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Abstract: A sufficiently early and accurate prediction can help to steer crop yields more consciously,
resulting in food security, especially with an expanding world population. Additionally, prediction
related to the possibility of reducing agricultural chemistry is very important in an era of climate change.
This study analyzes the performance of pea (Pisum sativum L.) seed yield prediction by a linear (MLR)
and non-linear (ANN) model. The study used meteorological, agronomic and phytophysical data
from 2016–2020. The neural model (N2) generated highly accurate predictions of pea seed yield—the
correlation coefficient was 0.936, and the RMS and MAPE errors were 0.443 and 7.976, respectively.
The model significantly outperformed the multiple linear regression model (RS2), which had an RMS
error of 6.401 and an MAPE error of 148.585. The sensitivity analysis carried out for the neural network
showed that the characteristics with the greatest influence on the yield of pea seeds were the date of
onset of maturity, the date of harvest, the total amount of rainfall and the mean air temperature.

Keywords: pea; seeds yield prediction; ANN; MLR; sensitivity analysis

1. Introduction

There are many challenges facing modern agriculture. The priority is to increase food
production while minimizing environmental impact [1,2]. This task seems particularly
difficult in the face of climate change and the occurrence of increasingly frequent extreme
weather events, which pose a serious threat to crop yields [3]. It is assumed that about
67% of crop variability is governed by the weather conditions that prevail throughout
the crop growing season, with 33% governed by other factors, such as agrotechnology or
habitat conditions [4]. Therefore, early and accurate forecasting of crop yields is becoming
increasingly important [5]. Being able to estimate yields a few weeks before harvest
allows an appropriate strategy to be taken for the pricing of agricultural products. Yield
prediction can also be a useful tool for decision makers in regulating both exports in case
of surpluses and imports in times of agricultural commodity shortages [6]. In addition,
early information on yields can help farmers in terms of work planning and storage space
selection [7]. This knowledge can also help to improve the profitability of agricultural
production by optimizing the number of crop protection and/or fertilization treatments.
Lower usage of these products leads to a reduction in total labor inputs and on-farm energy
inputs [8,9]. In the final balance, these factors contribute to increased labor productivity,
conservation of natural resources and increased farm profitability through lower production
costs [10]. Accurate and early prediction of crop yields also plays an important role in global
food security by providing valuable information to various stakeholders (farm owners,
agronomists, etc.) [11,12].

The need for accurate and timely predictive models for agricultural crop yield has
led to a growing interest in this topic from the scientific community [13–18]. However,
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developing a predictive model is not an easy task [19]. The issue is extremely complex due
to the multitude of factors affecting crop yield. The most commonly cited determinants
include genotype and weather conditions, including rainfall, sunshine, minimum and
maximum air temperature, habitat conditions (soil pH, soil nutrient abundance, etc.),
agronomics and the interactions of these factors [20–23]. Many different approaches are
used in yield forecasting, and each method has strengths as well as limitations [24]. One
such method is multiple linear regression (MLR). MLR, as a statistical tool, is able to predict
yield based on, among other things, agronomic data. However, the effectiveness of this
method is often questioned due to its low prediction accuracy [25]. The major disadvantage
of MLR models is that they are not appropriate for explaining non-linear and complex
relationships between yield and the factors that influence yield [26].

With the development of information technology, modern mathematical algorithm
techniques such as machine learning (ML) have begun to be applied. The possibility of
using models based on artificial intelligence has contributed to an increase in accurate
forecasting of random and non-linear issues [27]. This feature has made machine learning
the method most commonly used in yield modeling [28,29]. In addition to its high predic-
tion quality, ML is able to identify patterns in datasets and reveal complex relationships
between independent variables [30]. Additionally, the advantage of ML over traditional
linear regression methods lies in its ability to use, as explanatory variables, two or more
spectral variables from satellite imagery [31]. The inclusion of these data in yield modeling
is becoming an increasingly common practice due to further improvements in prediction
quality and the prospect of capturing new correlations between these factors and crop
yield [32]. Furthermore, in machine learning-based models, it is possible to use linguistic
variables without having to code them in advance, as is the case with regression mod-
els [9,33]. The accuracy of yield estimation that is achieved by machine learning methods
means that these models require large datasets from a variety of sources. In the case of a
small number of predictors, the proper calculation of yield variability by ML usually suffers
from a large prediction error [34]. Other limitations in the use of ML are that some methods
require computationally powerful equipment and that analysis time is much longer than it
is for multivariate linear regression [35,36]. Machine learning models are also sensitive to
significant correlations between independent characteristics. For this reason, the dataset
that is fed into the model often requires prior preparation, and additional statistical analyses
may need to be performed to capture these correlations [37]. Some of the most successful
machine learning techniques are support vector machines (SVMs), convolutional neural
networks (CNNs), random forest (RF), k-nearest neighbors (kNNs) and artificial neural
networks (ANNs) [38–41].

