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Abstract: The first important step toward ending hunger is sustainable agriculture, which is a vital
component of the 2030 Agenda. In this study, auxiliary variables from the 2011 Population Census
are combined with data from the 2016 Community Survey to develop and apply a hierarchical
Bayes (HB) small area estimation approach for estimating the local-level households engaged in
agriculture. A generalized variance function was used to reduce extreme proportions and noisy
survey variances. The deviance information criterion (DIC) preferred the mixed logistic model with
known sampling variance over the other two models (Fay-Herriot model and mixed log-normal
model). For almost all local municipalities in South Africa, the proposed HB estimates outperform
survey-based estimates in terms of root mean squared error (MSE) and coefficient of variation (CV).
Indeed, information on local-level agricultural households can help governments evaluate programs
that support agricultural households.

Keywords: agricultural households; disaggregation; hierarchical Bayes; fruits; vegetables; grains
and crops

1. Introduction

“If we don’t get sustainability right in agriculture first, it won’t happen any-
where.”— Wes Jackson

Agriculture, food systems, and the sustainable use of natural resources are vital to
improving the livelihoods of millions of poor households in the developing world [1]. The
2030 Agenda’s central theme is sustainable agriculture, which is also the first critical step
toward achieving zero hunger. Despite the fact that many sustainable development goals
(SDGs) touch on agricultural-related issues, SDG indicator 2.4.1 is entirely devoted to it.
The SDG indicator 2.4.1 refers to the “proportion of agricultural area under productive and
sustainable agriculture” [2].

Of the 1.3 billion people worldwide, 97% of them in developing countries depend
highly on agriculture for employment [3]. Agriculture provides a critically important
opportunity to improve the living standards of all, especially in reducing malnutrition [4].
It continues to be a primary source of food for many rural households in developing
countries. Today’s food and agricultural systems are incredibly productive [5]. There
is enough food produced, according to academics, to meet the needs of every man and
woman [6,7]. However, according to global estimates by the Food and Agriculture Or-
ganization (FAO), 2 billion people worldwide, or 26.4% of the world’s population, have
micronutrient deficiencies, and approximately 1.3 billion people, or 17.2% of the world’s
population, have experienced food insecurity at moderate levels [8]. According to [9],
653 million people would still be undernourished in 2030 under a “business as usual” sce-
nario without additional initiatives to support pro-poor development. Note that the FAO
had made this prediction before COVID-19 (a public health emergency of global concern)
and the Russia–Ukraine War (the worst catastrophe to hit Europe since the Cold War).
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The world witnessed a food price crisis in 2008 due to the global economic crises. The
international prices were the highest in nearly 30 years during the first three months of 2008.
In addition, there was social unrest in more than 40 countries between 2007 and 2009, which
led to an astonishing increase in the number of hungry people [10]. The global economies
were rocked by the COVID-19 outbreak in 2020 [11]. Among the affected economic sectors,
the agriculture and food industries were not an exception. Food insecurity has been
increasing in many countries worldwide due to the COVID-19 pandemic; the developing
world has been the most affected. For instance, according to [12], COVID-19 caused
an increase in food insecurity among new households by 32.3% in the first quarter of 2020.
More recently, on 24 February 2022, a new armed conflict between the Russian Federation
and Ukraine erupted just as the world economy was beginning to recover from the turmoil
brought on by COVID-19. This war caused numerous economic repercussions, including
severe food and energy crises. For example, 26 countries import 50% of their wheat needs
from Russia and Ukraine, while 50 Asian and African countries rely on Russia and Ukraine
for 30% of their wheat needs [13].

Like the rest of the world, South Africa was affected by the 2008–2009 economic
crisis, the COVID-19 pandemic, and the Russia–Ukraine war. The prices of agricultural
commodities such as fruits, vegetables, crops, and so on were high in South Africa in
2007 and 2008. There was a sharp increase in food prices in the later years. For example,
the prices of food were high between 2013 and 2016 [14]. According to [15], the Russia–
Ukraine conflict affects the economy through higher energy and fuel prices, which caused
inflation; trade disruptions and the effects of sanctions on exports and imports; and investor
uncertainty, which affected asset prices and the depreciation of the Rand (ZAR). Compared
to January 2021, the price of essential agricultural inputs has increased by more than 100%
in South Africa [15].

Tracking the development of agricultural programs that are sustainable and aimed
at reducing hunger and malnutrition frequently requires micro or disaggregate-level es-
timates [16]. At the large domain level (i.e., the national or provincial level), data from
household surveys typically provide a sufficiently accurate direct estimate of agricultural
households. However, due to their small sample sizes, these direct estimates become less
accurate as data are broken down into regional or population subgroups [16,17]. Further-
more, the distribution of agricultural households varies considerably across regions, and
such large domain-level estimates hide regional differences.

