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Abstract: The terroir effect refers to the interactions between the grapes and their natural surround-
ings and has been recognized as an important factor in wine quality. The identification and mapping
of viticultural terroir have long been relying on expert opinion coupled with land classification and
soil/climate mapping. In this study, the data-driven approach has been implemented for mapping
natural terroir units based on spatial modeling of public-access geospatial information regarding
the three most important environmental factors that make up the terroir effect on different scales,
climate, soil, and topography. K-means cluster analysis was applied to the comprehensive databases
of relevant spatial information, and the optimum number of clusters was identified by the Dunn and
CCC indices. The results have revealed ten clusters that cover the agricultural area of Drama (Greece),
where it was applied, and displayed variable conditions on the climate, soil, and topographic fac-
tors. The implications of the resulting natural terroir units on the vini-viticultural management of
the most common vine varieties are discussed. As more accurate and detailed input spatial data
become available, the potential of such an approach is highlighted and paving the way toward a true
understanding of the drivers of terroir.

Keywords: terroir effect; spatial modelling; k-means clustering; viticulture

1. Introduction

Terroir is a concept that includes climatic, topographical, geological, and pedological
factors, as well as traditional vine varieties and vine farmers’ expertise. Terroir was defined
as a “complex of natural environmental elements, which cannot simply be modified by
the producer” [1]. Several authors have shown how environmental conditions affect the
content and quality of grapes [2,3]. Numerous studies have demonstrated that the terroir
effect on grapes and wine is mostly explained by physical and climatic conditions [2,4]. The
current official definition of viticultural terroir by the International Organization of Vine
and Wine (O.I.V.) states that “terroir is a concept which refers to an area in which collective
knowledge of the interactions between the identifiable physical and biological environment
and applied viti-vinicultural practices develop, providing distinctive characteristics for the
products originating from this area”. Specific soil, terrain, temperature, landscape, and
biodiversity traits are all elements of terroir. The idea of “Natural Terroir Units”, or NTUs,
was put into practice by Priori, et al. [5]. They defined an NTU as “a volume of the Earth’s
biosphere that is characterized by a stable group of values relating to the topography,
climate, substrate, and soil”.

The identification of NTUs has traditionally relied upon expert opinion on wine
production and related environmental factors, coupled with standard approaches to land
classification based on thematic mapping of soil and climatic conditions. The derived
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terroir units are usually based on pre-defined boundaries of administrative districts or
patterns derived from surface hydrology, road, or railway networks [6]. Moreover, the
relative importance of soil, climatic, and topographic parameters on wine production are
purely based on qualitative expert opinion. As a consequence, expert approaches tend to
validate pre-existing terroirs defined historically, through modern GIS applications, with a
minimum contribution toward the understanding of the true drivers of terroir [7].

Rather than employing expert opinion in the identification of Natural Terroir Units
(NTUs), the data-driven approach is solely based on quantitative geospatial analysis of
exhaustive databases of soil, climatic, and topographic information. Spatial and temporal
variation in geographical data is taken into account in an effort to identify the similarities
in the patterns of variations between the input environmental variables, which are usually
revealed with clustering techniques or similar classification methods [6]. All data sources
originate from online platforms of public-access geospatial information, delivered in many
different spatial resolutions and data formats, with global or regional coverage, concerning
the three major and most commonly used groups of terroir-related environmental factors,
soil, climate, and topography.

Soil is one of the most crucial elements in viticulture since it is a component of terroir.
Grapevine composition and, in turn, wine quality can be influenced by the texture, structure,
and chemistry of the soil [8]. Compact and shallow soils can prevent roots from accessing
water and nutrients, restricting root development. Additionally, soil water retention
properties can impact grapevine performance and are considered strongly important [9].
In Mediterranean regions, where grapevines are typically subjected to significant heat
extremes and water deficiency, soil water storage capacity is highly critical [10].

An essential factor influencing the formation and growth of grapevines is climate,
which has a big impact on vine physiological functions during its typical growing season,
from April to September. Grapevine phenology is closely related to the current atmo-
spheric conditions, affecting grapevine yield, wine output, and quality [11–13]. All these
environmental factors define suitability for a certain variety or type of wine, limiting the
geographic range of grapevine [14].