ANNs are a mathematical tool that can create a non-linear representation of the
connections between the explained variable and the input variables [42]. ANNs are, to
some extent, inspired by the functioning of parts of the real (biological) nervous system [43].
However, the connection patterns of neurons in artificial neural networks are chosen
arbitrarily and are not a model of actual neural structures. ANNs as a computer tool
are distinguished by their ability to solve practical problems in a computerized manner
without prior mathematical formalization [44]. Another advantage is that it is not necessary
to refer to any theoretical assumptions about the problem being solved when working
with neural networks. Even the assumption of causal relationships between exploratory
and explanatory features need not be enforced [45]. The computations performed by the
ANN are performed in parallel. The artificial neurons that make up the network perform
their computational tasks simultaneously. This makes the network capable of solving the
problem under analysis in a short period of time. However, the more complex the problem
the neural network investigates, the more time it takes to find the right solution [46]. The
most characteristic feature of artificial neural networks is the ability to learn from examples
and the ability to self-generalize the acquired knowledge (generalization) [47]. The threat
to generalization is overlearning. An overlearned network excessively adapts the acquired
knowledge to irrelevant details of specific learning cases [48].
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One commonly used ANN model is the multilayer perceptron (MLP) [17,18,49–51]. It
is a fully connected unidirectional neural network [7] that typically consists of three layers:
an input layer, at least one hidden layer consisting of sigmoidal neurons and an output
layer consisting of sigmoidal or linear neurons. The back-propagation method is the most
commonly used technique for learning MLP networks [52]. This method is based on the
concept of correcting, at each stage of learning, the values of the weights based on the
evaluation of the error made by each neuron during the learning of the network [53].

The present work is a continuation of the authors’ previous research [54], which
aimed to determine the effectiveness of linear (MLR) and non-linear (MLP) models in
predicting the protein content of Pisum sativum L. pea seeds. The current study focused on
the possibility of predicting the seed yield of general pea seeds using ANNs, and MLR was
used as a comparative model. In addition, the study aimed to test three hypotheses: (i) the
artificial neural networks model is an effective tool in predicting pea seed yield 20 days
before harvest; (ii) five-year field trials under a variety of experimental conditions allow for
the construction of a model predicting pea yield; and (iii) neural networks can predict yield
more accurately than the MLR model.

2. Materials and Methods

This research was carried out between 2016 and 2020 at the Stations and Experimental
Plants of the Research Center for Cultivar Testing (COBORU). The mission of COBORU is to
stimulate innovation in plant breeding and seed science and to support the implementation
of diverse progress into agricultural practice [55]. The work of this unit is focused, among
other things, on research into the distinctiveness, uniformity and stability of crop varieties
in Poland. In addition, COBORU is involved in conducting field research on the assessment
of the cultivation and use value of agricultural crops. These studies are conducted under
conditions as close as possible to production conditions. The results of the conducted
experiments make it possible to determine whether a given variety can be entered into the
National List of Varieties [56].

The experimental plots were located in Poland at the following locations: Bezek
(N 51◦12′6.722′ ′ E 23◦16′7.656′ ′), Głębokie (N 52◦38′33.18′ ′ E 18◦26′16.26′ ′), Kawęczyn
(N 52◦10′15.157′ ′ E 20◦20′49.328′ ′), Krzyżewo (N 53◦1′33. 535′ ′ E 22◦45′28.438′ ′), Pawłowice
(N 50◦27′14.049′ ′ E 18◦29′28.912′ ′), Radostowo (N 53◦59′20.566′ ′ E 18◦44′41.429′ ′) and
Sulejów (N 51◦21′8.03′ ′ E 19◦52′7.517′ ′). The experiments were situated in locations that
are optimal for pea cultivation in terms of habitat. These localities are characterized by
a temperate warm climate, with average monthly air temperatures ranging from −5.0 to
−2.0 ◦C in January and 16 to 18 ◦C in July. Average annual precipitation is in the range
of 550–800 mm [57]. According to Polish soil classification, clay soils of classes II-IIIb
prevail in these localities. The data for the construction of the models are official data,
coming from a variety of COBORU tests, and are acceptable to all authorities related to
agricultural production in Poland. The nature of the experiments and the way in which
they were carried out are recorded in the methodology [58], which is a set of experimental
concepts and guidelines. This ensures that all research assumptions are met. The research
was conducted in the same way at each COBORU point. The meteorological data were
obtained from the archive database of the Institute of Meteorology and Water Management
at the National Research Institute. A detailed description of the conduct of the experiments,
the acquisition of the dataset and the sources of these data were previously described by
the authors of this paper [54]. The construction of an ANN (N2) and MLR (RS2) model
was performed based on 11 general purpose pea cultivars: Arwena, Astronaute, Batuta,
Mecenas, Medyk, Mentor, Olimp, Spot, Starski, Tarchalska and Tytus.

2.1. Construction of the Database

The first and most important step in the construction of linear and non-linear models
is the appropriate selection of input variables. The importance of this step is due to the fact
that the chosen input parameters directly affect the performance of the resulting models [37].
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The input variables shown in Table 1 were used to build the N2 and RS2 model. The output
variable was pea seed yield expressed in t·ha−1. The dataset consisted of 1155 cases/plots.
Each plot was a separate case for model building. All cases that formed the dataset were
divided into two sets: A and B. Data from 1040 plots were assigned to set A, while set B
was created from the remaining 115 cases and was used for model validation.