When there are not enough area-specific sample observations to generate accurate
direct estimates, small area estimation (SAE) approaches have been developed and are
utilized to obtain estimates [18]. Any subpopulation or area of interest in SAE is referred
to as an “area”, which includes geographical regions (such as a state or county) and
socioeconomic groupings (such as income, race, and age). SAE techniques have gained
popularity over the past three decades as the focus has shifted to regional planning, creating
public policies and programs, and budgetary planning at the local level instead of the
provincial or national level [19]. These methods have an impact on our daily lives because
they frequently act as the basis for political decision-making. They are utilized, for instance,
by the World Bank to create poverty maps in developing and developed nations [16]. In
order to estimate income, poverty, and the proportion of school-age children who live in
poverty, the United States Census Bureau uses SAE techniques.

In South Africa, the local municipalities and wards [20] are the spatial/administrative
units closest to communities because of the location of many essential services and in-
frastructure. In order to plan and direct efforts to reduce poverty and inequality, food
insecurity, HIV prevalence, malnutrition, under-five mortality, and other issues, as well
as to provide services, it is crucial to provide information at this level. Therefore, this
study aims to estimate the proportion of South African households that cultivate fruits,
vegetables, grains, and crops at the local municipality level using SAE techniques. Earlier
research from South Africa primarily used this method to estimate a few socioeconomic
indicators. For example, Ref. [21] used the income and expenditure survey 2010/11
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and the Census 2011 to estimate poverty at the district and municipal levels in South
Africa. In the 52 districts of South Africa, Ref. [22] showed the effectiveness of a relatively
straightforward small-area estimation of HIV prevalence. Another study by [23] also uses
SAE to determine the municipal-level estimates of under-five mortality in South Africa.
Most recently, Ref. [24] used the Income and Expenditure Survey 2010/2011 and the 2011
national population census to estimate and map the proportion of school-age children
living in poverty in South Africa’s local municipalities. During COVID-19 in South African
districts, Ref. [25] used SAE techniques to estimate South African resource distribution
and policy impacts. As far as the author is aware, this study is the first to estimate local
agricultural households in South Africa using HB models.

In this paper, three different SAE models under the Bayesian framework were devel-
oped to combine local municipality-level community survey data with local municipality-
level data from auxiliary sources from the Population Census. The formulation of these
SAE models in the Bayesian framework has advantages in terms of flexibility in overcoming
the computational challenges of high-dimensional posterior densities integration and com-
putational efficiency with complex small-area models. Additionally, Ref. [26] developed
an R package called “BayesSAE” that is easily accessible and can be used to fit SAEs using
MCMC simulations and provide model evaluation, selection, and diagnostics. Recently,
the SAE approach in the Bayesian framework has been used to estimate the prevalence of
having a personal doctor for all counties in the United States by combining the Behavioral
Risk Factor Surveillance System survey with county-level data from auxiliary sources [27],
state-level monthly unemployment rate from January 2004 to December 2007 in the United
States [28], the average health expenditure for the 47 prefectures of Japan [29], and district
level poverty incidence for the State of Odisha in India [30].

The disaggregated estimate of agricultural households provides critical evidence on
households and provides a platform for national, regional, and provincial governments to
convene the following interventions. First, the shift from subsistence to commercial agricul-
ture is critical to economic growth and food security. Using nationally representative data
from three African nations, Ref. [31] found that even the smallest and most marginalized
landowners were engaging in high levels of commercialization, with market participation
rates reaching 90%. The adoption of cash crops generally increased real incomes, triggering
a virtuous cycle in which higher incomes were used to increase food consumption, ben-
efiting both households in general and children in particular. Second, according to [32],
local food systems have been excluded in recent years as a result of consumer preferences,
globalization, and urbanization. Food systems have become industrialized, capitalistic, and
owned by global behemoths. Smallholder farmers, local food manufacturers, and small
and medium-sized businesses should be given more opportunities to participate in local
markets without relying on large corporations. This can be accomplished by improving
access to finance, strengthening the capacity of agri-food chain stakeholders, and increasing
investment in local ecosystems. Third, to assist in creating new jobs and expanding the
rural economy, South Africa has made considerable investments in the agricultural industry
throughout the years. Although these investments have not consistently performed well,
the high youth unemployment rate—among the highest in the world—is more concern-
ing [33]. As most studies focus on national issues, Ref. [34] expresses concern about the
need for more research on the spatial distribution of unemployment in South Africa and
makes recommendations for the spatial analysis of unemployment, primarily in terms
of currently accessible spatial and attribute data sources. Accordingly, efforts to increase
youth involvement in agriculture are supported by the estimates that have been analyzed
at the local level, which should be combined with strong efforts to empower young people.
Finally, according to [35], the apartheid era caused disparities in the range of skills relevant
to the agriculture sector in South Africa. So, by using disaggregated estimates of agricul-
tural households (i.e., at the level of local municipalities), policymakers will be better able
to address the underlying causes of any identified imbalances in the agricultural sector.
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The remaining sections of the paper are organized as follows. The 2016 CS and the
2011 PC, as well as the target variables from the 2016 CS and auxiliary variables from the
2011 PC, are all described in Section 2. The model specifications also include specific linking
models in the Bayesian framework as well as the well-known basic area-level Fay-Herriot
model. Section 3 offers the findings, model diagnostics, and performance assessments. The
results are discussed in Section 4. Finally, in Section 5, the conclusions are presented.

