate control scheme and incorporate
a sensing scheme to realize the integrated application of the system and improve the
alignment accuracy.

To carry out row guidance algorithms, most existing studies focus on images, but there
are few reports of research on the use of video reasoning algorithms for improving the real-
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time performance and robustness of sensing and integrated development of control systems.
This study aims to design a novel row guidance extraction algorithm, stressing solving the
robustness problem affected by the external environment in real-time extraction and video
processing to obtain the guidance information of the tracking path. Meanwhile, a visual
automatic row-oriented spraying system was developed based on autonomous navigation
for a high-clearance sprayer. After a camera obtained the guidance line information in the
detection area, a row-oriented delay compensation model was established. By controlling
the slide boom, the lateral movement of the spray nozzles was accurately adjusted to
achieve crop-row tracking and spraying to improve the pesticide utilization rate.

2. Materials and Methods
2.1. System Description
2.1.1. System Composition

To achieve precise localization of the spraying system between crop rows, a visual
row-oriented spraying platform with autonomous navigation was built based on a high-
clearance sprayer. As shown in Figure 1, the test platform consists of a navigation system,
vision system, row alignment control system, sliding boomer, application supply system
and travel chassis. The antennas of the navigation system (AMG-1202, National Agri-
cultural Intelligent Equipment Engineering Technology Research Center, Beijing, China)
are symmetrically installed on both sides of the test platform. The vision system uses
a network camera (LPCP10190_1080P, Xinjiahua Electronics Co., Ltd., Shenzhen, China)
with an image resolution of 1920 × 1080 pixels, a focal length of 2 mm and a monitoring
angle of 90◦. The camera is installed at the center of the front of the test platform, and the
installation angle is 60◦ to the ground. The key component of the row alignment control
system is an electric linear actuator (TG-300B, Shenzhen Bosgoal Technology Co., Ltd.,
Shenzhen, China), and the maximum stroke of the electric actuator corresponds to the plant
row spacing. The width of the sliding boomer is 12.2 m, providing 22 spraying locations,
and the maximum height from the ground is 1.4 m. A three-cylinder plunger pump was
selected for the application supply system, with a liquid pump flow rate of 36~81 L/min
and a spraying pressure range of 0.05~0.6 MPa. The travel chassis uses a four-wheel drive,
with a wheel track of 1.6 m and a chassis height of 1.2 m, ensuring the stable operation of
the platform in the high-clearance spraying environment.

Agriculture 2023, 13, x FOR PEER REVIEW 3 of 23 
 

 

incorporate a sensing scheme to realize the integrated application of the system and im-
prove the alignment accuracy. 

To carry out row guidance algorithms, most existing studies focus on images, but 
there are few reports of research on the use of video reasoning algorithms for improving 
the real-time performance and robustness of sensing and integrated development of con-
trol systems. This study aims to design a novel row guidance extraction algorithm, stress-
ing solving the robustness problem affected by the external environment in real-time ex-
traction and video processing to obtain the guidance information of the tracking path. 
Meanwhile, a visual automatic row-oriented spraying system was developed based on 
autonomous navigation for a high-clearance sprayer. After a camera obtained the guid-
ance line information in the detection area, a row-oriented delay compensation model was 
established. By controlling the slide boom, the lateral movement of the spray nozzles was 
accurately adjusted to achieve crop-row tracking and spraying to improve the pesticide 
utilization rate. 

2. Materials and Methods 
2.1. System Description 
2.1.1. System Composition 

To achieve precise localization of the spraying system between crop rows, a visual 
row-oriented spraying platform with autonomous navigation was built based on a high-
clearance sprayer. As shown in Figure 1, the test platform consists of a navigation system, 
vision system, row alignment control system, sliding boomer, application supply system 
and travel chassis. The antennas of the navigation system (AMG-1202, National Agricul-
tural Intelligent Equipment Engineering Technology Research Center, Beijing, China) are 
symmetrically installed on both sides of the test platform. The vision system uses a net-
work camera (LPCP10190_1080P, Xinjiahua Electronics Co., Ltd., Shenzhen, China) with 
an image resolution of 1920 × 1080 pixels, a focal length of 2 mm and a monitoring angle 
of 90°. The camera is installed at the center of the front of the test platform, and the instal-
lation angle is 60° to the ground. The key component of the row alignment control system 
is an electric linear actuator (TG-300B, Shenzhen Bosgoal Technology Co., Ltd., Shenzhen, 
China), and the maximum stroke of the electric actuator corresponds to the plant row 
spacing. The width of the sliding boomer is 12.2 m, providing 22 spraying locations, and 
the maximum height from the ground is 1.4 m. A three-cylinder plunger pump was se-
lected for the application supply system, with a liquid pump flow rate of 36~81 L/min and 
a spraying pressure range of 0.05~0.6 MPa. The travel chassis uses a four-wheel drive, 
with a wheel track of 1.6 m and a chassis height of 1.2 m, ensuring the stable operation of 
the platform in the high-clearance spraying environment. 

 
Figure 1. Structure of the visual row-oriented spraying platform: 1. Navigation system 2. Vision 
system 3. Row-oriented control system 4. Sliding boomer 5. Application supply system 6. Travel 
chassis. 

Figure 1. Structure of the visual row-oriented spraying platform: 1. Navigation system 2. Vision
system 3. Row-oriented control system 4. Sliding boomer 5. Application supply system 6. Travel chassis.

2.1.2. Principle of the Visual Row-oriented Spraying System

A high-clearance sprayer equipped with an autonomous navigation system can pre-
liminarily align the drill plants [28–30]. The visual row-oriented principle is shown in
Figure 2. The camera transmits the collected images to the computer, and then the computer
calculates the angle information and offset information of the crop rows through the crop
row identification algorithm and sends them to the electronic control unit (ECU). The speed
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encoder of the high clearance sprayer provides the traveling speed v of the test platform,
and the ECU analyzes the delay control time t according to the row-oriented delay model,
and triggers the control signal. The motor driver applies pulse-width modulation (PWM)
to control the reciprocating movement of the sliding boom, and the Hall encoder on the
electric linear actuator obtains the alignment offset in real time and feeds it back to the ECU,
thereby adjusting the lateral movement of the nozzle and achieving closed-loop control of
the sliding boom.

