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Abstract

:

Fruit is an essential element of human life and a significant gain for the agriculture sector. Guava is a common fruit found in different countries. It is considered the fourth primary fruit in Pakistan. Several bacterial and fungal diseases found in guava fruit decrease production daily. Leaf Blight is a common disease found in guava fruit that affects the growth and production of fruit. Automatic detection of leaf blight disease in guava fruit can help avoid decreases in its production. In this research, we proposed a CNN-based deep model named SidNet. The proposed model contains thirty-three layers. We used a guava dataset for early recognition of leaf blight, which consists of two classes. Initially, the YCbCr color space was employed as a preprocessing step in detecting leaf blight. As the original dataset was small, data augmentation was performed. DarkNet-53, AlexNet, and the proposed SidNet were used for feature acquisition. The features were fused to get the best-desired results. Binary Gray Wolf Optimization (BGWO) was used on the fused features for feature selection. The optimized features were given to the variants of SVM and KNN classifiers for classification. The experiments were performed on 5- and 10-fold cross validation. The highest achievable outcomes were 98.9% with 5-fold and 99.2% with 10-fold cross validation, confirming the evidence that the identification of Leaf Blight is accurate, successful, and efficient.
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1. Introduction


Food is the fundamental requirement for the existence of human beings, and it is the notable outcome of agricultural activities. Agriculture is assumed to be the backbone of economic development, as it exhibits the cultivation of multiple crops, fruits, and vegetables. There is a large difference between the cultivation and annual production of fruits because of inappropriate advancements in technology, lack of knowledge, and diseases that negatively affect the production [1]. Disease detection in plants is a challenging task and is essential to diagnose at early stages. Diseases are mostly diagnosed through leaves because they tend to highlight contaminated parts immediately. Guava is an important fruit in agriculture; therefore, its leaves are selected for the detection and recognition of diseases [2]. Guava is nutritionally beneficial, serving calcium and iron to the human body. It is cultivated in America, especially in Mexico, Thailand, South Africa, and many other countries. Many laboratories such as the Central Institute of Subtropical Horticulture (CISH) and different institutes are continuing to work on guava production in different areas of the world [3]. Several diseases, such as bacterial and fungal diseases, attack the guava fruit, which badly affects its production [4]. There are different techniques of ML applied for disease detection. Almost 177 types of diseases are found that damage leaves, causing leaf blight and leaf spots. Known diseases include brown roots, twig drying, bacterial wilt, anthracnose, ring rots, and many others [5].



Many researchers aim for innovations in disease detection. Disease detection relies on five major steps. Usually, the first step in image processing is image acquisition. After obtaining images, preprocessing incorporates multiple steps that result in better accuracy. After preprocessing, feature extraction is performed, where the features of the images are boosted for further computation and selection. The final stage is classification. A variety of models are presented using diverse methodologies such as convolution neural network (CNN), gradient descent (GD), and many others for classification purposes [6]. Convolution neural networks play an essential part in the extraction of features through hidden layers, as manual extraction is costly and time-consuming [7]. Plant pathologists need an automatic detection system to diagnose leaf blight in plants.



The main focus of the proposed methodology is the detection and classification of leaf blight. Leaf blight affects plants as a result of a pathogenic organism infecting leaves. Therefore, an automated system is needed to detect leaf blight disease. Research of diseases in guava fruit is a challenging task, as it seeks a variety of data regarding diseases in the relevant field [8]. The forecasted production of guava is 498.95 thousand tonnes in 61.37 acres in the year 2020–2021 and the production of guava is 499.68 thousand tonnes in 61.37 acres in the year 2021–2022. Evaluation of the researched tasks becomes critical with time due to the wide range of diseases, and a great deal of effort has already been applied towards the relevant field [9].



There are several limits and difficulties in detecting and classifying guava plant diseases in the existing literature. Some major problems per the literature are the poor contrast, variation in shape, texture, and size, and illumination problems found in disease images that make them difficult to recognize and classify.



This article presents a new methodology for the detection of leaf blight. The purpose is to classify the healthy and diseased images of guava leaves with improved accuracy. The significant contributions presented in this research are as follows:




	
A new deep CNN Net named SidNet is presented, which consists of 33 layers along with 35 connections. The pretraining of SidNet is performed on a plant imaging dataset. The features are extracted from the proposed SidNet, darknet53, and AlexNet, which are further fused using serial fusion. The deep features are also known as automatic features; they automatically solve the issues related to contrast, shape, texture, and illumination.



	
The features are sorted using an Entropy Algorithm, and for better feature selection, Binary Gray Wolf Optimization is used. The selected features are used to make a single feature vector for classification using an SVM and KNN Classifier to achieve the best performance and results.



	
Data Augmentation is performed, as the selected dataset is small; therefore, the images are flipped both horizontally and vertically to make the dataset large.








The paper consists of five sections, where Section 1 explains the introduction, motivation, contribution, and problem statements for leaf blight detection. Section 2 covers the recent existing work. Section 3 provides the details of the presented proposed framework and Section 4 describes the details of the experiments and outcomes. Lastly, Section 5 covers the conclusion.




2. Related Work


Diseases in fruit plants and leaves are a major cause of destruction and economic loss. Automated systems help greatly with the detection of diseases at early stages. While considering the field of detection of disease in plants, deep neural networks work perfectly to identify and classify diseases. These networks are mentored to conduct high-value results in detecting and classifying diseases, and to fulfill the demands of food deformation prevention.



There are different methods for collecting images under certain conditions. Images are captured by multiple appliances, such as cameras, sensors, mobile phones, and other devices. In this era, more datasets containing guava are publicly available on multiple forums, such as Kaggle, Mendeley, and many others [10]. Pre-processing of images is an important phase in image processing. The pre-processing phase entails multiple steps which help highlight the focused parts and remove irrelevant information from guava leaf images. In the real world, label noise on images is a matter of concern. Multiple techniques have attained the best results in denoising images, especially mixed noise, speckle noise, and salt and pepper noise. Low contrast and color distortion in guava leaf images make them blur. Scattering and light absorption also affect clear image visualization [11]. Images are preprocessed by using rotational filters such as horizontal and vertical flipping. Data augmentation techniques are used, such as applying rotations and zooming into images [12]. Color spacing techniques are extensively applied in image processing. RGB, CIELAB, and CMYK models are mostly used as color spacing techniques to give the best results.



Feature extraction is a process in which reatures are reduced from the raw dataset and new features for manageable processing are created. Texture analysis has a wide range of applications [13]. Pattern recognition requires feature extraction to solve problems in prediction, cluster discrimination, and representation of data in the best way [14,15]. Content-Based Image Retrieval (CBIR) converts high-level image visuals into feature vectors that contain some properties [16]. There are multiple techniques to extract the features from guava leaf images, such as handcrafted-based features, region-based features, deep CNN-based features, texture-based features, color-based features, morphological-based features, etc. Extraction of features is categorized into hand-crafted-based features and deep-based features.