Another important component that affects a region’s viticultural traits is its topo-
graphic landscape features which interact with soil and climate factors. Elevation, slope,
and aspect or exposure are the most critical topographic factors for viticulture [11]. Site
and variety selection are strongly influenced by elevation’s effects on vineyard tempera-
tures [9]. Terrain slope affects canopy microclimate through solar exposure, soil erosion,
water drainage, and viticultural management. The terrain aspect involves the surface net
incoming solar radiation flow and is a crucial factor in site selection [15].

Several researchers have argued that the terroir effect on wine’s qualitative qualities,
such as its aromas and flavors, is ambiguous and challenging to explain scientifically [16].
It is possible to say that the grapevine variety expresses the influence of climate, soil,
and geography. Despite certain similarities among varieties, each has unique qualitative
characteristics, including aromatic composition. The terroir effect should therefore be taken
into account separately for each variety and wine style.

Multivariate spatial and temporal modeling of climatic, soil, and agronomic fea-
tures is usually required for the identification and mapping of locations with high-quality
grape and wine production [17,18]. Latest technologies and analytical methods enable the
recording and processing of detailed spatial and temporal information on terroir-related
environmental factors, assisting this way in the development of comprehensive spatial
models for delineating terroir units and forecasting their viticultural response. Spatial
modeling of winegrowing terroirs is facilitated by the use of the latest generation of geospa-
tial technologies, including remote and proximal sensing [7]. Since the early 2000s, a
considerable volume of research has focused on terroir zoning, and numerous viticultural
target properties have been taken into consideration, with a primary focus on grape and
canopy characteristics, yield, or biomass and a secondary focus on soil parameters at the
within-field scale [7].
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Mapping terroir units on a regional scale involves analysis of earth observation data
in order to support the monitoring of phenology and status of the vines across various
individual fields dispersed throughout a regional viticultural area and assist the decisions
concerning the most suitable plant material locally. An adaptation of the terroir idea from
remote sensing to spatial modeling includes soil landscape units as the fundamental build-
ing blocks for terroir unit delineation, accompanied by the climate and grape composition
data [18]. Although more complex spatial models using auxiliary spatial information,
such as kriging with hyperspectral imagery [19], have also been developed, geostatistical
approaches and primarily kriging based on primary spatial information, such as yield or
ECa, are the most popular methods used in terroir-related studies [20]. Following the use
of a number of geostatistical models, k-means cluster analysis is commonly carried out in
the viticultural regions to identify the NTU-based viticultural terroir units [21].

The objective of the current study was to establish a data-driven approach toward
NTU zoning, which was tested in the wine production of Drama (Greece). The approach
was based on public-access data pools of geospatial information regarding physical and
chemical properties related to soil and climatic and topographic characteristics of the
wine-production environment.

2. Materials and Methods
2.1. Study Area

Despite the historical background of Drama Regional Unit (Greece) related to wine-
making, it was not until the late 1970s and early 1980s that systematic wine production
was revived, leaving its own characteristic footprint on Greek and international wine
scenery ever since. Although no Protected Designation of Origin (PDO) area has been
established in Drama, it is widely acknowledged as one of the most significant viticultural
regions of Greece. The continental climate of the area (characterized by the cool nighttime
temperatures) related to its isolation from the sea by the three surrounding mountains
of Pangeon, Falakro, and Menikio, creates ideal conditions for the acclimatization of the
early-harvest, white and red varieties, most notably international ones. Major wine grape
varieties cultivated in the region with the aim of producing high-quality wines are the
white varieties Sauvignon blanc and the red varieties Cabernet Sauvignon and Merlot.
Recently, Greek varieties, such as the white Assyrtiko and the red Agiorgitiko, have been
introduced in the area. Vineyards are scattered mainly across the central and southern parts
of the region, at altitudes up to 500 m, covering approximately 500 ha, and the total annual
wine production is estimated at around 3M bottles.