2. Materials and Methods
2.1. Data

South Africa is divided into nine provinces, which are further divided into district
and local municipalities. Suppose Yij is a binary outcome for individual j (j = 1, · · · , Ni)
in local municipality i (i = 1, · · · , m) with Ni the population size in local municipality i.
Let the sampled values be denoted by yij, where ni is the sample size drawn from each
local municipality i. Suppose N = ∑m

i=1 Ni and n = ∑m
i=1 ni denote the total population

and sample size, respectively. The focus is to estimate the true area proportions, Pi, in
local municipality i, namely Pi = 1

Ni
∑Ni

j=1 Yij that in this case, can be estimated from

the CS data using the direct survey estimator as follows piw = 1
∑

ni
j=1 wij

∑ni
j=1 wijyij, where

wij represents the CS weight. Using information from the 2016 CS and the 2011 PC, we
applied the SAE approach to derive estimates for local municipalities of the proportion of
households engaged in growing fruits, vegetables, grains, and food crops. For this analysis,
the following variables were necessary.

The 2016 CS data from Statistics South Africa generated the target variables . The
main goal of this survey was to collect information on household size, estimated popula-
tion size, fertility, mortality, migration, employment, unemployment, and the degree of
household poverty. The CS data was obtained from the Stats SA website, which can be
found at http://nesstar.statssa.gov.za:8282/webview/; accessed on 13 November 2019.
In the 2016 CS, m = 214 local municipalities were sampled. The proportion of house-
holds growing fruits and vegetables, as well as the proportion of households growing
grains and food crops, are the variables of interest at the local municipality level. Aux-
iliary aggregate data from the 2011 South African Census were used in addition to the
2016 CS data. The following covariates, unless otherwise stated, were evaluated at the
local municipality level during model selection: sex (% female, % male); age in years
(% 0–14, % 15–24, % 25–34, % 35–44, % 45–54, % 55–64 and % ≥ 65 years); race (% Colored,
% Black African, % White and % Indian or Asian); status of employment (% employed,
% unemployed, and % economically inactive); status of employment of the head (% em-
ployed, % unemployed and % economically inactive); sectors of employment (% private
households, % the informal sector and % the formal sector); marital status (% married,
% living together as a married couple, % never married, % widower/widow, % separated,
% divorced); education level (% no formal education, % some form of primary education,
% some form of secondary education, % grade 12, % tertiary education, and % other);
% urban area, % farm area, income in ZAR (% no source of income, % R 1–R 76 800,
% R 76 801–R 614 400, and % R 614 401 or more). Because the proportions of people in the
auxiliary variable categories added up to one, the reference categories were dropped from
the analysis [36,37]. The DataFirst website was used to access the 2011 South African PC
data: https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/485 ; accessed on 13
November 2019.

Following correlation analysis, pertinent covariates were selected from these datasets
using step-wise regression analysis [38]. In order to determine whether one of the
covariates—for instance, the employed category—correlates reasonably well with the
proportion of households producing fruit, a correlation analysis was first carried out.
Each target and auxiliary variable underwent a second evaluation. Finally, the following
variables were selected for further investigation (Table 1):

http://nesstar.statssa.gov.za:8282/webview/
https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/485
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Table 1. Variables chosen for further analysis.