Agriculture 2023, 13, x FOR PEER REVIEW 4 of 23 
 

 

2.1.2. Principle of the Visual Row-oriented Spraying System 
A high-clearance sprayer equipped with an autonomous navigation system can pre-

liminarily align the drill plants [28–30]. The visual row-oriented principle is shown in Fig-
ure 2. The camera transmits the collected images to the computer, and then the computer 
calculates the angle information and offset information of the crop rows through the crop 
row identification algorithm and sends them to the electronic control unit (ECU). The 
speed encoder of the high clearance sprayer provides the traveling speed v of the test 
platform, and the ECU analyzes the delay control time t according to the row-oriented 
delay model, and triggers the control signal. The motor driver applies pulse-width mod-
ulation (PWM) to control the reciprocating movement of the sliding boom, and the Hall 
encoder on the electric linear actuator obtains the alignment offset in real time and feeds 
it back to the ECU, thereby adjusting the lateral movement of the nozzle and achieving 
closed-loop control of the sliding boom. 

 
Figure 2. Composition of the visual row-oriented spraying system. 

2.2. Visual Algorithm Design 
2.2.1. Development Environment and Technical Process 

The video acquisition equipment is a GoPro Hero9 (GoPro Inc., SAN Mateo, Califor-
nia, USA), which is 1.2 m above the ground, with an image resolution of 1920 × 1080 pixels 
and video frame rate of 30 fps. C++ is used as the programming language, and the OpenCV 
open-source library was selected for algorithm realization. The compiler is Visual Studio 
2019, the image processing hardware is a PC, the processor is an Intel(R) Core i7-1065G7, 
the graphics card is an NVIDIA GeForce MX350, and the memory is 16 GB. 

The guidance line extraction process is shown in Figure 3. After the camera collects 
an image of the crop rows, it uses a segmentation algorithm to extract the target and mor-
phological operations and extracts the region of interest (ROI) of the image. Based on a 
Hough transform, the candidate crop rows were obtained in the polar coordinate space. 
Outlier lines were filtered in the candidate crop rows through straight line slope features, 
thus obtaining auxiliary lines. The guidance line was extracted according to the tangent 
formula of the included angle. If the guidance angle is greater than 5° and the lateral offset 
∆ is greater than 20 cm, it is regarded as information distortion, and the previous guidance 
information frame is called for information compensation. If the judgment condition is 
present, the guidance line is filtered using a Kalman filter, the guidance line information 
is output, and the next frame of the image is circularly updated. Guidance line information 
was calculated using a row alignment control algorithm, thus achieving visual row-ori-
ented spraying. 

Figure 2. Composition of the visual row-oriented spraying system.

2.2. Visual Algorithm Design
2.2.1. Development Environment and Technical Process

The video acquisition equipment is a GoPro Hero9 (GoPro Inc., SAN Mateo, California,
USA), which is 1.2 m above the ground, with an image resolution of 1920 × 1080 pixels and
video frame rate of 30 fps. C++ is used as the programming language, and the OpenCV
open-source library was selected for algorithm realization. The compiler is Visual Studio
2019, the image processing hardware is a PC, the processor is an Intel(R) Core i7-1065G7,
the graphics card is an NVIDIA GeForce MX350, and the memory is 16 GB.

The guidance line extraction process is shown in Figure 3. After the camera collects
an image of the crop rows, it uses a segmentation algorithm to extract the target and
morphological operations and extracts the region of interest (ROI) of the image. Based on a
Hough transform, the candidate crop rows were obtained in the polar coordinate space.
Outlier lines were filtered in the candidate crop rows through straight line slope features,
thus obtaining auxiliary lines. The guidance line was extracted according to the tangent
formula of the included angle. If the guidance angle is greater than 5◦ and the lateral
offset ∆ is greater than 20 cm, it is regarded as information distortion, and the previous
guidance information frame is called for information compensation. If the judgment
condition is present, the guidance line is filtered using a Kalman filter, the guidance line
information is output, and the next frame of the image is circularly updated. Guidance
line information was calculated using a row alignment control algorithm, thus achieving
visual row-oriented spraying.
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2.2.2. Image Pretreatment

Image pretreatment is the key step of crop row extraction in a field, aiming to com-
pletely segment the plants from the soil and obtain the characteristic plant information.
To explore the effect of changing light on color channels, 100 groups of R, G and B color
channel pixel values for maize and soil were measured under different light conditions.
The statistical results in Figure 4a show that the brightness of the soil B channel was
higher than that of the R and G channels, and the brightness of the maize G channel was
much higher than that of the R and B channels. Therefore, the segmentation algorithm
adopted the coupled G-R and G-B channel characteristics, thus improving the traditional
Excess green algorithm, and the maize image in Figure 4b was converted to grayscale. To
reduce the influence of illumination, the values of the R, G and B channels were normal-
ized, and the processed results were replaced using the existing color channels r, g and
b. The mathematical expression is shown in formula (1). The grayscale image is shown
in Figure 5c. 

r = R
R+G+B

g = G
R+G+B

b = B
R+G+B

r + g + b = 1

(1)

Agriculture 2023, 13, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 3. Guidance line extraction procedure for row-oriented spraying. 

2.2.2. Image Pretreatment 
Image pretreatment is the key step of crop row extraction in a field, aiming to com-

pletely segment the plants from the soil and obtain the characteristic plant information. 
To explore the effect of changing light on color channels, 100 groups of R, G and B color 
channel pixel values for maize and soil were measured under different light conditions. 
The statistical results in Figure 4a show that the brightness of the soil B channel was higher 
than that of the R and G channels, and the brightness of the maize G channel was much 
higher than that of the R and B channels. Therefore, the segmentation algorithm adopted 
the coupled G-R and G-B channel characteristics, thus improving the traditional Excess 
green algorithm, and the maize image in Figure 4b was converted to grayscale. To reduce 
the influence of illumination, the values of the R, G and B channels were normalized, and 
the processed results were replaced using the existing color channels r, g and b. The math-
ematical expression is shown in formula (1). The grayscale image is shown in Figure 5c. 