The study area is presented in Figure 1. The region is characterized by a mountainous
landscape, mainly in the central and northernmost parts, with elevation reaching up to
2200 m. Natural vegetation and forests are the dominant land cover type in the northern
mountainous part of the region (except for a few plateaus dedicated to agriculture), while
the southern area of the region is governed by agricultural land cover in the plain lower
parts. The average annual precipitation in the plain of Drama exceeds 540 mm, mainly
concentrated during winter. Clay and clay–loam soils, with a high cation exchange capacity
(CEC), dominate the southern plain, while sandy loams occupy the northwestern plateau of
Kato Nevrokopi. From the total area of Drama Regional Unit, the study area included only
the agricultural land, which was used as an analysis mask in the consequent data processing
for the identification of NTUs. The final study area covered an area of approximately
69.7 K ha, mostly scattered across the southern and western parts of Drama Regional Unit.
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2.2. Data Sources

The identification of NTUs was based on a comprehensive establishment of a ge-
ographical database populated with geodata from public-access geospatial information
concerning land cover, soil, climate, and topography.

The complete list of the geospatial data utilized for terroir zoning is presented in
Table 1, along with their statistical distribution constrained by the analysis mask of the
study area, i.e., the agricultural land cover. All data were retrieved in the form of spatial
raster datasets from the following online sources:

• Copernicus Land Monitoring Service (ver.3). Land Cover Change Version 3.0 product
at 100 m resolution. The Copernicus Global Land Service (CGLS) systematically pro-
duces a series of qualified bio-geophysical products on a regular basis, at a global scale
and at mid to low spatial resolution (https://land.copernicus.eu/global/products/lc,
accessed on 30 November 2022). Land cover from CGLS was used for the purpose of
masking the area of interest to the agricultural land cover class;

• Copernicus Sentinel-2 MSI Data supporting the monitoring of vegetation from the on-
line GEE platform (https://developers.google.com/earth-engine/datasets/catalog/
COPERNICUS_S2_SR_HARMONIZED#description, accessed on 30 November 2022);

• European Digital Elevation Model (EU-DEM), version 1.1. The EU-DEM v1.1 is a
contiguous dataset, distributed and divided into 1000 km × 1000 km tiles, at 25 m
resolution, in geotiff 32-bit format (https://land.copernicus.eu/imagery-in-situ/eu-
dem/, accessed on 30 November 2022);

• SoilGrids. SoilGrids is a system for digital soil mapping service based on a global
compilation of soil profile data (WoSIS) and environmental layers [22]. SoilGrids
delivers global predictions at 250 m resolution for standard numeric soil properties
at seven standard depths, in addition to the distribution of soil classes distribution,
based on the World Reference Base (WRB) and USDA classification systems (https://
data.isric.org/geonetwork/srv/eng/catalog.search, accessed on 30 November 2022);

• EU-SoilHydroGrids ver. 1.0. EU-SoilHydroGrids ver1.0 provides soil hydrologi-
cal data with full continental coverage. The multilayered European Soil Hydraulic
Database (EU-SoilHydroGrids ver1.0) was derived via European pedotransfer func-
tions (EU-PTFs) based on the soil information of SoilGrids250 m and aggregated 1 km

https://land.copernicus.eu/global/products/lc
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
https://land.copernicus.eu/imagery-in-situ/eu-dem/
https://land.copernicus.eu/imagery-in-situ/eu-dem/
https://data.isric.org/geonetwork/srv/eng/catalog.search
https://data.isric.org/geonetwork/srv/eng/catalog.search
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resolution datasets (https://esdac.jrc.ec.europa.eu/content/3d-soil, accessed on 30
November 2022) [22,23];

• Climate Data Store. European Centre for Medium-Range Weather Forecasts (ECMWF)
is producing an enhanced global dataset concerning the land component of the fifth
generation of European Re-Analysis (ERA5), referred to as ERA5-Land. Climatic
data concerning temperature, precipitation, evapotranspiration, wind speed, and
incoming solar radiation were accessed in the form of time-series averages for the
time period of 2002–2022, extracted from monthly averaged data for all climatic
variables besides heat frequency, which resulted from hourly analysis data. (https:
//cds.climate.copernicus.eu/cdsapp, accessed on 30 November 2022).