The selection of features from plant leaf images is carried out after the extraction of hand engineered and deep-based features. The set of features is chosen while noisy, poor, and extra features are eliminated from the original set of features [17]. There are five main types of feature selection, which are (1) Linear Method, (2) Non-Linear Method, (3) Filter-Based Method, (4) Wrapper Method, (5) Embedded Method. Linear methods include PCA and LDA. PCA stands for Principal Component Analysis, which is used for data reduction [18]. LDA stands for Linear Discriminant Analysis and is used for the conversion of high dimension features into lower dimension features [19]. Non-linear methods include Entropy [20], Genetic Algorithm (GA) [21], Binary Gray Wolf [22], Slap Swarm [23], Atom Search [24] and many others. Filter methods includes mRMR [25], Missing Value Ratio [26], and many others. Wrapper methods include Jackstraw [27] and Boruta [28]. Finally, embedded methods include LASSO [29], Ridge [30], Elastic [31], and many others. Image fusion [32] helps greatly in improving classifier accuracy with less computational cost [33]. Different algorithms are proposed that use image fusion to get the best accuracy results.



Image classification is the last step in image processing [34]. Classification tends to dominate the feature vector to determine which object belongs to which class [35]. There are different types of techniques used for the classification of healthy and diseased images of plant leaves. Image classification is divided into three main categories, which are (1) Supervised Learning, (2) Unsupervised learning, and (3) Object-based image analysis. Supervised Learning is used to detect the new category of the object from training data [36]. Unsupervised Learning is a process in which an image is identified in an image collection without using labeled training data [37]. Object-based analysis involves the grouping of pixels on the basis of some similarities such as shape and neighborhood [38]. To get the most accurate results, the Plant Village dataset is used for testing and training purposes. A total of 80% of guava leaf images are used for testing while 20% of them are used for training purposes. The achievable accuracy is 97.22% using Alex-Net and Squeeze-Net after segmentation and classification [39]. Atila et al. [40] designed the Efficient-Net architecture, which is designed for classification purposes. Different architectures are applied using CNN for model training to get highly accurate results. The model training is performed on the dataset of 87,848 images. Images are preprocessed using different techniques such as downscaling and squaring methods, they are then classified, and an accuracy of 99.53% is achieved using AlexNet, VGG-16, and GoogLeNet [41]. Several algorithms are used for image classification. These are SVM [42], K-Nearest Neighbor (KNN) [43], Naïve Bayes [44], Shadow algorithms [45], Minimum Mean Distance (MMD) [46], Decision Trees [47], K-Means Clustering [48] and many others. The datasets are frequently classified by SVM. This involves supervised learning and comprises points that are in the sample space and different regions [49]. Segmentation is performed on the preprocessed data in three stages. In the first stage, the deep CNN is trained to learn the mapping from the space map. In the second stage, prediction-based labels are acquired. At the last stage, these acquired labeled images are sent to SVM for classification and achieve an accuracy of 86% [50]. In machine learning, KNN is a statistical classification algorithm. It gathers the objects selected by neighbors having the highest number of votes [51]. KNN is inspected for the detection of weeds from UAV images of the chili crop of Australia. In comparison with KNN, SVM and Random Forest (RF) are used. The achievable accuracies across RF, SVM, and KNN are 96%, 94%, and 63%, respectively [52]. KNN is also used for classifying facial expressions [53]. Additionally, KNN is used for the classification of grape leaves into healthy and unhealthy leaves. Texture-based and color-based features are extracted from grape leaf images and are classified by the KNN classifier, and an accuracy of 96.66% is achieved [54]. Table 1 depicts an overview of recent works related to plants diseases analysis




3. Materials and Methods


The proposed methodology consists of multiple phases of image processing. In the first step, as a preprocessing step, color spacing is performed on the images of the dataset. Images are converted from RGB color format to YCbCr color format. After getting preprocessed data, feature extraction is performed using two pretrained models and a newly proposed CNN deep model known as SidNet. This newly proposed model is based on 33 convolutional layers. This proposed CNN deep model is pretrained using the Plant-Village dataset, which consists of 38 classes. After pretraining, features are collected from the proposed CNN deep model. These extracted features are then fused with AlexNet and DarkNet-53 to find the best and most appropriate results. A deep CNN known as AlexNet was developed in 2012, which is an 8-layer deep model and consists of 5 convolution layers and 3 Fully Connected layers. After every convolution layer and fully connected layer, ReLU is applied. It contains a dropout layer, which is applied after the first and second fully connected layer. The input size in AlexNet is 227 × 227. In all layers, the activation function is ReLU. Softmax is designed as an activation function in the output layer. AlexNet is the simplest deep CNN model and it is used to get highly accurate results. DarkNet-53 is another used deep model, which works as the backbone for YoloV3 in object detection. It contains 25 layers for batch normalization and Leaky ReLU. The input size is 256 × 256 in DarkNet-53. In the second step, the feature sorting entropy algorithm is used for the selection of the best features. These selected core features are fused using serial-based fusion. After fusing the core features, the binary gray wolf optimization algorithm is used. Finally, these extracted fused features are provided to SVM and KNN classifiers for the classification of Leaf Blight for the best achievable results. The complete view of the proposed model is shown in Figure 1. It covers a complete view of the flow of the diagram of the designed structure.



3.1. Image Preprocessing


In image processing, color space conversion is an important task. RGB is used to store real-time images and videos because it allows for the sensitivity of color detection cells for the human visual system. YCbCr is beneficial for its low-resolution capability for the human visual system. Therefore, the conversion of RGB to YCbCr is mostly used in image processing. The general formula is given below:


  YCbCr =   RGB   2 YCbCr   ( RGB )  



(1)







This is the general formula that is used for the conversion of RGB to YCbCr and it represents 8 bits per sample pixel in RGB format. The white and black colors are represented on a scale from 0 to 255. Therefore, the components of YCbCr are obtained from the following equations.


  Y = 16 + 65.738 / 256   R + 129.057 / 256   G + 25.064 / 256   B  



(2)






  C b = 128 + 37.945 / 256   R − 74.494 / 256   G + 112.439 / 256   B  



(3)






  C r = 128 + 112.439 / 256   R − 94.154 / 256   G + 18.285 / 256   B  



(4)




where  Y  is used to represent the luma (luminance) component.   C b   represents chrominance blue and   C r   represents chrominance red. These numbers are the constant values that are used to adjust the value of Y. Figure 2 shows the conversion from RGB to Y  C b C r  .