Response Variables Covariates
Proportion of households % 25–34, % no formal education, % some form of primary

education, % some form of secondary education,
engaged in producing fruits % employed, % economically inactive, % head employed,

% head unemployed, % colored, % married, % never married,
% R 1–R 76, 800,

Proportion of households % 25–34, % 35–44, % no formal education, % some form of primary
engaged in education, % some form of secondary education,
producing vegetables % employed, % economically inactive, % head employed,

% head economically inactive, % White, % the formal sector,
% No income, % R 76, 801–R 614, 400

Proportion of households % 35–44, % 45–54, % female, % no formal education,
engaged in producing % employed, % economically inactive, % head employed,
grains and food crops % head economically inactive, % never married, % divorced,

% Black African, % White, % No source of income,
% R 1–R 76, 800

2.2. Small Area Estimation Methodology

SAE techniques frequently use area (or aggregate)-level models when unit-level data
are unavailable due to confidentiality issues or when auxiliary variables are only available
in aggregate form. SAE uses data from various sources to estimate results for small
geographic areas or subpopulations [18]. Numerous other small area works of literature
and methodological advancements have occurred since Fay and Herriot’s seminal work on
the area-level small area model (often referred to as the Fay-Herriot (FH) model) in 1979.

2.2.1. The Fay-Herriot (FH) Model

Basic area-level FH models incorporate auxiliary variables derived from secondary
sources, such as census or administrative records, along with direct aggregate (local munic-
ipality) level survey estimates. Consider the area-level data {piw, xi, i = 1, · · · , m}, where
piw is the direct survey-based estimator of Pi with E(piw|Pi) = Pi and Var(piw|Pi) = Di, xi
is a p× 1 area-specific covariates, often obtained from administrative records or population
census. It is assumed that the sampling variances, Di, are known. The sampling variances,
Di, are assumed to be known. The FH model (see [39]) also known as the basic area-level
model composed of two parts. The natural sampling model is described in the first section
as follows. It accounts for the sampling variability of direct survey estimates (piw) of the
population parameter Pi, which is given by

piw = Pi + εi, i = 1, · · · , m, (1)

where Pi denotes the true small area proportion that is to be estimated, εi ∼ N(0, Di) are
independent and normally distributed sampling error associated with piw.

The linking model, the second component, connects the population parameter Pi to
a vector of well-known auxiliary variables (xi). It can be expressed as follows:

Pi = xT
i β + vi; i = 1, · · · , m (2)

where β = (β1, · · · , βp)T is a p× 1 unknown regression coefficient and vi ∼ N(0, σ2
v ) are in-

dependent and identically distributed area-specific random effect that account for between
areas dissimilarities. It is assumed that the distributions of vi and εi are independent. It is
common to assume that two random error components follow a normal distribution when
estimating the target parameter and the MSE of the estimate. When the aim of inference is
proportion, however, assuming a linear linkage model with normal random effects may
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lead to incorrect and erroneous estimates [18]. According to [30], the logistic or logit link
function is best for solving the issue. As a result, the linking model is expressed as:

logit(Pi) = xT
i β + vi, i = 1, · · · , m, (3)

with

Pi =
ex′i β+vi

1 + ex′i β+vi
.

2.2.2. The Hierarchical Bayes (HB) Approach

The HB approach is used in this paper to estimate the small area proportions [30]. In
this approach, the HB predictors of Pi are obtained by assuming some prior distribution
for unknown parameters such as β and σ2

v . The HB inference is based on the posterior
distribution of Pi given all the sample observations in all the areas. Under squared error
loss, the parameters of interest, Pi, are estimated by the posterior mean and its uncertainty
or error is measured by the posterior variance. Because the HB approach can success-
fully handle complex small-area models using Monte Carlo Markov Chain (MCMC), it
avoids the computational challenges of high-dimensional integration of posterior densities.
An HB approach for estimating the small area parameters was proposed by [40] for a
specified linking model.

Following [30], we propose three HB models as shown below.

Model 1 (M1): The FH model (Equations (1) and (2)) with known sampling variance

Sampling model: piw = Pi + εi, i = 1, · · · , m.
Linking model: Pi = xT

i β + vi, i = 1, · · · , m.

Model 2 (M2): The two-stage mixed log-normal model, which incorporates both the
sampling and linking models, is given as follows:

Sampling model: piw = Pi + εi, i = 1, · · · , m.
Unmatched linking model: log(Pi) = xT

i β + vi, i = 1, · · · , m.

Model 3 (M3): The two-stage mixed logistic model with known sampling variance, which
includes both the linking model and the sampling model, is given as follows:

Sampling model: piw = Pi + εi, i = 1, · · · , m.
Unmatched linking model: logit(Pi) = xT

i β + vi, i = 1, · · · , m.

Both M2 and M3 are unmatched area-level models [18].