Table 1. Spatial data for terroir zoning.

No. InputVariable Units Min. 1st Qu. Median Mean 3rd Qu. Max. Std.dev CV %

1 Available Water
Capacity % 13.61 14.92 15.38 15.45 15.99 18.69 0.708 4.586

2 Soil bulk density kg/cm3 1256 1428 1440 1440 1452 1502 17.71 1.23

3 Cation Exchange
Capacity cmol/kg 16.53 20.78 21.59 21.59 22.52 27.12 1.477 6.839

4 Soil pH - 6.018 7.362 7.463 7.409 7.528 7.782 0.201 2.717

5 Coarse fragments Vol.
fraction vol % 6.368 10.22 11.35 11.63 12.83 20.21 2.034 17.48

6 Clay Soil fraction % 19.69 28.68 30.11 30.11 31.53 41.09 2.136 7.096

7 GS Heat frequency % 0 0.072 0.669 0.758 1.283 2.093 0.651 85.78

8 GS Downward
shortwave radiation e08 J/m2 1.22 1.256 1.262 1.261 1.268 1.279 0.012 0.889

9 GS Mean Temperature ◦C 14.95 17.93 19.53 19.2 20.64 21.27 1.611 8.395
10 GS Max Temperature ◦C 20.12 24.86 26.84 25.93 27.2 27.36 1.7 6.556
11 GS Min Temperature ◦C 9.497 14.07 16.07 15.17 16.51 16.69 1.763 11.62

12 GS Reference
Evapotranspiration mm 117.2 133.2 138.5 136.3 141.1 145.4 6.561 4.813

13 GS Wind speed m/s 2.087 2.184 2.273 2.299 2.4 3.051 0.143 6.229
14 GS Precipitation mm 196.7 205.6 219 229 250.7 315.9 28.15 12.29

15 Winter Season
Precipitation mm 304.3 320.8 338.4 337.1 353.7 378.1 18.54 5.499

16 Digital Elevation Model m 41.7 72.59 129.3 225.3 297.2 1307 210.1 93.28
17 Terrain Aspect deg. 0.051 133.9 185 179.1 222.5 360 72.02 40.22
18 Terrain Slope % 0.002 0.627 1.831 3.465 4.712 42.53 4.347 125.5

GS: growing season April–September.

2.3. Cluster Analysis
2.3.1. K-Means Clustering

K-means clustering was performed on the multivariate datasets using the Hartigan and
Wong clustering algorithm, which is one of the most widely used k-means techniques [24].
It belongs to partitioning-based grouping techniques, which are based on the iterative relo-
cation of data points between clusters. Their goal is to produce clusters of cases/variables
with a high degree of similarity within each group and a low degree of similarity between
groups. The algorithm searches for the partition of data space with the locally optimal
within-cluster sum of squares of errors, meaning that it may re-assign a case to another
cluster, even if it belongs to the cluster of the closest centroid if doing so minimizes the
total within-cluster sum of squares [25]. Although popular due to ease of implementation,
simplicity, efficiency, and empirical success, the primary drawback of k-means is that it
rarely achieves global optimization for centroid location [26,27]. The k-means algorithms
are local search heuristics and are, therefore, sensitive to the initial centroids chosen [28].
To counteract for this limitation, multiple applications of the technique were applied with
different initialization cases to obtain a more stable solution for k-means clustering.

https://esdac.jrc.ec.europa.eu/content/3d-soil
https://cds.climate.copernicus.eu/cdsapp
https://cds.climate.copernicus.eu/cdsapp
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2.3.2. Optimal Number of Clusters

Determining the optimal number of clusters in the data set of environmental parame-
ters is a fundamental issue in partitioning clustering, i.e., k-means clustering, where the
user is required to pre-specify the number of k-clusters to be generated. The k-means
algorithm divides the total squared distance between each data point and its closest cluster
mean into k-clusters (centroid). As a result, the process initialization has a significant
impact on the k-means result [26]. Misplaced initialization can cause the iterations to get
stuck into an inferior local minimum. The Dunn index is a method for internal evaluation
that is essentially equivalent to the ratio of intra-cluster to inter-cluster similarity [29]. As
the objective was compact clusters, the solution with the highest Dunn index was employed
for cluster discrimination. The Cubic Clustering Criterion (CCC) is another statistical index
provided by the SAS Institute [30]. The maximum value of the index was used to indicate
the optimal number of clusters in the data set.