3.2. Data Augmentation


For data augmentation, horizontal and vertical flipping are used. According to the mathematical model, the horizontal flipping of the images is presented as follows:


   H F     (  − x ,   y  )  =  H O     (  x ,   y  )     



(5)







And the vertical flipping of the images is presented as follows:


   H V     (  x , − y  )  =  H O   (  x ,   y  )     



(6)







HF shows the flipping function and HO shows the original image function that is to be flipped. Hv shows the flipping function and HO shows the original image function that is to be flipped.




3.3. Feature Extraction


After preprocessing and augmentation, the next phase is feature extraction. In this phase, with the help of pretrained models, the most optimal features are extracted. According to our proposed methodology, a newly designed model named SidNet, and other pretrained models such as DarkNet-53 and AlexNet, are used for extracting the most optimal features.




3.4. Proposed SidNet as CNN Net


This proposed CNN Net is a blockbuster CNN-based architecture used for the detection and classification of Leaf Blight. The proposed SidNet model consists of 33 layers involving 8 convolutional layers, 10 ReLU layers, 4 layers of batch normalization, one dropout layer, one softmax layer, one classification output, one fully connected, and one global average pooling layer. The Input size of the Proposed CNN Net is “227 × 227 × 3” and it contains 35 connections. The stride is “1 × 1” throughout the proposed framework’s convolution layer. The number of filters is set to 96 in all convolutional layers of the framework, while the padding dimensions vary according to the convolution layer used in the different stages of architecture. The padding of the last convolution layer is 5, 5, 5, 5. Two pooling layers are used, where the stride for the two pooling layers in the architecture is “2 × 2”. While the pooling size of the first pooling layer is 3, 2 and the pooling size of the second pooling layer is 3, 3. The mean decay and variance decay for all batch normalization layers are 0.1. Figure 3 shows the architecture of the proposed SidNet.



The proposed deep model named SidNet comprises 33 convolution layers. Its Input size is “227 × 227 × 3” and it contains 35 connections.



Due to the small number of samples of the available dataset, the proposed deep model with softmax (SM) classifier is first trained on the third-party dataset named CIFAR 100 [60]. Then, the guava leaf dataset is fed to SidNet for feature extraction. The features are extracted from the fully connected (FC) layer. These features, after feature selection, are trained and tested on various classifiers (such as SVM with its variants and KNN with its variants) for evaluation. According to our model, the features in SidNet are presented as:


   f  e × f   = {   L 1 × 1   ,   L 1 × 2   ,   L 1 × 3   ,   … … … .. L 1 × p   }  



(7)




where L (1…p) represents the number of features obtained from the proposed CNN model, which is known as SidNet, and e × f is the dimension of the resultant function.



Visualization of the strongest feature maps at different convolution layers with the proposed SidNet architecture is shown in Figure 4. The visualization is performed on conv_1, conv_2, conv_3, conv_4, conv_5, conv_6, conv_7, and conv2 of the proposed architecture.




3.5. DarkNet-53


DarkNet-53 acts as the backbone of YoloV3 for object detection. DarkNet comprises 53 layers and consists of multiple convolution layers. A total of 1024 features in DarkNet are extracted with the help of the global average pooling layer. There are 25 layers in Batch normalization. The input size is 256 × 256. According to our mathematical model, the features in DarkNet are presented as:


   f  a × b   = {   j 1 × 1   ,   j 1 × 2   ,   j 1 × 3   , … … … … .. j 1 × m   }  



(8)




where J (1…m) shows the number of features extracted from DarkNet-53 and a × b is the dimension of the resultant function. Visualization of the strongest feature maps at different convolution layers with the DarkNet-53 architecture is shown in Figure 5




3.6. AlexNet


AlexNet is the simplest model that comprises 8 layers. There are 5 convolution layers and 3 fully connected layers. Its input size is 227 × 227. The Activation function used in all layers is ReLU, which is applied after every convolution layer and fully connected layer. The Drop layer is applied after the first and second fully connected layer. The Activation function in the output layer is Softmax. The AlexNet contains 4096 features with the help of a convolution layer named a fully connected layer. According to our mathematical model, the features in AlexNet are presented as:


   f  c × d     = {    k  1 × 1     ,    k  1 × 2     ,   k 1 × 3 ,   … … . k 1 × n }  



(9)




where k(1 … n) shows the number of features extracted from AlexNet and c × d shows the dimensions of the resultant function. Visualization of the strongest feature maps at different convolution layers with the AlexNet architecture is shown in Figure 6




3.7. Feature Selection


After extracting features from the proposed model and other pretrained models such as DarkNet-53, AlexNet, and SidNet, the selection of features is done with the help of feature sorting using entropy. The mathematical model for the selection of features using entropy is represented as:


   E  a × b      (   ᾳ 1  ,    ᾳ 2  ,    ᾳ 3  ,   … ..    ᾳ n   )  = −   ∑     f a × b   { j 1 × 1   ,   j 1 × 2 ,   j 1 × 3 , … . j 1 × m   } l o g ( j   1 × 1   ,   j 1 × 2   ,   j 1 × 3 , … … j 1 × m )  



(10)






   E  c × d     (  β 1  ,    β 2  ,    β 3  ,   … ..    β n  −   ∑     f     c × d   = {  k  1 × 1   ,  k  1 × 2   ,  k  1 × 3   , … . .  k  1 × n   } l o g l o g    (   k  1 × 1     ,    k  1 × 2     ,    k  1 × 3   ,   … … …  k  1 × n    )     



(11)






   E  e × f     (  γ 1  ,    γ 2  ,    γ 3  ,   … …    γ n  = −   ∑      f  e × f   = {  L  1 × 1   ,  L  1 × 2   ,  L  1 × 3 ,   … …  L  1 × p   } l o g l o g    (   L  1 × 1     ,    L  1 × 2     ,    L  1 × 3   , … … ..  L  1 × p    )     



(12)




where a × b, c × d, e × f represents the dimension of features obtained after sorting features. Log(j(1 − n)), Log(k(1 − n)), and Log(L(1 − n)) show the prediction of probability and j(1 − n), k(1 − n) and L(1 − n) show the selected features obtained from the extracted features.  ᾳ  (1 − n), β(1 − n),   γ  (  1 − n  )    show the features which are sorted.