1

Rr
R G B

Gg
R G B

Bb
R G B

r g b

 = + +
 =

+ +


=
+ +

 + + =

 (1)

 
(a) (b) (c) 

Figure 4. (a) Pixel histogram; (b) Original image; (c) Grayscale image. 

After the grayscale image was obtained, Otsu’s method was applied to obtain the 
dynamic threshold, thus obtaining a binary image, as shown in Figure 5a. In addition, the 
binary image was morphologically processed to eliminate noise and reduce holes, and the 
processing results are shown in Figure 5b. When working, the machine only needs to pass 

Acquire images

Pretreatment

Initialize ROI

Hough transform

Filter outliers based on 
slope/Information compensation

Guidance line extraction

Kalman filter for 
guidance line 

ꞵ>5°∩∆>20cm

Row alignment 
algorithm 

Visual row-
oriented spraying

N

Y

Start

End

Output guidance 
information

Figure 4. (a) Pixel histogram; (b) Original image; (c) Grayscale image.

Agriculture 2023, 13, x FOR PEER REVIEW 6 of 23 
 

 

through the specified path, but there was considerable interference information in the im-
ages collected by the camera. Therefore, it was necessary to carry out ROI processing on 
the images to reduce the data redundancy of the algorithm and improve operation effi-
ciency. The processing results are shown in Figure 5c. 

 
(a) (b) (c) 

Figure 5. (a) Binary image; (b) Morphology image; (c) ROI image. 

2.2.3. Crop Row Identification 
Because the camera shoots at an inclination angle, the crop row images obtained were 

not parallel to each other, so it was necessary to use vertical projection to divide the hori-
zontal strip in the ROI to obtain feature points. It is known that the image size is w × h, 
the width is w, the height is h, the strip size in the ROI is w × Δh, and the number of strips 
in the ROI is m = h/Δh. To obtain enough feature points, m was set to 8. The independent 
contours in each strip were traversed from left to right and the geometric centroid of all 
contours was found as the feature point coordinates [31]. One strip was regarded as a 
group, and feature points of the strip were stored in the queue. The visualization results 
of the features are shown in Figure 6. 

 
(a) (b) 

Figure 6. (a) Vertical projection; (b) Feature point collection. 

As shown in Figure 7, the Hough transformation mapped the linear parameters in 
the rectangular coordinate system to the parameter space in the polar coordinate system, 
converted the collected feature points into curves in polar coordinates, and determined 
the peak points of the fitted straight lines from the number of intersections of curves [32]. 
The parameter equation of a straight line in polar coordinates is ρ = xcosθ + ysinθ, where 
ρ represents the vertical distance from the straight line to the origin, and θ represents the 
angle from the x-axis to the vertical of the straight line, with a value range of ±90°. There-
fore, the linear equation in the rectangular coordinate system can be transformed into pa-
rameter space coordinates (ρ,θ). 

  

Figure 5. (a) Binary image; (b) Morphology image; (c) ROI image.



Agriculture 2023, 13, 691 6 of 22

After the grayscale image was obtained, Otsu’s method was applied to obtain the
dynamic threshold, thus obtaining a binary image, as shown in Figure 5a. In addition, the
binary image was morphologically processed to eliminate noise and reduce holes, and
the processing results are shown in Figure 5b. When working, the machine only needs to
pass through the specified path, but there was considerable interference information in the
images collected by the camera. Therefore, it was necessary to carry out ROI processing
on the images to reduce the data redundancy of the algorithm and improve operation
efficiency. The processing results are shown in Figure 5c.

2.2.3. Crop Row Identification

Because the camera shoots at an inclination angle, the crop row images obtained
were not parallel to each other, so it was necessary to use vertical projection to divide the
horizontal strip in the ROI to obtain feature points. It is known that the image size is w × h,
the width is w, the height is h, the strip size in the ROI is w × ∆h, and the number of strips
in the ROI is m = h/∆h. To obtain enough feature points, m was set to 8. The independent
contours in each strip were traversed from left to right and the geometric centroid of all
contours was found as the feature point coordinates [31]. One strip was regarded as a
group, and feature points of the strip were stored in the queue. The visualization results of
the features are shown in Figure 6.
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As shown in Figure 7, the Hough transformation mapped the linear parameters in
the rectangular coordinate system to the parameter space in the polar coordinate system,
converted the collected feature points into curves in polar coordinates, and determined
the peak points of the fitted straight lines from the number of intersections of curves [32].
The parameter equation of a straight line in polar coordinates is ρ = xcosθ + ysinθ, where
ρ represents the vertical distance from the straight line to the origin, and θ represents
the angle from the x-axis to the vertical of the straight line, with a value range of ±90◦.
Therefore, the linear equation in the rectangular coordinate system can be transformed into
parameter space coordinates (ρ,θ).
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Points A, B, C and D in Figure 7a are the feature points of the feature point set, which
are not strictly linearly distributed. Therefore, each feature point was taken as the center, the
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neighborhood radius R of the feature point was set, and all the pixels in the neighborhood
of the feature point were mapped to the parameter space. As shown in Figure 7b, the
Hough transform accumulated the pixels with the same (ρ,θ) parameters in feature points
A, B, C and D, and judged the straight lines in the feature points that meet the fitting
conditions using the number of accumulated values of the (ρ,θ) parameters. Therefore, it
was necessary to set the polar diameter ρ, polar angle θ, and accumulated threshold thr
in the parameter space to fit the straight line and set the polar diameter resolution ∆ρ to
1 pixel and the polar angle resolution ∆θ to 1 rad. By adjusting the accumulated threshold
thr, the optimal Hough transform for straight line fitting in the image could be obtained,
and the processing result is shown in Figure 8a.
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2.2.4. Guidance Line Extraction and Tracking

Candidate crop rows can be obtained with the Hough transform, but many crop rows
cannot provide specific row guidance information to the control system. Therefore, the
straight-line slope features were used to filter outliers, eliminate invalid data, and obtain
two auxiliary lines under the tracking path.