Dunn and CCC indices were evaluated individually by comparing several clustering
structures resulting from the k-means algorithm with different parameter values, i.e.,
the number of clusters. To ensure the robustness of this approach, due to the inherent
randomization of the k-means algorithm, several repetitions of the comparative process,
individually for Dunn and CCC indices, are required.

2.3.3. Cluster Validation

Clustering validation has long been acknowledged as one of the critical issues related
to the success of clustering applications since clustering methods tend to generate clusters
even for relatively homogeneous data sets [25]. Cluster analysis is frequently performed in
an experimental way, and thus, the patterns it uncovers are not always significant. Either
for external or internal types, clustering validation may vary depending on whether or not
independent data are used for clustering validation [31]. Since no prior information re-
garding historically established viticultural terroir zoning in Drama region existed, internal
validation was initially carried out based entirely on data information.

A primary issue related to clustering is its stability or consistency, which is assessed
using the observed variation between clustering results over different subsamples drawn
from the input data [27]. Stability in cluster analysis is strongly related to inherent data
properties, weakened by lack of robustness of the clustering method or unsuitable clustering
method, which is inadequate for the available data [32]. The Jaccard coefficient, a similarity
measure between sets ranging from 0 to 1, was used as a cluster-wise measure of cluster
stability, which is assessed by resampling methods, i.e., the bootstrap distribution of the
Jaccard coefficient for every single cluster of a clustering, compared to the most similar
cluster in the bootstrapped data sets. The stability of every single cluster was extracted
by the mean similarity taken over the resampled data sets [32]. The concept of cluster
stability relies on the fact that resulting clusters that match a true cluster sufficiently yield
high-stability values, while insignificant clusters not corresponding to any true cluster
should yield low-stability values [32]. Mean index values below 0.6 either correspond to
incoherent clusters in terms of true underlying models or indicate inherent instabilities in
clusters, possibly related to the extreme variability of input features. The resulting clusters
were considered stable if they yielded a mean Jaccard similarity value of 0.75 or more,
while values between 0.6 and 0.75 were considered pattern indicative. In addition, stability
analysis was complemented with reference to the subject of terroir in terms of a physical
interpretation of NTUs in the wine-making process, supporting this way cluster validation
in k-means clustering.

External validation of the derived NTUs, as a result of k-means clustering, is often
carried out using a variance testing procedure, i.e., demonstrating how well NTUs de-
lineation explains a key vine growth or yield, grape, or wine composition parameter [7].
Accordingly, the delineation of NTUs as an outcome of the terroir effect on different scales
can be tested against the observed vine response to the environmental factors that make up
the terroir effect. NDVI has already been proven useful as a measure of vine response to
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its environment in the context of precision viticulture [33]; thus, it is the most widely used
indicator of plant canopy vigor [7]. NDVI is also related to grape quality characteristics [34].
Generally, grape composition spatial patterns follow those of canopy size, with high vigor
zones related to higher yields and poor grape and wine quality. A negative correlation was
found between grape phenolics and color and canopy NDVI, showing that low vigor zones,
assessed by NDVI measurements, presented the best quality for winemaking [35].