3.8. Feature Fusion


Feature Fusion is performed to select the most optimal features. According to the mathematical model, the fusion of features is represented as:


  ∈ f =   ∑   x = 1  L   (     E  a × b    )    ⋃       ∑   y = 1  m   (   E  c × d    )    ⋃       ∑   z = 1  n   (   E  e × f    )   



(13)







After fusing the features using the entropy algorithm, Binary Gray Wolf Optimization is performed to obtain the most optimal results. The mathematical model representing the features selected from Binary Gray Wolf Optimization are as follows:


   ∅ d  = ∈ 1   i f   γ o <  1 3    ∈ 2   i f    1 3  ≤ γ 6 <  2 3    ∈ 3   i f   ,   o t h e r w i s e    



(14)




where  ∅ d is the function of BGWO and   γ o   and   γ 6   are the adjusting parameters that are used to set the value of the most optimal features.




3.9. Classification


Different classifiers are available for classification purposes, but SVM and KNN classifiers are chosen. These two classifiers are selected to achieve high accuracy and the most optimal results. In machine learning, features are reduced by carrying out the feature vector dimension. Different classification algorithms are available, such as Minimum Mean Distance (MMD), K means clustering, Decision Trees, Shadow algorithm, and Naïve Bayes. In this work, SVM and KNN are selected to perform the classification on the guava leaf dataset. These classifiers generate better results compared to other classifiers.





4. Results and Discussion


The purpose of this study is to classify the Leaf Blight disease with the best possible results. After the processing of the dataset using YCbCr, the extraction of features is performed using two pretrained models along with one proposed net. The selection of features is performed using BGWO. For classification purposes, SVM and KNN are chosen for the evaluation of execution. This section provides details about experiments that are performed on multiple sets of features and the results are recorded accordingly. These experiments and results are shown in two sets of test cases. Using 5 folds and 10 folds, validation experiments are performed. In comparison with other classifiers, SVM and KNN are selected, as they give the best results. The set of experiments are performed on Windows 10 (64-bit) and a Core (TM) i7-8700 CPU, 3.20 GHz (12 CPUs) 3.2 GHz processor with 16 GB RAM and an LCD and keyboard from HP. Training and testing of the designed network are performed on MATLAB R2020b.



4.1. Dataset


The assembled dataset for the classification of Leaf Blight used in this analysis [61] is small. These experiments are performed on guava leaves. The chosen dataset contains 415 guava leaf images in the original. This dataset contains a small number of images; therefore, they are augmented using horizontal and vertical flipping techniques, which increases the total number of images. The total number of images is 1000 after the augmentation technique. This dataset is publicly available on the Mendeley website. It is a binary class dataset (see Figure 7 for sample images) and many researchers have used it in their studies.




4.2. Performance Evaluation Methods


The performance measures can be used to measure and detect the performance of leaf blight disease in plants. The consequences are defined as follows: a True Positive rate as TP, True Negative rate as TN, False Positive rate as FP, and False Negative rate as FN. The Table 2 illustrates the performance measures that are used in this work.



Table 3 shows a summary of the best-achieved results performed on the guava leaf dataset, which proves that the proposed methodology is efficient and robust. Here, Quadratic SVM achieves the best results, i.e., 98.9% over 5 folds in 9.2 s and 99.2% over 10 folds in 16.2 s, with 3045 features on 5-fold cross validation.



The accompanying text contains some discussion on some of the experiments.



	
Experiment_1: Using 5-Fold and 10-Fold Validation on 3045 features






This section provides details about two test cases that were performed on 3045 features using both 5 folds and 10 folds. The selected classifiers are variants of SVM and KNN, which were chosen to get robust results. After augmentation, the chosen dataset contained 1002 images. The best results were recorded with measures such as accuracy, precision, recall, F1-score, and training time.



	
Experiment_1(a): Using 5 Folds and 3045 Features (1002 × 3045 features)






This test case shows the results of 3045 features upon 1002 images using SVM and KNN classifiers with 5-fold cross validation. Details are shown in Table 4.



The best results are achieved by the Quadratic SVM classifier in comparison with all KNN classifiers, which is 98.9% in 9.2 s. Here, the confusion matrix in Figure 8 and the ROC curve in Figure 9 are shown for the best results with the Quadratic SVM classifier. In the confusion matrix, A represents the diseased class, While B depicts healthy class



Here the ROC curve is shown in Figure 9 for both classes A and B, which are presented as ROC A and ROC B.



	
Experiment_1(b): Using 10 Folds and 3045 Features (1002 × 3045 features)






This test case shows the results of 3045 features upon 1002 images using SVM and KNN classifiers with 10 folds. Details are shown in Table 5.



The Quadratic SVM classifier achieved the best result in comparison with all KNN classifiers, which is 99.2%. Here, the confusion matrix as presented in Figure 10 and the ROC curve are shown for the best results against the Quadratic SVM classifier.



Here, the ROC curve is shown in Figure 11 for both classes A and B, which are presented as ROC A and ROC B.



	
Experiment_2: Using 5-Fold and 10-Fold Validation on 200 features






This section provides details about two test cases that were performed on 200 features using both 5 folds and 10 folds. The efficiently selected classifiers are SVM and KNN, which were chosen to get robust results. The chosen dataset contains 1002 images. The best results are recorded with other measures, such as accuracy, precision, recall, F1-score, training time, etc. Results are shown in the Table 6 in detail.



	
Experiment_2(a): Using 5 Folds and 200 Features (1002 × 200 features)






This test case shows the results of 200 features upon 1002 images using SVM and KNN classifiers with 5 folds. Details are shown in Table 6.



The Fine Gaussian SVM classifier achieved the best result in comparison with all KNN classifiers, which is 81.1% in 0.8 s. Here, the confusion matrix in Figure 12 and the ROC in Figure 13 curve are shown for the best results with the Fine Gaussian SVM classifier.



The ROC curve is shown in Figure 13 for both classes A and B which are presented as ROC A and ROC B.



	
Experiment_2(b): Using 10 Folds and 200 Features (1002 × 200 features)






This test case shows the results of 200 features upon 1002 images using SVM and KNN classifiers with 10 folds. Details are shown in Table 7.



Here, the Fine Gaussian SVM classifier achieved the best result in comparison with all KNN classifiers, which is 82.6% in 1.2 s. Here, the confusion matrix also shown in Figure 14 and the ROC curve are shown for the best results against the Fine Gaussian SVM classifier.



The ROC curve is shown in Figure 15 for both classes A and B, which are presented as ROC A and ROC B.



	
Experiment_3: Using 5-Fold and 10-Fold Validation on 500 features.






This section provides details about two test cases that are performed on 500 features using both 5 folds and 10 folds. The efficiently selected classifiers are SVM and KNN, which were chosen to get robust results. The chosen dataset contains 1002 images. The best results are recorded with some other measures like Accuracy, precision, recall, F1-score, training time, and others. Results are shown in the Table 8 in detail.