As shown in Figure 8a, there were many line clusters on the crop rows that can be
classified by the positive and negative slopes of straight lines, and the left and right sets
of straight-line subsets Il and Ir can then be obtained. Outlier filtering was carried out on
subsets Il and Ir. First, the subsets were averaged; second, the absolute value of subset
element Oi was obtained as the difference with the mean Omean, and the new value Si was
stored in the new subset Is; third, the subset Is was traversed to find the maximum value
Smax, if Smax was greater than the outlier threshold Tj, the elements indexed by Smax in Is
and I were removed until the subset met the outlier threshold condition. Finally, the filtered
subset elements were returned. Among them, the outlier threshold Tj was set to 0.2 based
on the principle of preferring small, and the pseudo code of Algorithm 1 is as follows:

In summary, the algorithm was able to filter outliers with large errors according to the
slope features and obtain two auxiliary lines on the left and right sides of the test platform
driving path. The processing results are shown in Figure 8b.

To extract the test platform traveling path guidance line, the left and right auxiliary
lines of the crops were taken as the reference, in which the slopes of the auxiliary lines
of the left and right crops were recorded as η1 and η2. Using Formula (2) to obtain the
guidance line slope η of the traveling path, the result is shown in Figure 8c.

|η − η1|
|1 + ηη1|

=
|η − η2|
|1 + ηη2|

(2)

The test platform is in an unstructured environment where various random factors
exist that may affect the visual data collected by the camera, such as the vibration of
the chassis, the disturbance of crop leaves with the wind, and the sudden change in
illumination. As a result, when the computer is processing continuous video frames, the
guidance line often appears to jitter. To solve this problem, the navigation line was taken as
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the prediction object and a Kalman filter was used to optimize the estimation and determine
the guidance information. {

xk = Akxk + Bkuk + wk
zk = Hkxk + vk

(3)

Algorithm 1. Slope-based outlier filter.

Input: a set of objects I = {O1, O2, O3 . . . On}, threshold = Tj, Is = ∅
Output: inliers in I
Method:
Initialize: I = Il or Ir, Tj = 0.2, Osum = 0, count = 0
while
for I = 1 to n do

Osum = Osum + Oi
count = count + 1

endfor
Omean = Osum/count
for i = 1 to n do
Si = Oi − Omean
Push Si into Is
endfor
Find Smax in Is
if Smax > Tj then
i = idx(Smax = i)
pop Si from Is
pop Oi from Is

else
break
endif

return I

In the unstructured environment, with a discrete extraction process, a set of state space
equations should be introduced to describe the Kalman filter model. Formula (3) is the
state equation, xk is the system state of the guidance line at time k, Ak is the state transition
matrix, uk is the system control quantity at time k, Bk is the control matrix and wk is the
system error. Formula (3) is the measurement equation, zk is the observed value at time k,
Hk is the measurement matrix and vk is the measurement error.

Second, assuming that the current state of the system is k, using the system process
model to predict the current state according to the previous state of the system, the state
update model Formula (4) can be obtained.

xk|k−1 = Akxk|k−1 + Bkuk
Pk|k−1 = AkPk|k−1k AT

k + Qk
Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk)

−1

xk|k = xk|k−1 + Kk(zk − Hkxk|k−1)

zk|k = (1− Kk Hk)Pk|k−1

(4)

where xk|k−1 is the predicted state value at k − 1, Bk|k−1 is the predicted minimum mean
square error at k − 1, Kk is the Kalman gain, xk is the corrected state value and zk|k is
the corrected minimum mean square error. During the test, the extraction error caused
by camera shaking was the largest, which was regarded as the measurement error. The
measurement noise variance matrix Rk was 0.1, the plant leaves “perturbing” with the
wind was the smallest error and was process noise, the system noise variance matrix Qk
was 0.001, and the initial minimum mean square err or Pk|k−1 was 0.1. The final result is
shown in Figure 8d.
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2.3. Row Alignment Control Method
2.3.1. Visual Localization

Visual row alignment control was carried out as follows. After obtaining the guidance
information, the image coordinates of the guidance line aiming point were converted into
the actual coordinates in the world coordinate system to provide guidance information
to the control system. According to Figure 9a, the camera was arranged above the crop
canopy at a fixed height and shot at an inclination angle to the ground. H is the height
of the camera from the top of the canopy, Dmin is the actual distance between the bottom
edge of the image and the camera, Dmax is the actual distance between the top edge of the
image and the camera, α is the camera pitch angle and θ is the vertical angle of the field
of view. According to the geometric relationship of the above parameters, the equivalent
relation Formula (5) is presented. ∆θ and θ were linearly related to the actual coordinates
in pixel coordinates, so the actual ordinate y1 of the aiming point was obtained according
to Formula (5). 

α = arctan Dmin
H

θ= arctan Dmax
H − α

∆θ = (height−y0)
height θ

y1 = H• tan(α + ∆θ)

(5)

W is the maximum distance of the field of view and the horizontal field angle, and
the corresponding relation Formula (6) was established from Figure 9b to obtain the actual
abscissa y0 of the aiming point. {

W
2 = Dmax• tan β

2
x1 = W•(x0−width/2)

width

(6)

where height is the image pixel height, width is the image pixel width, (x0, y0) is the pixel
coordinate of the aiming point, and (x1, y1) is the actual coordinate of the aiming point.
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2.3.2. Row-Oriented Delay Compensation Model