Table 1. The structure and scope of the independent variables used in the construction and verification
of the N2 and RS2 models.

Symbol Unit of Measure Description of the Variable The Scope of Data

Independent Variables

RAIN mm Rainfall in the period from sowing to 14 July 96.9–312.4

SUN h Sum of insolation that occurred in the period
from sowing to 14 July 630.5–1051.5

TEMP ◦C Average daily air temperature in the period
from sowing to 14 July 11.0–17.5

N_F kg/ha Amount of nitrogen introduced into the soil
with mineral fertilizers 10–90

P2O5_F kg/ha Amount of phosphorus incorporated into the
soil with mineral fertilizers 0–80

K2O_F kg/ha Amount of potassium introduced into the soil
with mineral fertilizers 0–119

SOWI days Date of sowing of field peas—defined as
number of days since the beginning of the year 83–102

P_EMER days Pea crop emergence—defined as number of
days since the beginning of the year 96–133

HAR days Date of harvesting of field pea plants—defined
as the number of days from 1 January 184–221

FLOWE days Flowering onset date—number of days from
the beginning of the year 126–169

INI_MA days Maturity onset date—defined as the number of
days from 1 January 167–211

TECH_M days Technical maturity date—number of days
since the beginning of the year 171–216

P_HIG cm Height of plants 43–156
WEGW days Number of plant growing days 87–137

PH - Soil reaction (pH) 5.5–7.5
P2O5_C Range from 0 to 4 * Phosphorus (V) oxide content of the soil 0–4
K2O_C Range from 0 to 4 * Potassium oxide content of the soil 0–4
MGO_C Range from 0 to 4 * Magnesium oxide content of the soil 0–4

GEN Feature coded 101 to 111 Variety of peas –

Dependent Variable

YIELD t·ha−1 Pea seed yield 2.30–8.02

* The range from 0 to 4 refers to the nutrient abundance of the soil. A value of 0 indicates very low abundance,
1 indicates low abundance, 2 indicates medium abundance, 3 indicates high abundance and 4 indicates very high
abundance. Range from 0 to 4.

2.2. Construction of the N2 Model

In the present study, it was assumed that the forecast of pea seed yield would be
made before harvesting [59], i.e., 14 July. The forecast date was selected based on the
dominance of the onset of maturity of the pea varieties included in the dataset. The analysis
of the dataset showed that the harvesting of peas of general use varieties was most often
performed on 3 August. Therefore, the obtained linear and non-linear model predicted the
yield 20 days before the harvest of peas grown under experimental conditions.

The construction of N2 models consisted of input variables being repeatedly provided
to the network [60]. A total of 10,000 neural networks were tested using an automatic
network designer. Different ANN model structures were analyzed, including variations in
the number of neurons in the hidden layer. This method selected a model with an MLP
architecture of 19:19-24-1:1 (Figure 1). The multilayer perceptron is a type of ANN widely
recommended in works on similar topics due to its high potential for non-linear function
estimation [18,61–63]. The main advantage of MLPs is the ability to discriminate data that
cannot be linearly separated [7].
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Figure 1. Network structure for the N2 model.

The optimization of the artificial neural network structure was performed by obtaining
the minimum validation error. The selection of the neural network model was also guided
by the size of the training and test set errors and other important quality parameters, as
shown in Table 2. In this research, set A was divided into three subsets: learning, test
and validation. This division is common in the development of predictive models using
ANNs [5,59,64]. In the present study, 50% of the records (or 520 cases) were assigned to the
learning subset. The test and validation subsets consisted of the same number of objects,
i.e., 260, each representing 25% of the cases from the entire A set. The construction of the
N2 model was carried out using Statistica v7.1 (TIBCO Software Inc., Palo Alto, CA, USA).

Table 2. Quality parameters and error rates of subsets and the number of learning epochs of neural networks.

Subsets Teaching Validation Testing

Size of error 0.0556 0.0590 0.0679
Quality 0.3576 0.3645 0.4311

Epochs of learning

Back-propagation method of error 100
Coupled gradients method 110b *

* b (best)—the best result in the indicated learning epoch.

2.3. Construction of the RS2 Model

Due to their simplicity, multivariate linear regression models are commonly used in
the prediction of agricultural crop yields [65]. MLR models the combination of a dependent
trait and two or more independent traits by creating a linear equation to the observed
data [66]. The value of the explanatory variable (Y) is related to the value of the explanatory
variables (X) according to Equation (1) [62]:

Y = b0 + b1·X1 + b2·X2 + ... + bp·Xp + ε, (1)

where Y is the dependent variable (explained variable), X1, X2 . . . Xp represents the inde-
pendent variables (explanatory variable), b0, b1, b2 . . . bp represents equation parameters
and ε denotes the random component (rest of the model).