	
Experiment_3(a): Using 5 Folds and 500 Features (1002 × 500 features)






This test case shows the results of 500 features upon 1002 images using SVM and KNN classifiers with 5 folds. Details are shown in Table 8.



Here, the classifier Quadratic SVM achieved the best result in comparison with all KNN classifiers, which is 84.1% in 1.2 s. The confusion matrix in Figure 16 and the ROC curve in Figure 17 are shown for the best results against the Quadratic SVM classifier.



The ROC curve is shown for both classes A and B, which are presented as ROC A and ROC B in Figure 17.



	
Experiment_3(b): Using 10 Folds and 500 Features (1002 × 500 features)






This test case shows the results of 500 features upon 1002 images using SVM and KNN classifiers with 10 folds. Details are shown in Table 9.



Here, the classifier Fine Gaussian SVM achieved the best result in comparison with all KNN classifiers, which is 85.2% in 2.2 s. Here, the confusion matrix and the ROC curve are shown for the best results against the Fine Gaussian SVM classifier. The confusion matrix for FG (SVM) is shown in Figure 18.



Here, the ROC curve is presented (in Figure 19) for both classes A and B, which are presented as ROC A and ROC B.



Figure 20 shows the 5-fold best achievable results between training time and features. It shows the consumed time for training that is required for a particular set of features.



Here, features are presented on the x-axis and the training time is shown on the y-axis. These results are taken on 5-folds for the best achievable results.



Similarly, the graph in Figure 21 shows the relation between accuracy and features at 5-fold results. It shows that the features are presented along the x-axis and the accuracy is presented along the y-axis, and the line presents the best achievable results.



The graph in Figure 22 shows the relation between training time and features upon results taken on 10 folds. This graph shows that features are shown along the x-axis and the training time is shown along the y-axis, and the time consumed by a particular set of features for training is illustrated.



The graph in Figure 23 shows the relation between training time and accuracy upon results taken on 10 folds. This graph shows that features are shown along the x-axis and the accuracy is shown along the y-axis, and the time consumed by a particular set of features for training is illustrated.





5. Conclusions


Agriculture is the key to the development and rise of emergent nations. Diseases in plants cause crop damage. Detection of leaf blight is enormously important as it affects the annual production of guava fruit. Finally, the development of an automated system becomes indispensable. In this paper, leaf blight can be detected, analyzed, and classified through the proposed methodology. In this proposed methodology, our own deep CNN is designed, containing thirty-three layers. In the first phase of image processing, preprocessing is done by using color spacing YCbCr. The Guava dataset is chosen for the identification and analysis of leaf blight. Because the dataset is small, data augmentation is performed. Horizontal and vertical flipping were performed on images of guava leaves. After preprocessing, feature extraction was performed using Darknet-53 and AlexNet, as well as the proposed SidNet. For the selection of the best features, optimization algorithms such as Entropy and Binary Gray Wolf are used. Finally, classification is performed on guava leaf images and the best results with higher accuracy and less computational cost are achieved. Multiple experiments are performed while using the set of selected features (200, 500, 750, 1000 features using 5- and 10-fold validation). Based on the selected features, 98.9% of the results are achieved using an SVM classifier, as it proves that this proposed methodology is robust and efficient.



In the future, this work can be explored with quantum deep learning for improved performance. Quantum computing-based machine learning and deep convolutional neural networks can detect and classify leaf blight at its initial stage more precisely and meticulously, which will help save crops and fruits, save plants from destruction, and increase the production of guava fruit.
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Figure 1. Proposed Framework for disease recognition in guava leaves. 
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Figure 2. RGB to YCbCr conversion. 






Figure 2. RGB to YCbCr conversion.



[image: Agriculture 13 00667 g002]







[image: Agriculture 13 00667 g003 550] 





Figure 3. The architecture of the proposed CNN network, SidNet. 
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Figure 4. Visualization of the images of strong feature maps of different convolution layers. (a) conv_1 (b) conv_ 2 (c) conv_ 3 (d) conv_4 (e) conv_5 (f) conv_6 (g) conv_7 (h) conv2. 
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Figure 5. Visualization of the images of strong feature maps of different convolution layers of DarkNet-53. (a) conv3 (b) conv1 (c) conv2 (d) conv4 (e) conv5 (f) conv6. 
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Figure 6. Visualization of the images of strong feature maps of different convolution layers of AlexNet. (a) conv2 (b) conv1 (c) conv3 (d) conv4 (e) conv5 (f) conv6. 
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Figure 7. Sample dataset images of guava plant. 
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Figure 8. Confusion matrix for Q(SVM) with 3045 features and using 5-fold results. 
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Figure 9. ROC curve for two classes A and B with 3045 features and using 5-fold results. 
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Figure 10. Confusion matrix for Q(SVM) with 3045 features and using 10-fold results. 
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Figure 11. ROC curve for two classes A and B with 3045 features and using 10-fold results. 
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Figure 12. Confusion matrix for FG(SVM) with 200 features and using 5-fold results. 
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Figure 13. ROC curves for two classes A and B with 200 features and using 5-fold results. 
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Figure 14. Confusion matrix for FG(SVM) with 200 features and using 10-fold results. 
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Figure 15. ROC curve for two classes A and B with 200 features and using 10-fold results. 
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Figure 16. Confusion matrix for Q(SVM) with 500 features and using 500 fatures with 5-fold results. 
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Figure 17. ROC curve for two classes A and B with 500 features and using 5-fold results. 
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Figure 18. Confusion matrix for FG(SVM) with 500 features and using 10-fold results. 
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Figure 19. ROC curve for two classes A and B with 500 features and using 10-fold results. 
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Figure 20. Graph showing training time and features on 5-fold. 






Figure 20. Graph showing training time and features on 5-fold.



[image: Agriculture 13 00667 g020]







[image: Agriculture 13 00667 g021 550] 





Figure 21. Graph showing accuracy and features on 5-fold. 
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Figure 22. Graph showing features and training time. 
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Figure 23. Graph showing features and accuracy on 10 folds. 
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Table 1. An overview of recent literature regarding plants diseases analysis.
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	Ref.
	Year
	Techniques
	Dataset
	Diseases
	Results %





	[41]
	2018
	Downscaling and squaring method, AlexNet, VGG-16, AlexNetOWTBn.
	87,848

58 classes
	Apple Scab, Black Rot, Early Blight, Brown Leaf Spot
	99.53



	[55]
	2018
	ResNet-50, Deep Siamese convolutional network, TSNE method, KNN
	PVD
	Black Rot, Esca, Chlorosis
	90



	[56]
	2018
	Transfer learning, F-RCNN, classification.
	4923
	Phoma Rot, Leaf Miner, Target Spot
	95.75