Precise row alignment control requires that the system incorporate guidance informa-
tion to establish a row-oriented delay compensation model. As shown in Figure 10, area A
is the image field of view, area B is the blind area of the field of view, the guidance line is
y = ηx + c, and the lateral distance l2 of the nozzle is the relative abscissa x1 from the aiming
point P to the absolute coordinate system O on the guidance line. As shown in Figure 11, the
camera was installed at the centerline of the front end of the test platform, and the spraying
nozzle was installed on the sliding boom. There was a distance between the aiming point
of the camera and the spraying nozzle in the vertical direction, that is, the longitudinal
distance l1 between point P and the spraying nozzle. Therefore, it can be inferred that when
the linear actuator receives the execution signal, it cannot execute immediately, so it needs
time delay control. First, the execution time of the system components was theoretically
analyzed, and the theoretical delay compensation time theory of the row-oriented control
system was obtained. The compensation time includes identification and localization time
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t1, communication time t2, and execution time t3 for the bank mechanism, wherein the
identification and localization time t1 was 32 ms on average after repeated tests using the
GetTickCount() function. In addition, the visual row-oriented control communication mode
used USB-to-CAN packet mode, with a serial port baud rate of 115,200, a fixed packet
length of 16 bytes and a communication time t2 of 1 ms [33]. At the same time, the stroke of
the linear actuator was 500 mm, the theoretical speed was 240 mm/s, and the maximum
theoretical execution time t3 was 2.08 s. To ensure the motion stability of the linear actuator,
it was necessary to set a speed safety boundary for the delay compensation time model
according to the theory. Only when the time taken to advance the implement l1 meets the
speed safety boundary condition can the sliding boom perform the completion offset D.
Therefore, a delay compensation model of the row-oriented mechanism was established,
and the speed obtained by the encoder on the test platform is v, so that the delay execution
time t of the linear actuator can be obtained according to Formula (7).

ttheory = t1 + t2 + t3

v < vtheory ≤ l1
ttheory

t = l1
v

(7)Agriculture 2023, 13, x FOR PEER REVIEW 11 of 23 
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PWM full-speed regulation was adopted. The technical flow chart of the control system is 
shown in Figure 12. First, the system is initialized, the ECU triggers the timer, and the 
sliding boom moves to the middle of the stroke so that the boom is aligned with the center 
of the vehicle. Second, the ECU circularly receives the guidance information, analyzes the 
serial port data, and enters the delay control through the above row-oriented delay com-
pensation model. The electric linear actuator encoder provides feedback on the position 
of the sliding boom in real time, and the ECU requests and calculates the difference be-
tween the target position and the previous position of the sliding boom. When the calcu-
lation result is less than the target position, the sliding boom shifts to the left, and when it 
is greater than the target position, the sliding boom shifts to the right. If the sliding boom 
reaches the target position, the motor stops moving, and the control ends. 
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2.3.3. Row-Orientation Control Algorithm

To reduce the frequent start and stop of the DC motor and increase its service life,
PWM full-speed regulation was adopted. The technical flow chart of the control system
is shown in Figure 12. First, the system is initialized, the ECU triggers the timer, and the
sliding boom moves to the middle of the stroke so that the boom is aligned with the center
of the vehicle. Second, the ECU circularly receives the guidance information, analyzes
the serial port data, and enters the delay control through the above row-oriented delay
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compensation model. The electric linear actuator encoder provides feedback on the position
of the sliding boom in real time, and the ECU requests and calculates the difference between
the target position and the previous position of the sliding boom. When the calculation
result is less than the target position, the sliding boom shifts to the left, and when it is
greater than the target position, the sliding boom shifts to the right. If the sliding boom
reaches the target position, the motor stops moving, and the control ends.
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2.4. Test Method
2.4.1. Robustness Test of Guidance Line Algorithm

Considering the adaptability of the algorithm in the field, all-day images of maize
seedlings were collected at the Xiaotangshan National Precision Agriculture Research Demon-
stration Base, and the illumination intensities ranged from 4.57~6.09 wLux, 7.43~8.54 wLux,
and 10.27~11.36 wLux, respectively. The growth period of maize has three stages: (average
growth height is 30 cm), early jointing stage (average growth height is 40 cm) and middle
jointing stage (average growth height is 80 cm). To verify the robustness of the algorithm in an
unstructured environment, 180 video frames were tested. When the algorithm can extract two
auxiliary lines of crop lines and fit the guidance line, the identification is considered successful.

2.4.2. Guidance Line Algorithm Accuracy Test

In the process of algorithm design, the accumulated threshold of the Hough transform
is the key factor that affects the accuracy of the guidance line, so the accumulated threshold
of the Hough transform was optimized. In each group, 60 video frames were randomly
selected. Based on a manually extracted guidance line [16], under different accumulated
thresholds, the guidance angle and offset were measured. When the error between the
guidance angle processed by the algorithm and the angle extracted manually is less than
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5◦ and the offset error between them is less than 5 cm, identification is considered to
be accurate.

2.4.3. Kalman Filter Optimization Test

In the process of video reasoning, the guidance angle change is not obvious, but its
lateral offset fluctuates greatly [9,34], so guidance offset was introduced as an experimental
index. To test the inhibition effect of the Kalman filter on random factors in the field,
50 consecutive video frames were taken from the collected video of crop rows, and the
angle and offset of the guidance line were extracted using the guidance line identification
algorithm. The original information in the video frame without the Kalman filter and
the filtered information were printed at the same time for a comparison test. The video
capture showed that the vehicle speed was 0.5 m/s, the wind speed was 2.89 m/s, the light
intensity was 7.43 wLux and the temperature was 36.2 ◦C.

2.4.4. Control System Test

A row alignment control system was designed according to a row-orientation delay
compensation model. To test the row-orientation performance of the system, a test was
conducted in the threshing ground at the Xiaotangshan National Precision Agriculture
Research Demonstration Base. According to the planting requirements, two rows of plants
were arranged manually, and a position coordinate ruler was placed between the rows of
plants. To replicate an actual situation that may occur in the field, three rows of plants were
designed. The first was parallel to the vehicle’s traveling direction, the second was inclined
to the vehicle’s traveling direction, and the third was “S”-shaped. To record the tracking
path of the sliding boom, the funnel was fixed at the centerline of the spraying boom. The
test platform runs at a constant speed of 0.5 m/s, and the sliding boom acts according to
the visual signal. The funnel leaves sand tracks on the ground along with the sliding boom.
The lateral deviation between plants and sand tracks was manually measured, and the
position coordinates were recorded.