Prior Specification for the Parameters in the Model

The application of the HB method under the above models consists of the following
important steps [41]:

(i) Specify prior distributions for the model parameters β and σ2
v . The Bayesian inference

drawn from posterior distribution is highly dependent on a wide range of prior
distributions. Therefore, prior specification for the parameters in the model plays
a vital role in Bayesian inference [30]. Following [30], we considered uniform prior for
the prior variance σ2

v , that is Uniform (0, 103). Furthermore, for β prior, we considered
a normal distribution, that is N(0, 106).
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(ii) Generate data from the posterior distributions of β, σ2
v and v1, · · · , vm from MCMC

simulations. The HB estimates of the true proportions θi obtained from each of the
priors were approximated by 50,000 independent samples of the MCMC method.

Lastly, we used the deviance information criterion (DIC, [42]) to choose the best
candidate model. The smaller the DIC values, the better the model. A Bayesian credible
interval was also used to quantify uncertainty. One of the most widely used measures
of uncertainty in Bayesian inference is the Bayesian credible interval, comparable to the
confidence interval in the frequentist approach. The lower limit of the 95% credible equal
tail interval is the quantile, which represents a probability of 0.025 (or the 2.5 percentile
of the posterior distribution). Comparatively, the quantile, or the 97.5 percentile of the
posterior distribution, represents the upper bound of the equal-tail credible interval and
has a probability of 0.975 [43].

2.2.3. Generalized Variance Function

Most of the time, it was assumed that the sampling variance, Di, was known. In
specific applications, this supposition might need to be revised. This known sampling
variance assumption can be relaxed by estimating Di from 2016 CS data and smoothing
the estimated variances to obtain a more stable estimate of Di [18]. It is common practice
in large-scale sample surveys to approximate the design variance of point estimators for
population means and proportions using generalized variance function (GVF) models,
a data analysis technique [44]. In order to obtain smoothed estimates of the sampling
variances, this model was used [45]. The bias-corrected GVF was taken into account for
this study by fitting the simple linear regression model given in [37]:

log(var(piw)) = b0 + b1 piw + εi, (4)

where log(var(piw)) is the dependent variable, piw as independent variable, b0 and b1 are

the least square estimates and εi
iid∼ N(0, σ2), i = 1, ..., m. Then, the GVF motivated from

the above model was given by:

ĜVFi = exp(
σ̂2

2
)exp(b̂0 + b̂1 piw) (5)

the factors
(

exp( σ̂2
Fruits

2 ) = 1.916, exp(
σ̂2

Vegetables
2 ) = 2.492, exp( σ̂2

Grains
2 ) = 2.401

)
is the bias-

correction terms in the log-linear analysis for the proportion of households engaged in
producing fruits, the proportion of households engaged in vegetables and the proportion
of households engaged in grains and food crops, respectively. The true variance will be
underestimated when we fail to consider the correction term in the GVF approach, as
described in [37]. In Figure 1, direct survey estimates of the proportion of households
growing fruits, vegetables, grains, and food crops are compared to sampling variance (Di)
and predicted variance (ĜVF) estimates. It is clear from these plots that the GVF eliminates
the noisy and unreliable estimated variance [18,37].



Agriculture 2023, 13, 631 8 of 17

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

1
.0

2
.0

(a)

Proportion of households engaged in producing fruits
V

a
ri

a
n
c
e

Predicted

Variance

0.0 0.2 0.4 0.6 0.8

0
.0

1
.0

2
.0

(b)

Proportion of households engaged in producing vegetables

V
a
ri

a
n
c
e

Predicted

Variance

0.0 0.2 0.4 0.6 0.8

0
.0

1
.0

2
.0

(c)

Proportion of households engaged in producing grains and food crops

V
a
ri

a
n
c
e

Predicted

Variance

Figure 1. The dispersion plots for GVF fit.

3. Results

The proportions of households producing fruits, vegetables, grains, and food crops
were used as the response variables, and the covariates shown in Table 1 were used as
auxiliary variables to fit three different models (the FH model, the mixed log-normal model,
and the mixed logistic model). Table 2 displays the DIC values for the suggested models. As
indicated by the light blue color, the goodness-of-fit statistics preferred the mixed logistic
model with known sampling variance.

Table 2. The values of the DIC for the three models.

Variable Categories M1 M2 M3
Fruits 158.26 164.57 146.38
Vegetables 745.02 728.47 726.19
Grains and food crops 141.93 133.63 128.23

Table 3 shows the posterior mean, standard deviations, and 95% credible intervals for
the mixed logistic model with HB inference for fruits. The results of this study showed that
the head unemployed, intercept, and not economically active were all highly significant
predictors of ‘the proportion of households producing fruits.’ None of the age groups,
educational levels, racial groups, marital statuses, or income statuses significantly impacted
the proportion of ‘households producing fruits’.