	[57]
	2019
	F-CNN, S-CNN, Segmentation, annotation and labeling on region of interest (lesions), random transformation (stretch/rotation/brightness/contrast blur)
	Independent dataset
	Spider Mite, Target Spot
	98.6



	[58]
	2019
	VGG classification, resizing and transformation of images into grayscale,
	2465
	Black dot and scurf
	96



	[40]
	2021
	Efficient-Net (B5Ver), Alexnet, ResNet50, classification.
	61,486
	Late Blight, Bacterial Spot
	99.97



	[59]
	2021
	Resizing, normalizing and augmentation, Efficient-Net (B7Ver), Efficient-Net (B4Ver), U-net, and modified U-net segmentation model, Score-Cam visualization technique,
	18,161
	Target Spot
	99.9
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Table 2. Performance evaluation metrics.
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	Measures
	Mathematical Expressions





	Accuracy
	      True   Positive    +    True   Negative     True   Positive   True   Negative    +    False   Positive    +    False   Negative      



	Recall
	      True   Positive     True   Positive    +    False   Positive      



	PRC/Positive Prediction
	      True   Positive     True   Positive    +    False   Positive      



	F1 Score
	     2 . Precision . Recall    Precision    +    Recall      
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Table 3. Summary of results.
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	Test Cases
	Experiment #
	Folds
	Features
	Classifier
	Accuracy %
	Training Time (s)





	1
	1 (a)
	5
	3045
	Quadratic SVM
	98.9
	9.2



	2
	2 (a)
	5
	200
	Fine Gaussian SVM
	81.1
	0.8



	3
	3 (a)
	5
	500
	Quadratic SVM
	84.1
	2.2



	4
	4 (a)
	5
	750
	Cubic SVM
	85.6
	2.4



	5
	5 (a)
	5
	1000
	Cubic SVM
	87.6
	3.2



	6
	1 (b)
	10
	3045
	Quadratic SVM
	99.2
	16.2



	7
	2 (b)
	10
	200
	Fine Gaussian SVM
	82.6
	1.2



	8
	3 (b)
	10
	500
	Fine Gaussian SVM
	85.2
	2.20



	9
	4 (b)
	10
	750
	Cubic SVM
	87.8
	4.8



	10
	5 (b)
	10
	1000
	Cubic SVM
	87.5
	6.2










[image: Table] 





Table 4. Experiment_1 using 5 Folds (3045 Feature).
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	Classifier
	Accuracy (%)
	Total Cost
	Precision Speed (obs/s)
	Training Time (s)
	Precision
	F1-Score
	Recall





	Quadratic SVM
	98.9
	12
	760
	9.21
	0.99
	0.99
	0.99



	Linear SVM
	98.0
	20
	780
	9.65
	0.98
	0.98
	0.98



	Cubic SVM
	98.6
	14
	770
	9.43
	0.985
	0.985
	0.99



	Fine Gaussian SVM
	80.1
	199
	490
	16.3
	0.78
	0.785
	0.86



	Medium Gaussian SVM
	97.3
	27
	770
	9.76
	0.97
	0.975
	0.97



	Coarse Gaussian SVM
	92.5
	75
	740
	10.35
	0.915
	0.925
	0.92



	Weighted KNN
	95.0
	50
	360
	12.89
	0.945
	0.95
	0.95



	FINE KNN
	93.5
	65
	360
	13.62
	0.935
	0.935
	0.94



	Medium KNN
	87.8
	122
	360
	12.94
	0.865
	0.875
	0.90



	Coarse KNN
	81.3
	187
	360
	12.81
	0.795
	0.795
	0.87



	Cosine KNN
	89.8
	101
	330
	13.52
	0.89
	0.895
	0.91



	Cubic KNN
	87.5
	125
	73
	58.97
	0.865
	0.87
	0.90
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Table 5. Experiment_1 using 10 Folds (3045 Feature).






Table 5. Experiment_1 using 10 Folds (3045 Feature).





	Classifier
	Accuracy (%)
	Total Cost
	Precision Speed (obs/s)
	Training Time (s)
	Precision
	Recall
	F1-Score





	Quadratic SVM
	99.2
	8
	460
	16.221
	0.995
	0.99
	0.99



	Linear SVM
	98.3
	17
	440
	18.23
	0.98
	0.98
	0.98



	Cubic SVM
	99.1
	9
	450
	16.7
	0.99
	0.99
	0.99



	Fine Gaussian SVM
	85.4
	146
	310
	29.265
	0.84
	0.89
	0.84



	Medium Gaussian SVM
	98.3
	17
	450
	17.676
	0.98
	0.98
	0.98



	Coarse Gaussian SVM
	93.6
	64
	450
	18.689
	0.93
	0.94
	0.93



	Weighted KNN
	94.3
	57
	190
	23.037
	0.935
	0.95
	0.94



	FINE KNN
	94.2
	58
	190
	24.374
	0.935
	0.95
	0.94



	Medium KNN
	88.2
	118
	190
	23.12
	0.87
	0.91
	0.87



	Coarse KNN
	82.7
	173
	190
	23.278
	0.81
	0.88
	0.81



	Cosine KNN
	91.0
	90
	180
	24.438
	0.9
	0.92
	0.90



	Cubic KNN
	88.3
	117
	57
	73.713
	0.87
	0.91
	0.87
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Table 6. Experiment_2 using 5 Folds (200 Feature).






Table 6. Experiment_2 using 5 Folds (200 Feature).





	Classifier
	Accuracy (%)
	Total Cost
	Precision Speed (obs/s)
	Training Time (s)
	Precision
	Recall
	F1-Score





	Fine Gaussian SVM
	81.1
	189
	14,000
	0.81571
	0.8
	0.82
	0.805



	Linear SVM
	73.7
	264
	16,000
	1.3486
	0.735
	0.735
	0.73



	Cubic SVM
	80.4
	210
	15,000
	1.8572
	0.805
	0.805
	0.8



	Quadratic SVM
	78.4
	216
	15,000
	1.7431
	0.785
	0.78
	0.785



	Medium Gaussian SVM
	72.8
	273
	15,000
	0.7667
	0.71
	0.74
	0.715



	Coarse Gaussian SVM
	60.5
	396
	14,000
	0.671
	0.565
	0.71
	0.5



	Weighted KNN
	78.2
	218
	7700
	0.76741
	0.785
	0.785
	0.78



	FINE KNN
	74.8
	253
	7600
	1.1917
	0.75
	0.75
	0.75



	Medium KNN
	66.8
	333
	7800
	0.8367
	0.66
	0.665
	0.66



	Coarse KNN
	62.4
	377
	7200
	0.79092
	0.59
	0.675
	0.555



	Cosine KNN
	67.2
	329
	7500
	0.766606
	0.67
	0.665
	0.67



	Cubic KNN
	69.0
	311
	1200
	3.8096
	0.68
	0.685
	0.68
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Table 7. Experiment_2 using 10 Folds (200 Feature).