For the purpose of this work, an MLR model (stepwise progressive) was built based
on the explanatory variables presented in Table 1. The procedure for building the RS2
model was similar to that for the N2 model. The computational analysis took eighteen
steps. All the steps involved in building and verifying the RS2 model were performed, as
with the N2 models, in Statistica v7.1 (TIBCO Software Inc., Palo Alto, CA, USA).
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2.4. Evaluation Criteria for the N2 and RS2 Models

Six performance criteria (global relative error of model approximation (RAE), root
mean square error (RMS), mean absolute error (MAE), mean absolute percentage error
(MAPE), maximum error determined for the whole model (MAX) and maximum percentage
error (MAXP)) were used to evaluate the resulting predictive models [54]. In order to
calculate the values of these errors, a set B was required, which was used to determine the
difference between the predicted and observed values. The magnitudes of these errors
were calculated from the equations below:

RAE =

√√√√∑n
i=1(yi − y′ i)

2

∑n
i=1 (yi)

2 , (2)

RMS =

√
∑n

i=1(yi − y′ i)
2

n
(3)

MAE =
1
n ∑n

i=1

∣∣yi − y′ i
∣∣ (4)

MAPE =
1
n ∑n

i=1

∣∣∣∣yi − y′ i
yi

∣∣∣∣ · 100% (5)

MAX = maxi ·
∣∣yi − y′ i

∣∣ (6)

MAXP = maxi

∣∣∣∣yi − y′ i
yi

∣∣∣∣ ·100% (7)

where n is the number of observations, yi is the actual values and y′i is the predictive values
obtained with the model.

2.5. Sensitivity Analysis of the Neural Network

The final stage in the construction of predictive models based on ANNs is sensitivity
analysis of the neural network. This stage consists of differentiating the independent
variables in terms of their influence on the dependent variable. The method of calculating
and interpreting the results obtained from the sensitivity analysis has been discussed in
previous works by the authors of this paper [17,18,54].

3. Results
3.1. Overall Assessment of the Predictive Quality of the N2 and RS2 Models

Building predictive models based on artificial neural networks requires partitioning
of the dataset. In this paper, the dataset was divided into three subsets: learning, validation
and testing. The learning set contains both input and output data as patterns of valid
signals. Based on these, the learning algorithm confronts the actual behavior of the network.
The validation set is used indirectly in the learning process. Its task is to participate in
periodic validation during the learning of the model, which prevents the occurrence of
network overfitting [67]. The test set, on the other hand, is intended for one-time control
after the training is completed. In general, this procedure is aimed at checking whether
there was any loss of network generalization ability during training that may have resulted
from coincidence, despite cyclical internal validation. Table 2 shows the error sizes and the
quality of each subset. From this, we can observe that the learning set had the smallest error
size (0.0556). The test set, on the other hand, was characterized by the largest error among
the analyzed subsets. The error value for this subset was 0.0679. A different relationship
can be observed in the case of subset quality. The test set was characterized by the highest
value of this feature (0.4311), and the learning set by the lowest (0.3576). The validation set
took an intermediate position (0.3645).

The N2 model was learned using two methods: back-propagation of the error and
the coupled gradients method. The point at which there is an increase in error for the
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validation set is the signal to stop training the neural network and recover the best weight
from the epoch that preceded the start of the error increase. In the case at hand, the first
learning method lasted for 100 epochs, and by continuing the learning process with the
coupled gradients method, it was possible to obtain the best result, which was achieved at
110 epochs.

The obtained N2 model predicting pea seed yield was characterized by a relatively low
mean error value, which was about 0.015 (Table 3). The model also obtained a small mean
absolute error, which did not exceed the value of 0.305. In turn, the correlation coefficient
reached a relatively high value (0.936). In developing predictive models, it is important that
the model built is characterized by low error magnitudes and a high correlation coefficient
value, as only such a model will be able to accurately predict the dependent variable.

Table 3. Qualitative measures of the N2 model.

Quality Parameter Value

Average 4.504
Standard deviation 1.106

Average error 0.015
Error deviation 0.389

Average absolute error 0.305
Deviation quotient 0.352

Correlation coefficient r 0.936

Multivariate linear regression analysis showed that the input variables that were not statisti-
cally significant (α = 0.05) were the date of harvest (HAR), the date of plant technical maturity
(TECH_M) and the dose of potassium brought into the soil with mineral fertilizer (K2O_F).

Based on the results in Table 4, the form of the MLR equation was determined:

YIELD = 0.215 × P2O5_C − 0.23 × N_F − 0.089 × P_EMER + 0.123 INI_MA − 0.007 × TEMP − 0.007 × RAIN −
0.003 × SUN + 0.022 × P2O5_F + 0.481 × PH + 0.169 × K2O_C − 0.040 × FLOWE − 0.150 ×MGO_C − 0.031 ×

GEN + 0.005 × P_HIG + 0.034 ×WEGW
(8)

3.2. Evaluation of Neural Network Sensitivity Analysis

The purpose of sensitivity analysis is to identify the independent variables that most
influenced the dependent trait, pea seed yield. Based on the study, it can be observed
that the onset of pea plant maturity (INI_MA) influenced the yield to the greatest extent
(Table 5). This feature was ranked 1, and not including it in the N2 models would increase
the cumulative error by a factor of 2378. The feature that received a rank of 2 was harvest
date (HAR). Not including this variable in the model would increase the cumulative error
by about 1.677 times. The variables ranked 3 and 4 were rainfall (RAIN) and mean air
temperature (TEMP) calculated from sowing to 14 July. The absence of these variables in
the N2 models would increase the cumulative error by 1.575 and 1.471 times, respectively.