Table 4 displays the posterior mean, standard deviations, and 95% credible intervals
for the mixed logistic model with HB inference for vegetables. The factors that significantly
influenced the ‘proportion of households producing vegetables’ included not having at-
tended school, having completed grade 12, being white, working in the formal sector, and
having an income between 76,801 and 614,400. The proportion of ‘households producing
fruits’ was not significantly influenced by any of the age groups, employment conditions,
or marital statuses.
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Table 3. The posterior means with standard deviations and 95% credible intervals for the model
parameters of the mixed logistic model with HB inference: fruits.

Credible Interval
Covariate Posterior Mean Std.Dev Lower Upper
Intercept −19.53 9.45 −37.94 −1.47
Age (years)

25–34 −3.74 7.55 −18.32 11.06
Education

no schooling −3.07 3.42 −9.81 3.63
some primary −5.39 3.38 −12.07 1.21
some secondary 1.29 3.63 −5.86 8.44

Employment
employed 15.13 8.06 −0.47 30.92
not economically active 15.6 7.85 0.28 30.78
head employed 3.18 5.27 −6.96 13.67

head unemployed 27.16 10.92 5.92 48.65
Race

colored 0.01 0.61 −1.19 1.22
Marital status

married −0.52 4.02 −8.22 7.41
never married −0.53 3.13 −6.65 5.52

Income (South African Rand)
1–76,800 3.6 2.32 −0.93 8.18

Variance of residual
0.38 0.11 0.21 0.62

Table 4. The posterior mean with standard deviations and 95% credible intervals for the model
parameters of the mixed logistic model with HB inference: vegetables.

Credible Interval
Covariate Posterior Mean Std.Dev Lower Upper
Intercept −0.44094 2.861044 −6.09976 5.08
Age (years)

25–34 2.342533 4.727152 −6.81574 11.756
35–44 −7.41626 8.006608 −23.0478 8.332

Education
no schooling −5.89356 1.788962 −9.48592 −2.4
some primary −0.85429 2.65225 −6.01582 4.305
some secondary 1.437758 7.287325 −12.9459 15.414
grade 12 7.989928 2.512446 3.107896 13.001

Employment
employed 7.576255 5.434107 −2.93134 18.364
not economically active 9.938161 5.153727 −0.00857 20.21
head employed −7.44145 7.579633 −22.4186 7.361
head not economically active −10.9678 6.885108 −24.6622 2.373

Race
white 5.391023 1.784264 1.957281 8.931

Employment sector
formal sector 2.091212 0.880927 0.395146 3.838

Income (South African Rand)
no income 2.266863 2.997185 −3.46953 8.109
76,801–614,400 −8.06922 1.752026 −11.6278 −4.685

Variance of residual
0.29 0.06 0.19 0.41
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The posterior mean, standard deviations, and 95% credible intervals for the mixed
logistic model with HB inference are also shown in Table 5 for households growing grains
and food crops. Similarly, ‘the proportion of households growing grains and food crops’
was significantly influenced by having no formal education, being employed, being the
head of a household employed, and being white. None of the age groups, income levels, or
marital statuses significantly affected the proportion of ‘households growing grains and
food crops’.

Table 5. The posterior mean with standard deviations and 95% credible intervals for the model
parameters of the mixed logistic model with HB inference: grains and food crops.

Credible Interval
Covariate Posterior Mean Std.Dev Lower Upper
Intercept 25.511 20.867 −3.544 69.304
Age (years)

35–44 40.359 35.598 −21.468 120.32
45–54 −15.002 35.711 −102.642 37.476

Sex
female 17.112 14.723 −11.302 42.296

Education
no schooling −12.517 8.279 −29.596 −0.151

Employment
employed 37.911 18.536 2.58 76.272
not economically active 7.568 20.515 −27.01 47.972
head employed −71.493 29.735 −134.078 −21.611
head not economically active −32.872 27.627 −93.574 12.65

Marital status
never married 2.513 5.138 −7.358 12.107
divorced −125.488 93.014 −325.381 28.285

Race
black 1.045 1.27 −1.731 3.5
white 20.505 6.625 5.566 30.396

Income (South African Rand)
no income −22.385 17.068 −55.903 4.73
1–76,800 −10.479 8.486 −24.929 3.852

Variance of residual
0.73 0.31 0.35 1.58

Figure 2 shows the root mean squared errors (MSEs) of the HB and direct estimators.
The root MSE of the HB estimator is, as can be seen in the figure, lower than the root MSE
of the direct survey estimators. The distribution of the coefficient of variation (CV) for the
direct and HB estimates is shown in Figure 3. This figure demonstrates that the estimated
CVs for HB estimates are more reliable than those for direct survey-based estimates.
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Figure 2. The root MSEs of the direct and HB estimates of agricultural households for each South
African local municipality: Fruits (a); vegetables (b); and grain and food crops (c).
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Figure 3. The CV of direct and model-based estimates for: (a) the share of households producing
fruits; (b) the share of households producing vegetables; and (c) the share of households producing
grains and food crops.