Table 7. Experiment_2 using 10 Folds (200 Feature).





	Classifier
	Accuracy (%)
	Total Cost
	Precision Speed (obs/s)
	Training Time (s)
	Precision
	Recall
	F1-Score





	Fine Gaussian SVM
	82.6
	174
	8300
	1.2664
	0.815
	0.83
	0.825



	Linear SVM
	73.2
	269
	8000
	1.8576
	0.725
	0.73
	0.73



	Cubic SVM
	80.8
	192
	8400
	5.6548
	0.815
	0.81
	0.81



	Quadratic SVM
	78.2
	218
	7800
	3.4237
	0.78
	0.78
	0.78



	Medium Gaussian SVM
	73.9
	262
	8100
	1.15
	0.725
	0.75
	0.725



	Coarse Gaussian SVM
	60.2
	399
	8100
	1.1668
	0.565
	0.715
	0.49



	Weighted KNN
	78.6
	214
	4100
	1.2662
	0.79
	0.785
	0.78



	FINE KNN
	75.0
	250
	4200
	1.8358
	0.755
	0.75
	0.75



	Medium KNN
	65.9
	342
	4000
	1.8129
	0.655
	0.655
	0.65



	Coarse KNN
	62.0
	381
	4000
	1.2544
	0.59
	0.67
	0.55



	Cosine KNN
	65.9
	342
	3900
	1.274
	0.665
	0.665
	0.655



	Cubic KNN
	68.5
	316
	960
	4.57
	0.675
	0.68
	0.68
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Table 8. Experiment_3 using 5 Folds (500 Feature).






Table 8. Experiment_3 using 5 Folds (500 Feature).





	Classifier
	Accuracy (%)
	Total Cost
	Precision Speed (obs/s)
	Training Time

(s)
	Precision
	Recall
	F1-Score





	Quadratic SVM
	84.1
	159
	7000
	2.2045
	0.84
	0.84
	0.84



	Linear SVM
	79.0
	210
	6900
	1.7001
	0.785
	0.79
	0.79



	Cubic SVM
	82.4
	176
	7300
	2.2117
	1.64
	1.65
	1.65



	Fine Gaussian SVM
	83.6
	164
	6900
	1.2768
	1.66
	1.68
	1.67



	Medium Gaussian SVM
	75.8
	242
	6900
	1.1461
	0.745
	0.765
	0.75



	Coarse Gaussian SVM
	67.0
	331
	6800
	1.1891
	0.65
	0.68
	0.65



	Weighted KNN
	80.4
	196
	3100
	1.5885
	0.805
	0.805
	0.805



	FINE KNN
	77.6
	224
	3200
	1.9972
	0.78
	0.775
	0.775



	Medium KNN
	69.4
	307
	3200
	1.6358
	0.685
	0.69
	0.685



	Coarse KNN
	67.4
	331
	3100
	1.584
	0.65
	0.695
	0.64



	Cosine KNN
	68.5
	316
	3000
	1.6165
	0.685
	0.685
	0.685



	Cubic KNN
	73.3
	268
	470
	9.3325
	0.72
	0.73
	0.73
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Table 9. Experiment_3 using 10 Folds (500 Feature).






Table 9. Experiment_3 using 10 Folds (500 Feature).





	Classifier
	Accuracy (%)
	Total Cost
	Precision Speed (obs/sec)
	Training Time

(s)
	Precision
	Recall
	F1-Score





	Fine Gaussian SVM
	85.2
	148
	3800
	2.2088
	0.845
	0.86
	0.85



	Linear SVM
	79.8
	202
	3600
	4.5137
	0.79
	0.8
	0.79



	Cubic SVM
	84.2
	158
	4100
	4.4002
	0.845
	0.84
	0.84



	Quadratic SVM
	84.7
	153
	4000
	4.1644
	0.845
	0.845
	0.845



	Medium Gaussian SVM
	75.9
	241
	4000
	2.1057
	0.75
	0.765
	0.755



	Coarse Gaussian SVM
	67.7
	324
	3900
	2.0635
	0.66
	0.69
	0.655



	Weighted KNN
	82.5
	175
	1800
	2.6916
	0.83
	0.825
	0.825



	FINE KNN
	79.4
	206
	1700
	3.7172
	0.795
	0.795
	0.79



	Medium KNN
	71.5
	286
	1800
	2.7012
	0.71
	0.71
	0.71



	Coarse KNN
	66.4
	337
	1800
	2.667
	0.645
	0.685
	0.63



	Cosine KNN
	67.9
	322
	1600
	2.786
	0.685
	0.68
	0.68



	Cubic KNN
	75.4
	246
	380
	11.154
	0.75
	0.75
	0.75
















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
Diseased Images





media/file4.png





media/file39.jpg
8

o

E

£
»

orNWANON®OR

0 500 1000 1500 2000 2500 3000 3500

Features





media/file18.png
True positive rate

o
®

o
o

o
A

o
N

o

Quadratic SVM (3045 Features)

(0.00,0.

98)

Positive class: A
AUC =100

ROC curve
Area under curve (AUC)
<) Current classifier

0.2

0.4 0.6 0.8
False positive rate

True positive rate

08

06

047

0.2}

Quadratic SVM(3045 Features)

(’ (0.02,1.00)

Positive class: B
AUC =1.00

ROC curve
Area under curve (AUC)
@® Current classifier

0 0.2 0.4 0.6 0.8

False positive rate





media/file21.jpg
Quadratie SVANINS Pestures)

Quadratic SVM(3045 Features)

Gaose)

© o2 o+ o8 o8 1
Fales posiive rate

©01100)

0 o2 o4 08 08 1
False positve rate





media/file44.png
Training Time

]
__.—""'-——-
’;r"',-—'"___.-""
0 500 1000 1500 2000 2500 3000

Features

3500






media/file26.png
Fine Gaussian SVM(200 Features)

(0.11,0.71)

Positive class: A
AUC =0.88

ROC curve
Area under curve (AUC)
® Current classifier

0 0.2 0.4 0.6 0.8 1

0.8

0.6

047

0.2}

Fine Gaussian SVM(200 Features)

(0.29,0.89)

Positive class: B
AUC =0.88

ROC curve
Area under curve (AUC)
® Current classifier

04 06 08 1






media/file7.jpg
@






media/file28.png
Fine Gaussian SVM(200 Features)

116






media/file10.png





media/file11.jpg





media/file6.png
I: Input

BN: Batch
Normalization

. FC: Fully SM:
P: Pooling Connected SoftMax

l C: Convolution l R: ReLLU I:I A: Addition .