2.4.5. Field Test

To verify the visual row-oriented effect of autonomous navigation, a field test was
conducted in the maize field of the Xiaotangshan National Precision Agriculture Research
Demonstration Base, as shown in Figure 13. During the test, the track of the sliding boom
was recorded, and after the test, it was compared with the corresponding plant position to
evaluate the row-orientation accuracy. Because it is necessary to introduce a comparison
with and without autonomous navigation, the A-B autonomous navigation point trajectory
was set in advance. Before the test, a section of 20 m was marked as the test area, and 5 m
was reserved in front of each section of the test area as a test platform acceleration and
deceleration buffer. A handheld RTK was used to record the plant position in each section
of the test area, which was used as the baseline of the row alignment effect. During the
test, the RTK was fixed on the centerline of the sliding boom to record its movement track.
Three test speeds of high, medium and low were designed, and at each speed, the test
control groups were set at the state of on or off navigation. A total of six groups of tests
were conducted.
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2.4.6. Droplet Deposition Test

A comparative test between full-coverage spraying and row-oriented spraying was
designed to explore the droplet deposition of the two conditions. According to the planting
requirements, two rows of plants were arranged in the field, with 20 maize plants in each
row, and 98 pieces of round fiber filter with a diameter of 9 cm were arranged between
rows and plants. As shown in Figure 14, the filter paper center of mass was used as the
sampling center, and a square of 30 cm × 30 cm was taken as the sampling area for droplet
deposition. The spraying deposition amount in the sampling area is the product of the
deposition amount per unit area on each filter paper and the sampling area. The site layout
is shown in Figure 18. To reduce the droplet deposition between crops, a 110◦ fan nozzle
was selected for full-coverage spraying, and a 40◦ fan nozzle was selected for row-oriented
spraying. The test process is as follows: start the spraying system, set the spraying pressure
at 0.27 MPa, then drive the sprayer at a speed of 0.5 m/s at a constant speed along the crop
row direction. After the spraying operation, the fiber filters were quickly collected into a
washing dish for droplet deposition determination.
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As shown in Figure 15, the “fluorescence tracer technique” was selected for the droplet
deposition test, and 0.134 g Rhodamine powder was added to 1 L of distilled water to
prepare the Rhodamine solution. The Rhodamine solution was fully mixed with 200 L water
in the tank of the sprayer, and the Rhodamine solution was elevated three times. According
to the absorbance value of the tracer analyzer, the Rhodamine solution concentration was
measured, and the average concentration was found to be 996.34 µg/L. After the spraying
test, the sampling filter paper was washed at a constant volume, and the constant volume
solution was 50 mL. The concentration of the constant volume solution after washing was
measured using a tracer analyzer.
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3. Results
3.1. Robustness Test Results and Analysis

As shown in Figure 16, the leaf area, shape and density of plants in different growth
periods were different. As shown in Table 1, the proportion of target pixels corresponding
to the growth height was calculated, showing that it increases with the growth period.
Moreover, when the maize grows to 30 cm and 40 cm, the identification success rate of the
algorithm is higher, but when it grows to 80 cm, the identification success rate is difficult to
guarantee. Because the leaf spacing of maize is clear and complete at heights of 30 cm and
40 cm, it can be clearly distinguished between plants and soil. At a height of 80 cm, the
leaves were obviously enlarged, and overlapped with each other, close to “ridge sealing”,
increasing the difficulty of the morphological operation and thus affecting the identification
success rate. Because the image acquisition period is in the dry season, the weed pressure
is low, and the weeds in the field are mostly Inula and Portulaca oleracea, with an average
weed density of 34 plants·m−2. The algorithm uses the Hough transform to extract crop
rows and reduces the influence of weed noise, so the identification success rate is not
affected by weed density. The test images were collected all day, and the coverage of light
intensity was 4.57~11.36 wLux, basically meeting the needs of agricultural production
in various periods. As shown in Table 1, when the illumination range is too large, the
identification accuracy decreases. Excessive exposure will increase the preprocessed target
pixels, and the obtained feature points will be inaccurate, thus affecting crop row extraction.
In addition, the algorithm running time for 180 experimental images was less than 44 ms,
meeting the real-time extraction requirements. The tests of different growth periods and
light intensities of maize showed that the identification success rate of the algorithm was
above 90.0% when the growth period of maize was in the third stage (30 cm) and the early
jointing stage (40 cm), and the light intensity ranged between 4.57~11.36 wLux. This result
indicated that the identification algorithm had good robustness and real-time performance
and basically met the field operation requirements of the whole maize seedling period.
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Table 1. Robustness test.

Image No. Growth
Height/cm

Illumination
Intensity/wLux

Weed
Density/(Plant·m−2)

Target Pixel
Ratio/%

Algorithm
Time/ms

Recognition
Success Rate/%

1~20
30

4.57~6.09 wLux 13~25 5.20–9.46 36–40 95
21~40 7.43~8.54 wLux 14~28 5.5–8.18 34–39 100
41~60 10.27~11.36 wLux 14~28 6.89–9.57 33–44 90
61~80

40
4.57~6.09 wLux 11~26 6.7–8.2 34.5–41.3 100

81~100 7.43~8.54 wLux 11~29 8.5–11.8 35.5–38.9 100
101~120 10.27~11.36 wLux 11~30 7.0–12.9 35.1–40.1 95
121~140

80
4.57~6.09 wLux 14~44 9.1–13.8 30.9–36.4 85

141~160 7.43~8.54 wLux 15~39 12–15.5 31.3–35.7 90
161~180 10.27~11.36 wLux 17~42 11.6–16.3 32.5–36.1 80

3.2. Accumulated Threshold Influence on Guidance Line Accuracy

As shown in Figure 17, when the accumulated threshold thr is 25, the candidate crop
rows are redundant, and too many lines will increase the weight of the outlier threshold,
affecting the accuracy of the guidance line. When the accumulated threshold thr is 45,
some candidate crop rows will disappear, affecting the guidance line fitting. When the
accumulated threshold thr is 35, the number of extracted crop rows is relatively balanced,
demonstrating an ideal fitting effect.
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The test results shown in Table 2 indicate that when the accumulated threshold thr
is 35, the average angle error, average offset error and identification accuracy are the best,
which corresponds to the above analysis of the accumulated threshold. From the influence
of the accumulated threshold on the angle error, the average angle error of the three groups
of tests changed to different degrees, and the standard deviation of the angle error of the
first group was 2.7◦ because of the redundancy of candidate crop rows. Compared with
test group 2, the dispersion degree of angle error samples in group 1 is higher, and the
angle error is larger. When the accumulated threshold is 45, the angle error fluctuates
more. The observed offset errors of the three test groups show that the average values
of the offset errors of the three groups are obviously different, which are 3.8 cm, 1.8 cm
and 4.2 cm. Therefore, the accumulated threshold has a great influence on the accuracy
of the guidance line. In addition, the standard deviation of the offset error of group 1
and group 3 is large, so it can be inferred that an inappropriate accumulated threshold
will cause missing or redundant candidate crop rows and then affect the identification
accuracy. When the accumulated threshold thr is 35, the best identification accuracy rate of
this study is 93.3%, close to the data presented by Jiang et al. [35]. In addition, this article
introduces lateral offset as a test index, which will provide a more reasonable reference for
identification accuracy research.
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Table 2. Accuracy test.