The histogram of residuals (left) and standard normal q-q plots of residuals (right)
are shown in Figure 4. These plots support the assumption that the residuals are normally
distributed. The right plots demonstrate that the q-q plots of these residuals are uniformly
distributed along a straight line. These plots offer proof in favor of the residuals’ normality
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assumption. Additionally, the normality assumption of the standardized residuals was
evaluated using the Shapiro–Wilk normality test. The Shapiro–Wilk normality test on the
residuals in this research yielded p-values for fruits, vegetables, grains, and food crops
of 0.2982, 0.5828, and 0.2162, respectively, indicating the non-rejection of the hypotheses
of normality.
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Figure 4. Histogram of residuals along with normal fit (left) and q-q plots for the standardized
residuals (right) for the proportion of households engaged in producing fruits (top), the proportion
of households engaged in producing vegetables (middle) and the proportion of households engaged
in producing grains and food crops (bottom).

Finally, we used [46]’s goodness-of-fit diagnostic to determine whether the direct
survey and model-based estimates are statistically equivalent. The null hypothesis of
interest is as follows: H0: the direct and HB estimates are statistically equivalent. The Wald
statistic for the proposed model’s goodness-of-fit diagnostic is as follows:

W = ∑
i

[ (
piw − P̂HB

i
)2

ĜVFi + V̂(Pi|P̂)

]
∼ χ2(m), (6)

where V̂(Pi|P̂) denotes the posterior variance estimate of Pi and ĜVFi denotes the GVF of
piw. In our case, the p-values for the proportion of households producing fruits, vegetables,
and grain and crop production are 0.150, 0.186, and 0.115, respectively. These values are
greater than 0.05, indicating that HB estimates are consistent with direct estimates.

Finally, Figure 5 depicts the spatial mapping of local municipality-level estimates of
the proportion of households engaged in fruit production, the proportion of households
engaged in vegetable production, and the proportion of households engaged in grain and
food crop production.
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Figure 5. Estimates of the households engaged in agriculture by the local municipality in South
Africa using the 2016 CS and the 2011 PC. The obtained estimates are the proportions of households
producing fruits (top left), vegetables (top right), grains, and food crops (bottom left) under the
model-based approach (i.e., HB approach).

4. Discussion

In the past two decades, as the focus shifted from provincial and federal policies to
local health interventions, SAE techniques have grown in popularity [18,19].
Three dependent variables were used in this study: the proportion of households growing
grains and food crops, the proportion of households growing vegetables, and the propor-
tion of households growing fruits. Complex models are used for SAE when responses take
the form of counts or proportions. Due to this reason, Bayesian methods are used in this
research because they are computationally more practical than the maximum likelihood
approach [26,30]. This study combined the 2016 CS and 2011 PC datasets to estimate the
proportion of local municipality-level households using SAE modeling methods within
the Bayesian framework. The approach provides the South African government and
stakeholders with a low-cost, cutting-edge monitoring system for agricultural households.

The HB estimates should be consistent with unbiased survey-based estimates and
more precise than survey-based estimates. For this purpose, we used a variety of model
diagnostics, including residual analysis (histogram of residuals, q-q plot of the standardized
residuals, the Shapiro–Wilk normality test), the Wald statistic, the CVs, and root MSEs, to
assess the reliability and validity of the model-based small area estimates (also known as
HB estimates). Because the random effects in the FH model are independent, identical, and
normally distributed with a mean of zero, it is vital to validate the model assumptions;
for more information, see [18]. Additionally, the optimality properties of the model-based
estimates depend on the extent to which distributional assumptions are valid [18]. The
histograms, the q-q plots, and the Shapiro–Wilk test all support the normality of the stan-
dardized residuals. Furthermore, Ref. [46]’s goodness-of-fit diagnostic revealed that HB
estimates are consistent with direct estimates. In general, the root MSE of the corresponding
HB estimators was lower than the root MSE of the direct survey estimators (Figure 2). This
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is due to one of the characteristics of the class of model-based unbiased linear predictors,
which is their capacity to minimize the model-based MSE [18,47]. Furthermore, HB estima-
tors had lower CVs than corresponding direct estimators (Figure 3). The HB estimators’
improvement in precision tended to be more pronounced in the local municipalities on the
right side of the plot (local municipalities with small sample sizes). In other words, we
significantly improved the HB local municipality level estimates by borrowing strength
from the 2011 PC, especially in the municipalities with sparse samples. This fact was found
using FH and spatial FH models by [18,23,38].