Figure 2 shows a scatter plot of observed versus predicted values. From it, it can
be concluded that the N2 model was characterized by a good level of prediction of pea
seed yield, as evidenced by the relatively high value of the coefficient of determination
(R2), which was about 0.84. A much lower value of this indicator was obtained for the
RS2 model (Figure 3). The R2 coefficient did not exceed a value of 0.58, indicating that the
response of the model is strongly discrepant with the observed values. The resulting model
has virtually no ability to adequately represent the relationships characteristic of the issue
under consideration.
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Table 4. Results of multiple linear regression (MLR) analysis.

Factor

MLR: r = 0.7656
R2 = 0.5788

Standard Error of Estimate = 0.7184

Beta Standard
Error Beta b Standard

Error b p Significance

Free Term − − −2.207 2.018 0.274282 −

HAR −0.086 0.136 −0.010 0.017 0.526117 −

P2O5_C 0.177 0.026 0.215 0.031 0.000000 +

N_F −0.1166 0.030 −0.012 0.003 0.000108 +

P_EMER −0.480 0.046 −0.089 0.009 0.000000 +

INI_MA 1.027 0.124 0.123 0.015 0.000000 +

TEMP 0.398 0.080 0.283 0.057 0.000001 +

RAIN −0.343 0.030 −0.007 0.001 0.000000 +

SUN −0.225 0.029 −0.003 0.000 0.000000 +

P2O5_F 0.370 0.040 0.022 0.002 0.000000 +

PH 0.209 0.029 0.481 0.068 0.000000 +

K2O_C 0.143 0.029 0.169 0.035 0.000001 +

FLOWE −0.199 0.040 −0.040 0.008 0.000001 +

MGO_C −0.144 0.031 −0.150 0.032 0.000004 +

GEN −0.089 0.021 −0.031 0.007 0.000017 +

P_HIG 0.077 0.030 0.005 0.002 0.010286 +

TECH_M −0.200 0.114 −0.024 0.013 0.078386 −

WEGW 0.358 0.167 0.034 0.0158 0.032558 +

K2O_F 0.067 0.038 0.003 0.002 0.081382 −
Determination of the level of statistical significance: − non-significant; + significant for α = 0.05.

Table 5. Results of the neural network sensitivity analysis.

Variable Quotient Rank

INI_MA 2.378 1
HAR 1.677 2
RAIN 1.575 3
TEMP 1.471 4

P_EMER 1.468 5
MGO_C 1.395 6

SOWI 1.387 7
K2O_C 1.356 8
P2O5_F 1.333 9
WEGE 1.261 10
P_HIG 1.170 11

PH 1.136 12
TECH_M 1.129 13

K2O_F 1.112 14
P2O5_C 1.110 15

GEN 1.079 16
SUN 1.052 17

FLOWE 1.052 18
N-F 1.045 19
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The sensitivity analysis of the N2 model shows that some of the most important
variables affecting pea yield were the date of onset of plant maturity (INI_MA) and the
date of harvest (HAR). The relationship of these variables is shown in Figure 4. The plants
reaching the maturity stage results in low seed yield. The same is true for early harvesting,
which can also result in low yields. Higher yields were achievable when plants reached the
onset of maturity later and when the harvest date was later.
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The relationship between pea yield and seed harvest date (HAR) and mean daily
air temperature (TEMP) is shown in Figure 5, from which we can observe that the yield
increased with increasing mean daily air temperature. A later harvest date also contributed
to higher yields. At low TEMP, harvesting too early resulted in low crop efficiency. In
addition, it can be observed from Figure 5 that temperature was the characteristic that most
determined harvest date. An average daily air temperature of 18 ◦C allowed the seeds to
be harvested around 29 June (180 days from the beginning of the year).
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Based on the sensitivity analysis of the neural network, it was possible to determine
the relationship of the independent variables of onset of maturity (INI_MA) and mean daily
temperature (TEMP) in relation to seed yield (Figure 6). Plants yielded best when they
reached the onset of maturity stage later (215 days) and when the average air temperature
exceeded 17 ◦C. When peas reached the onset of maturity stage at 165 days (counted from
the beginning of the year), plants were characterized by low yields (about 2 t·ha−1). An
increase in the TEMP trait contributed to an increase in plant yield. However, when the
onset of maturity was reached early, this increase was insignificant and pea seed yield did
not exceed 3 t·ha−1.
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3.3. Comparative Analysis of N2 and RS2 Models Based on Model Evaluation Criteria

The constructed models were verified for their validity. For this purpose, basic quality
criteria were used, the values of which are shown in Table 6. The N2 model achieved a
root mean square error (RAE) of 0.094 and the maximum percentage error (MAPE) was
around 7.98. Much larger error values were obtained for the RS2 model. The RMS error
was determined to be 6.401 and the MAPE reached a value of 148.585. Such high errors
make the multiple linear regression method an unsuitable tool for forecasting pea seed
yield. The strongly non-linear relationships affecting pea yield cause the linear method to
mispredict the dependent variable.
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Table 6. The quality of the generated neural models.