3. Results

All 18 selected raster datasets of Table 1 were harmonized in a common spatial res-
olution of 1 ha analysis cell, following resampling procedures (bilinear interpolation).
Feature scaling through standardization was carried out in order to establish a common
scale of variance throughout the input data (i.e., a mean of zero and a standard devi-
ation of one for all variables). In order to estimate the optimal number of clusters for
k-means, the Dunn and CCC indices were repeatedly evaluated for the different possible
numbers of clusters in the R-environment using the package “NbClust” [36]. The compu-
tational cost of the process was a critical factor, depending both on the size of the dataset
(69.7 K records × 18 variables) and on the number of possible clusters examined at each
repetition. Both indices were processed individually in 100 group repetitions of the k-
means algorithm with 6 possible numbers of clusters, i.e., from 7 up to 12. The range of the
possible number of clusters was introduced in order to reduce the computational burden of
the process on a realistic basis of the expected number of terroir units. For computational
efficiency, a total of 1200 indices (600 each index) were computed on a subset of the initial
data population, using the 18 variables of Table 1 and repetitive k-means with random ini-
tialization. Dunn indices were evaluated on 30% sampling from the initial data population;
CCC, being computationally more efficient, were evaluated on 50% sampling accordingly.

The resulting optimal numbers of clusters for each index are presented in the form of
their frequency distribution (Figure 2). Both Dunn and CCC indices suggest the number
of 10 as the most frequent optimal number of clusters, although most possible numbers
from 7 to 12 have emerged as optimal with lower frequencies. Following this suggested
number of clusters, k-means clustering was computed on the 18 variables of Table 1, using
Hartigan and Wong algorithm’s implementation in base-R [37].

3.1. Cluster Stability

Stability analysis for the 10-cluster k-means result was carried out with bootstrap
repetitions using package “fpc” in R-environment [38]. The distributions of similarity
metrics (i.e., Jacard similarity index) were plotted for every cluster in parallel density
plots as a ridge plot (Figure 3). The mean Jaccard index displayed for each cluster was an
indication of each cluster’s stability.

The Dunn and CCC index suggestion of 10 clusters was realistic as all clusters were
stable (Figure 3), with 8 out of 10 clusters scoring 0.71–0.91 and two clusters scoring 0.64
and 0.66 stability index. Concerning the two clusters, No.9 and No.6, although they turned
out stable according to the criterion of mean stability index, it is apparent from their
Jaccard index distribution that a substantial number of repetitions yielded low-stability
values. This unstable performance is related to the extreme variability, inherent in specific
input features for each cluster explicitly. In particular, cluster No.6 is scattered across
various hillsides surrounding the plain of Drama, while cluster No.9 is at the downstream
part of the plain of Drama, where various alluvial deposits have contributed to high soil
variability. The extent of variability in relation to the mean for each population (CV %)
reaches the global maximum inside cluster No.6 for most (five out of nine) of the climatic
variables (GSTmax 115%, GSTmin 113%, GSpET 126%, GSwv 135%, WINpr 108%), while
also exhibiting extreme values for soil and topographic variables (Clay 116%, BD 117%,
Aspect 117%). Similarly, inside cluster No.9, variability reaches a global maximum for
the soil fraction of Clay (136%), while also exhibiting extreme values for Aspect (128%),
CEC (100%), and WINpr (106%).
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By deviating from the suggested optimal number of 10 clusters, alternate clustering
solutions using k-means with the Hartigan and Wong algorithm were generated and subse-
quently checked for stability by bootstrap repetitions of the Jaccard similarity index. Any
additional decrease or increase in the desired number of clusters in k-means deteriorated
the overall stability of the resulting clusters further (results not shown). Consequently, the
k-means 10-cluster solution was considered as optimal to receive a physical interpretation
toward the understanding of the drivers of terroir.
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3.2. NTUs Distribution and Characterization

The resulting clustering solution of 10 clusters representing the NTUs of Drama
Regional Unit is presented in Figure 4, and the intra-cluster means for every input variable
are presented in Figure 5.