Output

GAP: Global
Average pooling

DO: DropOut






media/file36.png
Fine Gaussian SVM(500 Features)






media/file15.jpg
Quadratic SVM(3045 Features)






nav.xhtml


  agriculture-13-00667


  
    		
      agriculture-13-00667
    


  




  





media/file2.png
PI'EP‘I‘DCESS:TJ‘[E Data Augmentation

Dataset

Feature Extraction
Bl -  Feature Selection

: (=T === A
”q;; "g-—-q_‘g‘_!]‘l‘l‘;“fl_ﬁ 1 .
§_ H“_-—-‘- g —»
£ (B B oo B [ oo | 2o,

| . B Bl e
- TTTTALLLAL TR TR L LR R BGWO
%% IR T LR TR AT TRTETTIRTHT ] ||
§ REE ELRE ELERE AEUERE FRUERE FRUERR g FARERY Classification
; LNTITTRTITTIRIH
ﬁ e |
» _ _
< | FHERRERRERREEEEEREERRERHE |






media/file23.jpg
Fine Gaussian SVM(200 Features)






media/file24.png
Fine Gaussian SVM(200 Features)






media/file29.jpg
Fine Gaussian SVM(200 Features)

@078

Posiive dass: A
RIE5

——rRoCane

s inder urve (AUC)

® Curentciassbir

Fine Gaussian SVM(200 Features)

(0mos0)

Pogtedass 8
poaki ]

— T
‘o ncer e (AU
® Curencasstr

0z o4 o6
False positive rate.

o oz o4 o5 o8 1

False posiive rate





media/file1.jpg
Preprocessing Dua Augmeniation

ey |

Feature Extraction

2 | o g

H <

3 {0 Classification
LTI

i

< WIInnnm






media/file12.png





media/file9.jpg





media/file42.png
1500 2000

Faetures

2500

3000

3500





media/file38.png
True positive rate

08¢

06

047

0.2r¢

Fine Gaussian SVM(500 Features)

(0.08,0.77)

Positive class: A
AUC =092
ROC curve

Area under curve (AUC)
® Current classifier

0 0.2 0.4 0.6 0.8 1
False positive rate

True positive rate

0.8

0.6}

0.4}

0.2

Fine Gaussian SVM(500 Features)

(0.23,0.92)

Positive class: B
AUC =092
ROC curve

Area under curve (AUC)
® Cument classifier

0 0.2 0.4 0.6 0.8 1

False positive rate





media/file17.jpg
i SN (NS Pestran)

©o000m

os
H oe

i o

2l CEE—

Pains poniiton rete.






media/file30.png
True positive rate

0.8

0.6

0.4

0.2

Fine Gaussian SVM(200 Features)

(0.11,0.74)

Positive class: A
AUC =090

ROC curve
Area under curve (AUC)
® Currentclassifier

0 0.2 0.4 0.6 0.8 1
False positive rate

True positive rate

08

06|

04r

027t

Fine Gaussian SVM(200 Features)

(0.26,0.89)

Positive class: B
AUC =0.90

ROC curve

Area under curve (AUC)
@® Current classifier

0 0.2

0.4 0.6
False positive rate

0.8






media/file35.jpg
Fine Gaussian SVM(500 Features)






media/file27.jpg
Fine Gaussian SVM(200 Features)






media/file3.jpg





media/file22.png
True positive rate

o
®

o
o

o
'S

o
N

Quadratic SVM(3045 Features)

l}70.00,0.99)
Positive class: A

AUC =1.00

ROC curve

Area under curve (AUC)

® Current classifier

=]
0 0.2 0.4 0.6 0.8

False positive rate

True positive rate

o
[

o
o

I

o
'S

o
N

Quadratic SVMIS3045 Features)

(0.01,1.00)

Positive class: B
AUC =1.00

ROC curve
Area under curve (AUC)
® Current classifier

0.2 0.4 0.6 0.8
False positive rate





media/file19.jpg
Quadratic SVM(3045 Features)






media/file40.png
Training Time
DN WEREUNO S 00WE

=

500

1000

1500 2000

Features

2500

3000

3500





media/file33.jpg
Quadratio SVM ( 800 Festures) Quadratic SVM(500 Features)

(©18.086)

(0.14.082) 808
2
% - Positive dass: B
O A =090
H

0 o0z o4 06 o8 1

o 02_os« o5 o8 1 St
False positive rate False ive rate





media/file32.png
Quadratic SVM(500 Features)






media/file14.png
Diseased Images Healthy





media/file41.jpg
Accuracy
exagrgg

0 500 1000 1500 2000 2500 3000 3500
Faetures





media/file37.jpg
Fine Gaussian SVM(500 Features)

(008077

Posiive dass: A
AUC =092

[——RoCaune
Ares under cave (AUC)|
® _Curentciassror

Fine Gaussian SVM(S00 Features)

‘023092

Posiive dass: &
AUC =092

Ara under curve AVC)|
® Cunentcusiter

o o0z o4 06 08 1
False positive rate

0z o4 o6 08 1
False positive rate.





media/file46.png
Accuracy

120
100
80
60
40
20

500

1000 1500 2000 2500 3000 3500

Features





media/file45.jpg
0

500

1000

1500 2000 2500 3000 3500

Features





media/file16.png
Quadratic SVM(3045 Features)






media/file20.png
Quadratic SVM(3045 Features)






media/file5.jpg
B 1 B ] B,
Do geee Bioom s, o






media/file31.jpg
Quadratic SVM(500 Features)






media/file25.jpg
o8

06

04

02

Fine Gaussian SVM(200 Features)

©11.071)

Positive dass: A
REET

——rocane

® _Curontciassiior

Area under curve (AUC)

08

06

04

02

Fine Gaussian SVM(200

(020089)

Positive dass: B
AUC =088

Features)

——RoCame

Area under curve (AUC))
@ Curentclassiier

o8

08






media/file0.png





media/file8.png
(2) (b) (©) (d)
(e) () (2) (h)





media/file43.jpg
Training Time.

500

1000

1500 2000

Features.

2500

3000

3500





media/file34.png
True positive rate

087

06

047

027

Quadratic SVM ( 500 Features)

(0.14,0.82)

Positive class: A
AUC =090

ROC curve
Area under curve (AUC)
® Current classifier

0.2 0.4 0.6 0.8
False positive rate

True positive rate

o
®

o
(o)

o
»

et
N

Quadratic SVM(500 Features)

(0.18,0.86)

Positive class: B
AUC =090

ROC curve
Area under curve (AUC)
® Current classifier

0 0.2 0.4 0.6 0.8 1
False positive rate