Error Type N2 Model RS2 Model

RAE 0.094 1.361
RMS 0.443 6.401
MAE 0.347 6.361

MAPE 7.976 148.585
MAX 1.398 7.739

MAXP 48.050 237.384

4. Discussion

Yield prediction methods have been used extensively in a number of works and have
built models predicting the yields of maize, potato, winter wheat and orchard fruit, among
others [68–73]. Specialized equipment, such as drones equipped with multispectral cameras,
has been used to build some models in order to obtain information on crop characteristics.
However, these devices can often be very expensive, and it is additionally necessary to
have adequate knowledge of their operation. Consequently, models based on field imaging
can be very difficult for agricultural producers and their application in agricultural practice
may be limited. The proposed N2 and RS2 models were built using weather, agronomic
and phytophenological data. Analysis of the prediction quality of the models showed that
multiple linear regression was ineffective in estimating pea seed yield under the experimen-
tal conditions. The obtained MAPE error of 148.585 significantly exceeded the prediction
accuracy threshold, disqualifying the obtained model as a suitable tool in yield prediction.
According to Peng et al. [15], a predictive model that achieves an MAPE error greater than
30% is characterized by a poor representation of the predicted and observed values of the
compound and should therefore be discarded. When MAPE is <10%, the model exhibits
an excellent degree of fit. Such a low mean absolute percentage error was obtained for the
N2 model based on ANNs. This model had an MAPE error of 7.976 (Table 6). It should
be noted, however, that there is no appropriate comparative method for ANNs, and such
models are therefore mainly compared with classical regression analyses worldwide. Such
comparisons have been made, among others, by Kumari et al. [74], who predicted the
yield of Indian nickel (Cajanus cajan—a bean crop) using a two-layer feed-forward neural
network and an MLR model. The study was conducted in the Varanasi region (India)
and the input data used were for the 1985–1986 and 2011–2012 periods. Five weather
characteristics were used to build the models, i.e., minimum and maximum temperature,
rainfall, and maximum and minimum relative humidity. The study conducted showed
that the ANN model outperformed the MLR model in the prediction of Indian nickel yield.
The RMS error for the ANN model was 299.93 kg·ha−1, while the MLR model had an
error magnitude of 884.02 kg·ha−1. Artificial neural networks and multiple regression
models were also used for the prediction of crescent beans (Phaseolus lunatus L.) [75]. The
study was conducted in the northeastern part of Brazil, and independent variables used
included the date of flowering onset, the date of pod maturity onset and pod length. The
analysis showed that the MLP model forecasted yield more accurately compared to the
MLR model, as evidenced by the MAPE, RMS and MAE error values. These error values
were 1.701, 0.565 and 0.425 for the MLP model and 6.458, 0.828 and 0.690 for the MLR
model, respectively. The effectiveness of feed-forward neural networks in predicting the
yield of oilseed rape and mustard grown in northeast India was also demonstrated by
Kakati et al. [5]. The ANN model predicted crop yield for the Dhubri region with an RMS
error of 11.3 and an R2 value of 0.976, while the stepwise multiple linear regression (SMLR)
model had an R2 value of 0.756 and an RMS error of 65.4 Ang et al. [76] investigated
the feasibility of using different models, including MLR models and DNNs (deep neural
networks), to predict the yield of oil palm grown in the state of Pahang (Malaysia). The
deep neural network consisted of three hidden layers: the first layer contained 256 neurons,
the second layer contained 480 neurons and the third layer contained 256 neurons. The
model accurately predicted yield with an RMS error of 2.92 and an MAPE error of 0.09.
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In contrast, the MLR model had RMS and MAPE errors of 6.20 and 0.7, respectively. In
addition, the R2 coefficient of determination was 0.91 for the DNN model and 0.49 for the
MLR model.

Other machine learning techniques are also effective in crop yield prediction, surpass-
ing the quality of predictions made by classical MLR models. This is confirmed by the
study by Sun et al. [77]. The authors used the random forest (RF) method to predict the
yield of winter wheat grown in China. The study covered the years 2014–2018, and the
integration of satellite, weather and geographical data was used to build the model. The
average RMS error for the MLR model was 1229.97 and the coefficient of determination
was 0.73. These results are significantly different from those obtained by the RF model.
The mean RMS error for this model was more than 2.5 times smaller than that of the MLR
model (465.32), and the R2 coefficient was equal to 0.85. Zhao et al. [78] obtained similar
results by investigating the ability of RF and MLR models in estimating the yield of winter
wheat grown in the North China Plain. The researchers analyzed the applicability of these
models at different periods of plant development. The results showed that the RF and
MLR models obtained the best results for the period from the beginning of grain filling to
the milk stage. However, the MLR model had a larger RMS error (778.0) and r-ratio (0.79)
compared to the RF model, for which these parameters were 683.0 and 0.86, respectively.