Test Group

Hough
Transform

Accumulated
Threshold

Angle Error
Standard

Deviation/◦
Average Angle

Error/◦
Offset Error

Standard
Deviation/cm

Mean Offset
Error/cm

Identification
Accuracy/%

1 25 2.45 2.7 3.8 2.6 88.3
2 35 0.74 0.9 1.8 1.1 93.3
3 45 2.80 3.6 4.2 3.2 86.0

3.3. Evaluation of the Kalman Filtering Effect

As shown in Figure 18, the original guidance information is frequently impacted by
the vibration of the vehicle and the disturbance of leaves, appearing as serious jitter in
the video stream. Moreover, in this case, the guidance signal cannot be transmitted to the
control system. The Kalman filter data shows that the fluctuation of the heading angle and
lateral offset of the guidance line processed by the Kalman filter is significantly suppressed.
It can be seen from Figure 18a that the guidance line heading angle data jitter is obviously
smoothed by the Kalman filter in section A, and even if the guidance line heading angle
jitters frequently, the Kalman filter will make a smooth transition. Comparing Figure 18a,b,
the Kalman filtering effect of the guidance lateral offset is better than that of the guidance
heading angle. In section B, the abnormal data in the guidance lateral offset are obviously
filtered, and the average error between the filtered data and the original data is 2.26 cm,
indicating that the Kalman filtering prediction effect is relatively accurate, and the data
after Kalman filtering can be sent to the row-oriented spraying system as a control signal.
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3.4. Results and Analysis of the Row Alignment Test

As shown in Figure 19, in three different placement conditions, the row alignment
track can follow the baseline. If placed in parallel, the average error of the alignment
offset is 3.2 cm, as shown in Figure 19a, and some of the following tracks in section A
deviate from the baseline. Figure 19e also indicates that the lodging of crop leaves changes
the position of feature points obtained using the row guidance algorithm, resulting in a
decrease in guidance line precision and an increase in the average error of the row offset.
If placed obliquely, the average error of alignment deviation is 7.6 cm. Figure 19b shows
that the inclination angle of placing crop rows changes slightly, resulting in a small change
in the alignment offset provided by the algorithm, which increases the cumulative error
of the row alignment mechanism in the moving process. Therefore, the average error of
alignment deviation of oblique placement is the largest group among the three placement
methods. In the test of the “S”-shaped display, the average deviation error is 5 cm, and the
row alignment tracking patch in section B of Figure 19c correspond to the sand mark in
Figure 19f, showing that the guidance algorithm can identify crop rows with great changes.
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Generally, in the three placement conditions, the control system can adjust and control the
row-oriented mechanism according to the row-orientation delay compensation model.
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3.5. Field Test

The test results are shown in Table 3. The test data show that the visual deviation
of the guidance line and the row-oriented deviation of the row alignment control system
gradually increased with the vehicle speed. When the speed was 0.27 m/s, 0.51 m/s and
0.67 m/s, the proportion of row-oriented deviation within ±15 cm was 86.66%, 90% and
90%, respectively. By observing the standard deviation of the row-orientation deviation in
Table 3, the standard deviation when automatic navigation was turned on is obviously lower
than that when automatic navigation was turned off, because when automatic navigation
was turned off, the driver of the vehicle needed to adjust the steering wheel frequently, and
with the increase in the speed of the test platform, the adjustment angle range of the steering
wheel was enlarged, causing the chassis traveling track to fluctuate greatly, affecting the
identification and row alignment control results. Furthermore, when automatic navigation
was turned on, the row-orientation deviation samples were distributed more evenly, and
the row-orientation effect was more stable. When the automatic navigation was turned on,
with the increase in the speed of the test platform, the proportion of the row-orientation
deviation within ±15 cm was 100%. When the automatic navigation was turned on, when
the speed of the test platform was 0.71 m/s, the maximum deviation of the row orientation
was 7.24 cm, meeting the requirements of automatic row alignment.

Table 3. Field tests.

Navigation
State

Speed
m/s

Visual Mean
Devia-

tion/cm

Visual
Standard
Deviation

Row-
Orientation

Mean
Deviation

o/cm

Row-
Orientation

Standard De-
viation/cm

Proportion of
Row-

Orientation
Deviation

within ±15
cm/%

Proportion of
Row-

Orientation
Deviation

within ±30
cm/%

off
0.27 0.37 2.78 5.22 5.08 90 100
0.51 0.14 2.01 7.92 7.98 90 100
0.67 0.72 5.84 8.43 8.75 86.66 100

on
0.32 0.31 1.06 3.7 3.08 100 100
0.56 0.46 1.23 4.36 4.54 100 100
0.71 0.45 3.60 7.24 7.64 100 100
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3.6. Spraying Performance Test