We found that estimates of agricultural households differ significantly across South
African local municipalities using the HB method in the SAE framework (see Figure 5). In
general, the maps show that local municipalities with the highest proportion of agricultural
households producing fruits are found in the Western Cape, Northern Cape, Free State, and
Limpopo provinces. The Western Cape, the Free State, and portions of Gauteng are home to
the local municipalities with the highest concentration of households that grow vegetables.
Most households that cultivate grains and food crops reside in local municipalities in
the Northern Cape, KwaZulu Natal, and Limpopo provinces. To be more precise, the
percentage of households producing fruits varies by the local municipality and ranges from
7.71% to 63.97%. These spatial differences would go unnoticed if only national or provincial
estimates were used, allowing agricultural policies and interventions to be focused on
particular local areas. The disaggregated estimates produced by this research may have
an impact due to the possibility that each local government has a different set of objectives.
This is so that municipalities, subject to the national and provincial laws outlined in
Chapter 7 of the South African Constitution, Section 151 (3), have the authority to manage
the local government affairs of their communities independently. Additionally, agricultural
agencies may consider initiatives that, among other things, provide digital agricultural
solutions [48], deliver agricultural extension services, and encourage the adoption of cash
crops [31,32] in light of the fact that this research identified local municipalities with larger
agricultural households.

The 95% credible intervals for covariate coefficients, such as head unemployed and not
being economically active, do not include zero (Table 3), implying that the associated auxil-
iary variables account for a significant portion of households producing fruits. Similarly,
the 95% credible intervals for covariate coefficients, such as not having attended school,
having completed grade 12, and being white, do not include zero (Table 4), implying that
the associated auxiliary variables account for a significant portion of households producing
vegetables. Additionally, the 95% credible intervals for the covariate coefficients—such as
having no formal education, being employed, being the head of a household employed,
and being white, do not include zero (Table 5), suggesting that the associated auxiliary
variables account for a sizeable portion of households growing grains and food crops.

5. Conclusions

Disaggregated data on population and development indicators that enable mapping
of demographic inequalities and social and economic disparities are becoming increasingly
crucial for programmatic and policy purposes; however, direct estimation for small areas
requires more than population-based surveys [49]. In other words, for many important
indicators, such data are not available at a higher resolution. In this study, the SAE
method is used to produce accurate estimates and maps demonstrating how disaggregated
households producing fruits, vegetables, grains, and crops can be tracked at a high level
of granularity and at a reasonable cost. Although SAE applications are computationally
intensive, they have a low economic cost because they do not necessitate extensive data
collection efforts. The method uses open-source R software to combine information from
the 2016 CS and the 2011 PC. The results show that the local municipality-level estimates of
agricultural households produced by the HB method under the MCMC are more precise
when applied to auxiliary data from the 2011 PC.



Agriculture 2023, 13, 631 15 of 17

To see the variations between municipalities, we use geospatial maps of agricultural
households (Figure 5). The municipalities with a high proportion of agricultural house-
holds (hot spots) in 2016 indicate the localized areas with the highest proportion of farms
(especially those producing fruits, vegetables, grains, and food crops). Additionally, the De-
partment of Agriculture, Land Reform, and Rural Development can use our HB estimates
to accelerate land reform, improve agricultural production, better understand regional
variations in agricultural households, and develop other effective policies (at the lower
levels of geography, i.e., local municipalities).

Nowadays, it is essential to have access to comprehensive, high-quality data on busi-
nesses at the local level to assess the effectiveness and competitiveness of modern economic
systems and to make it simpler to develop policy measures that ensure productivity and
employment growth [50,51], especially in the agricultural industry. The availability of
local municipality-level agricultural household statistics in this research is essential for
monitoring policy and planning because local municipalities are a crucial component of
the national planning process. Additionally, our data-driven HB estimates at the local
municipality level will be able to help decentralized planning improve the efficacy of
development programs, particularly SDG indicator 2.4.1 [2].

Some limitations are associated with this study. As described in the previous sections,
this study extracts key auxiliary variables from the 2011 PC, which was the most recent
population census available at the time of our analysis. It combines them with the 2016 CS
to produce more precise local municipality-level estimates of agricultural households in
South Africa. These datasets cover different time periods, which is one of the limitations of
this study. Future research should use data from the 2022 Population Census and compare
it to previous studies to identify variations in agricultural households. Given that the most
recent census was conducted in 2022, and the report is most likely to be made public in
2024, we will have the most recent data on local-level agricultural household statistics at
our disposal. After assessing the information from the Census 2022 dataset, the best HB
model will be applied case-by-case for other agriculture-related variables.
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