A comparison of actual and predicted values (Figures 2 and 3) shows that the co-
efficient of determination for the N2 model (R2 = 0.8254) was at a higher level than it
was for the RS2 model (R2 = 0.5819). These results show that the RS2 model had much
weaker predictive properties with respect to the N2 model. However, multiple linear
regression models, as already mentioned, are commonly used in yield prediction. This
method has many limitations, such as the assumption of a linear relationship between the
exploratory variable and the explanatory variable [17]. If the relationship between these
variables is non-linear, the regression model will tend to perform poorly. In addition, linear
regression assumes that the input variables are not correlated with each other. If there is
multicollinearity in the dataset, then this assumption is violated, and the performance of
the regression model will be reduced. Additionally, linear models are assumed to have
a constant variance under error conditions (homoskedasticity), which is often not true.
Another problem that hinders proper prediction using MLR models is the presence of
outlier points, which significantly affect its performance [65]. On the other hand, ANN
models, including those with MLP architecture, are capable of predicting agricultural
crop yields even in the case of strong non-linear relationships between the independent
variables and the dependent variable. In addition, the main function of neural networks is
to identify hidden patterns and features in the dataset. This activity is made possible by
the two most important parts of the network, i.e., the activation function and the weighting
parameters [5]. From the research carried out, all the variables tested in the study are
characterized by non-linear patterns. Therefore, the RS2 model could not properly estimate
the yield. Our research shows that the choice of method for creating the model is a kind
of compromise that requires its creator to have a very thorough knowledge of the test
object. This ensures that accurate yield predictions are obtained. However, ANNs are
also not free from certain limitations. One of the biggest is that neural network models
require a lot of, sometimes very specific, input data to train [79]. Acquiring such data can
often be cumbersome, and for regions where observational records are lacking, obtaining
short-term predictions is significantly difficult [80]. In addition, the appropriate selection of
independent characteristics must be supported by extensive knowledge of the issue being
modeled [9]. In the present study, three categories of independent variables were used:
weather data, agronomic information and phytophenological data. These variables are
publicly available and the results of analyses involving these data are easy to interpret.

The inclusion of climatic conditions when modeling agronomic issues is an important
element when seeking to obtain a high-performance model. The inclusion of information
related to air temperature, sunshine and precipitation during the growing season is rea-
sonable, as these factors strongly determine plant growth and development [81]. Plant
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productivity is significantly affected by the temperature distribution during the growing
season. However, the influence of this factor is reduced when there is an adequate water
supply to the plants [82]. This assumption was fulfilled in this work because data from
typical years, without weather anomalies that affect the quality of the models, were selected
for analysis. According to a study by Aubakirov et al. [19], the amount of precipitation
and temperature had the greatest impact on the multiplicity of yield of wheat grown in
the North Kazakhstan region. Consideration of these data by the authors made it possible
to build a back-propagation artificial neural network model that predicted wheat yield
multiplicity with an MAPE error of 12.02 and an RMS error of 3.368. Similar observations
were reached by Nedbała et al. [59], who identified key meteorological factors affecting
soybean (Glycine max [L.] Merrill) yield and harvest date. A sensitivity analysis of the
MLP network found that the variable that most influenced soybean seed yield was air
temperature in the second ten days of May. In contrast, the variables that most influenced
soybean harvest date were rainfall totals in the first ten days of June and the first ten days of
August. The inclusion of environmental variables in modeling is also highlighted by Vojnov
et al. [60], who attribute significant effects on plant parameters and on the performance of
ANN models to these data.

Many scientific disciplines and the agricultural industry commonly use phytopheno-
logical periods of plant development. Among other things, they are helpful in determining
when to apply inputs. These phases have been standardized for ease of communication
between agronomists, naturalists, breeders of new agricultural varieties, etc. [7]. In model-
ing agricultural crop yields, this information is exploited to enhance the efficiency of the
models built. As reported by Shamsabadi et al. [20], the inclusion of data such as number
of days to emergence, days to maturity and number of days to flowering in the model
significantly affected the performance of the MLP model. The model predicted the seed
yield of hybrid wheat that was grown in the northern part of Iran. In the present study,
empirical data in the form of phytophenological periods were also used, which allowed for
the construction of an N2 model with an MAPE error of 7.976 (Table 6) and a correlation
coefficient of 0.936 (Table 3).