After the droplet deposition was obtained, the droplet deposition per unit area was
normalized using the Origin drawing software, and the heatmaps of the row-oriented
spraying and full-coverage spraying were drawn. Figure 20a shows that there was a
significant difference in the color depth of droplet deposition between rows and between
plants, but the inter-row color depth with row-oriented spraying was very close to the
full-coverage spraying interrow color depth in Figure 20b, indicating that the deposition
between them is also close. The two pictures show that the uniformity of the full-coverage
spraying is better than that of the row-oriented spraying. In addition, the uniformity of
the row-oriented spraying in the row is better than that between plant depositions. From
the color change of heatmap 20(a), it can be inferred that the droplet deposition of the
row-oriented spraying is mainly distributed on plants.
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The droplet deposition of each group was summarized, and data normalization and
mean processing were performed for the droplet deposition data of row-oriented spraying
and full-coverage spraying. The test results shown in Table 4 indicate that the droplet
deposition of row-oriented spraying in columns A, C and E decreased by 18.22%, 18.81%
and 21.01%, respectively, compared with row space application of B and D. However, the
deposition of A, C, E of full coverage spraying decreased by 19.28%, 19.86% and 22.03%,
respectively, compared with row-oriented spraying. According to the statistics of the total
deposition of the two spraying methods, the total deposition of full-coverage spraying is
1039 mL, and 920 mL for row-oriented spraying. Comparing the two methods, the overall
pesticide saving rate is 11.4%. According to the statistics of the inter-row deposition of
the two spraying methods, the inter-row deposition of full-coverage spraying is 647 mL,
and that of row-oriented spraying is 515 mL. The inter-row pesticide saving rate is 20.4%,
which indicates that the row-oriented pesticide application scheme can reduce inter-row
pesticide loss.

Table 4. Deposition statistics.

Deposition mL/m2

Col A B C D E

Full-coverage spraying 11.49 11.43 12.31 11.46 12.15
Row-oriented spraying 9.67 12.11 9.60 11.54 9.34

4. Discussion

In this paper, seedling stage maize was taken as a research object, focusing on the oper-
ation effect and spraying performance of a visual row-oriented control system. Considering
the timeliness of information perception, real-time extraction of guidance lines was realized.
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Only when the algorithm takes at least 67 ms is the identification relatively smooth [36]. A
real-time row guidance algorithm that takes 42 ms was designed. Between a traditional
Hough transform [22] and Wang’s rice seedling row detection based on a feature point
neighborhood Hough transform [37], the former has obvious advantages. In row guidance
research, experts pay more attention to the research on crop row extraction algorithms, and
the guidance information is not determined after crop row extraction, so the perception
layer cannot provide information decisions for the control system [38]. Therefore, an outlier
filtering algorithm based on the slope characteristics of crop rows to obtain two auxiliary
lines of crop rows is proposed, which adopts a tangent formula of the included angle to
fit the guidance line. It can reduce redundant information and provide accurate visual
data for the row alignment system. Regarding the complex interference factors in field
operations, the guidance line “jitter” problem in continuous video frames was solved to
improve the stability of visual processing. A Kalman filter was embedded in the visual
algorithm to optimize the estimation of the guidance line. This was compared with a
method of triggering photos with a camera interval of 300 ms [39], which will not cause a
loss of guidance information due to a sudden change in the acquisition environment.

When working in the field, the row-orientation tracking effect requires the control
system to be very precise. With increasing vehicle speed, the stability of manual alignment
decreases. As shown in Table 3, when the vehicle speed was 0.67 m/s, the standard
deviation of the visual deviation was 5.84 cm, and when the vehicle speed was 0.71 m/s,
the standard deviation of the visual deviation was 3.60 cm when the navigation system was
turned on. The autonomous navigation system was used for preliminary row alignment,
which reduced the influence of chassis vibration on the visual extraction effect and further
proved that the alignment accuracy can be improved by combining the navigation system
with the row-oriented control system. The guidance system uses machine vision as the
information perception scheme. After obtaining the guidance information, the control
system obtained the actual coordinates of the aiming point through visual ranging, which
improves recognition accuracy. Under the condition that automatic navigation is enabled
and the speed is 0.71 m/s, the row-oriented deviation of the system is within the range
of ±15 cm. Compared with the Zhang [21] method of using laser radar to initiate target
matching and mechanical sensor feedback logic signal for crop rows, the visual scheme
effect is better. On the premise of ensuring accurate row alignment, a comparative test
of full-coverage spraying and row-oriented spraying was designed to explore the droplet
deposition of the two spray methods. As shown in Figure 20a, abnormal droplet deposition
in the row-oriented spray mostly occurs between rows, which is caused by the movement
of the sliding boomer and the drift of droplets with inertia. In the future, the stability of
the row-orientation mechanism should be adjusted and the drift-proof nozzle should be
replaced to reduce the deposition of pesticides between rows and improve the accuracy of
row-oriented spraying.

5. Conclusions

This study explores the possibility of a visual row-orientation spraying system based
on autonomous navigation. The following is a summary of the main research work pre-
sented in this paper.

1. Because of the pesticide waste and environmental pollution caused by continuous
spraying operations at the maize seedling stage, a set of visual row-oriented spraying
systems based on automatic navigation technology was developed. Automatic navi-
gation was conducted for preliminary row alignment, and machine vision technology
was used to achieve accurate row alignment, which provided a new idea for fine plant
protection operations.

2. A Hough transform algorithm was used to detect the crop rows to be selected, an
outlier threshold was eliminated based on the slope of the line to fit the auxiliary
lines, and a guidance line was fitted according to the tangent formula. Because of the
guidance line jitter problem of the extraction algorithm in video reasoning, a Kalman
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filter was used to track the target of the guidance line, and a robust row guidance
algorithm was designed. According to the requirements of visual localization and the
parameters of various identifications, theoretical analysis was carried out to set up a
row-orientation delay compensation model, and a row-orientation control algorithm
based on vision was designed.

3. Test results based on the visual row-oriented spraying system show that the average
time of the row guidance algorithm is 42 ms, and the average visual deviation is 2.75
cm, which can provide row guidance for the row alignment system. If automatic
navigation is turned on, the row-orientation average deviation between the row
alignment mechanism and the centerline between rows of crops is 5.08 cm, and
the row-orientation deviation range is below ±15 cm. Compared with previous
reports, the performance is improved, meeting the requirements of automatic row
orientation. In addition, compared with traditional spraying, the inter-row deposition
of visual row-oriented spraying is reduced by 20.36%, and the overall pesticide savings
are 11.4%, which reduces pesticide waste and improves pesticide utilization. With
increasing vehicle speed, the alignment accuracy also decreases. To overcome the
limitation of speed on the effect of alignment, we will start by improving the visual
algorithm efficiency and optimizing the hardware system structure and continue to
try more innovative control schemes to improve the performance of the alignment
operation.
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