A sensitivity analysis of the N2 model showed that the independent variables with
the greatest impact on pea seed yield under the conditions tested were the date of onset of
maturity and the harvest date. These traits received a rank of 1 and 2, respectively. From
Figures 4 and 6, we can observe that the later occurrence of onset of the maturity phase
resulted in an increase in yield. The rate of transition of plants from one phenological phase
to another depends on weather conditions [83]. Peas at the onset of maturity tolerate lower
temperatures than those at the flowering stage. The length of this period is determined
by average and minimum daily temperatures. Lower temperatures during this period
favor the accumulation of starch in the seeds, thereby increasing yield [84]. Pea harvesting
should be optimized based on weather conditions and seed moisture content. Figures 4
and 5 show that harvesting at a later date has a positive effect on yield. Pea varieties grown
in Poland are characterized by uneven maturation. At the beginning, pods located at the
lower part of the plant ripen, and pods located in the higher parts of the plant ripen at
the end [85]. Harvesting too early may result in the upper pods not reaching the stage of
technical maturity and not accumulating enough starch, proteins or other assimilates; thus,
the weight of 1000 seeds may be lower than that of the seeds placed in the lower pods. It
should be remembered, however, that harvesting peas from the field too late may result in
a decrease in yield due to lodging of the plants and pod breakage [86].

The sum of precipitation and mean air temperature are the variables ranked 3 and 4
in the sensitivity analysis of the network. Weather conditions during the growing season
of plants are one of the most important environmental factors affecting plant growth and
development. Temperature and the amount of rainfall vary the yield of peas from one crop
year to another [87]. A study conducted by Pandey et al. [88] proved that water deficiency in
pea cultivation reduces the photosynthetic efficiency of plants, disrupts nutrient transport
and affects structural changes in leaves due to the presence of reactive oxygen species.
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These changes ultimately lead to a decrease in plant yield. Therefore, the optimum rainfall
over the growing season of peas should be 280 mm on light soil, 250 mm on medium soil
and 22 mm on compact soils [85].

The results obtained from the study show that the N2 model can be a promising
information tool due to its accurate prediction of seed yield in pea. Our study further
confirmed the hypothesis that the right approach to independent trait selection supports
the process of identifying the most important variables affecting yield [76]. Such models
may be of interest to breeders of new pea varieties. Knowing the variables with the greatest
impact on yield, it is possible to improve new varieties by optimizing certain time intervals
in the phenology so as to obtain a high final yield. An opportunity for the advancement
of predictive models is the possibility of using new types of data, such as ground-based
phenological imaging, or the use of the same dataset but of higher quality, such as high- or
very high-resolution spectral data [7].

5. Conclusions

With climate change and an increasing global population, there is a growing need to
better predict the yield of agricultural crops, as well as the correct way for farmers to grow
their crops. The analyses conducted show that an artificial neural network model is a useful
tool in predicting pea yield 20 days before harvest. The N2 model accurately predicted the
independent variable with a correlation coefficient r > 0.9 and MAPE and RMS values of
7.976 and 0.443, respectively. At the same time, it was proven that the RS2 model is not able
to accurately estimate pea yield. The model had an MAPE error of 148.585. Therefore, the
potential practical application of this model in pea production is not possible. The choice of
modeling technique is crucial in accurately estimating yield. Furthermore, modeling pea
yields a few weeks before harvest carries promising possibilities for practical application.

Pre-harvest yield forecasting is a valuable source of information that is particularly relevant
for farmers, agronomists and decision makers. Further research will focus on comparative
analysis of the ANN model against other machine learning techniques such as RBF.
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Abbreviations

ANN—artificial neural networks; COBORU—Research Center for Cultivar Testing; CNN—convolutional
neural networks; DNN—deep neural network; FLOWE—number of days from 1 January to the be-
ginning of flowering; GEN—general variety of peas; HAR—number of days from 1 January to the
date of harvesting; INI_MA—number of days from 1 January to onset of maturity; kNN—k nearest
neighbors; K20_C—K2O content in the soil; K2O—potassium oxide; K2O_F—Total potassium from
mineral fertilizers; kg—kilogram; MAE—mean absolute error; MAPE—mean absolute percentage er-
ror; MAX—maximum error determined for the whole model; MAXP—maximum percentage error;
MgO—magnesium oxide; MGO_C—MgO content in the soil; ML—machine learning; MLP—multilayer
perceptron; MLR—multiple linear regression; n—number of observations; N_F—total nitrogen from
mineral fertilizers; N2—built its own neural network model; P_EMER—number of days from 1 January
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to the beginning of plant emergence; P_HIG—plant height; P2O5—phosphorus(V) oxide; P2O5_C—P2O5

content in the soil; P2O5_F—total phosphorus from mineral fertilizers; PH—Soil pH; PROT—Percentage
of protein in pea seeds; RAE—global relative error of model approximation; RAIN—total rainfall from
sowing date to July 14; RF—random forest; RMS—root mean square error; RS2—built its own linear
regression model; SOWI—number of days from 1 January to sowing date; SUN—total sunshine from
sowing date to 14 July; SVM—support vector machines; TECH_M—number of days from 1 January to
technical maturity; TEMP—average air temperature from sowing date to July 14; WEGW—number of
plant growing days; y′i—predictive values, obtained with the model; yi—actual values.
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