Clustering revealed 10 NTUs, which are, for the most part, located in distinct areas and
can be grouped into three sub-regions (Figures 4 and 5). As anticipated, topography had a
profound impact on the spatial distribution of climatic characteristics of the Drama region.
NTUs 1, 5, and 10 are generally distributed in the northwestern part of the Drama region
with the highest elevation (500–700 m); NTUs 2 and 6 were mostly located in the second
highest elevation zone (200–500 m) in the central-eastern part of Drama region, while NTUs
3, 4, 7, 8, and 9 occupy the lowest elevation zone (up to 200 m) and are distributed across
the whole southern part of Drama region, where most of the current viticultural areas occur.
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GS Min Temperature; GSpET: GS Reference Evapotranspiration; GSwv: GS Wind velocity; pH: Soil
pH; GSpr: GS Precipitation; WINpr: Winter Season Precipitation; Slope: Terrain Slope, GS: growing
season April–September.

Growing season minimum, maximum, mean temperatures, evapotranspiration, and
precipitation were affected by variations in altitude at different scales. Northwestern
NTUs (1, 5, and 10) are generally characterized by homogeneous climatic features. These
terroir units present the lowest temperatures (minimum ≈ 12 ◦C, maximum ≈ 23 ◦C,
mean ≈ 17 ◦C) and the highest growing season precipitation rates (≈280 mm) on average,
coupled with evapotranspiration of ≈125 mm. Northeastern NTUs 2 and 6, situated at the
intermediate altitude clusters, presented higher growing season temperatures (minimum
≈ 15 ◦C, maximum ≈ 26 ◦C, mean ≈ 18.5 ◦C) and a precipitation/evapotranspiration
ratio ≈ 250/140 mm. NTUs 3, 8, and 9, which constitute the southeast part of the Drama
region, exhibited the highest values of growing season temperatures (minimum ≈ 17 ◦C,
maximum ≈ 27 ◦C, mean ≈ 21 ◦C) and minimum precipitation (≈200 mm), coupled
with evapotranspiration of ≈150 mm. NTU 9 presented the overall warmer climate with
the highest heat occurrence frequency (≈2%), closely followed by NTU 8. However, as
we move toward the eastern part corresponding to the narrow valley between Mounts
Menikion and Falakro (NTUs 7 and mainly 4), temperature conditions become cooler,
which suggests a further climatic division of the southern sub-region. NTU 8 is additionally
characterized by a winter precipitation maximum (≈370 mm).

In terms of topography, apart from the differences in elevation, the resulting NTUs
are further differentiated by their average slope and aspect. NTUs 1 and 6 are the only
ones characterized by steep slopes (reaching 15%). Among the rest, NTUs 8 and 9 (in the
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low-altitude southern sub-region) and 10 (in the high-altitude northwest sub-region) are
practically on flat terrain, with the remaining ones presenting an average slope of 3 to
6%. Interestingly, apart from the NE exposure of NTU 4 situated mostly on the slopes of
Menikion mountain, all clusters share a prevailing S (NTUs 1, 5, 6, and 7) to SW (2, 3, 8, 9,
and 10) slope aspect.

The variability of soil properties is mainly responsible for the local terroir distribution.
Although cluster separation is strongly influenced by the short-range variation of soil
properties, mainly pedological characteristics, i.e., pH, AWC, clay fraction, and coarse
fragments fraction, actual soil features varied little among NTUs. Soils were generally
rich (C.E.C. ranged between 16 and 27 meq/100 g, Table 1) with a good porosity (soil
bulk density < 1.5 g/cm3) and a fraction of coarse element >10%. Its pH ranged between
6.9 and 7.5.

Focusing on cluster centroids and their dimensions in feature space, the Euclidean
distances that represent the magnitude of feature dimensions are plotted along the X-axis in
Figure 6 for every cluster. The largest absolute feature dimension per cluster centroid was
highlighted in order to assist the characterization of the derived clusters and the physical
description of the NTUs that is carried out using the intra-cluster means for every input
feature of Figure 5.

Agriculture 2023, 13, x FOR PEER REVIEW 12 of 18 
 

 

across the hilly landscape surrounding the plain of Drama, its delineation is heavily influ-
enced by the slope percentage of topographic variation and by the soil coarse fragment 
volume percentage. NTU7 is one of the largest terroir units, with an area coverage of 
13,008 ha. Situated in the central–eastern part of the Drama region, its delineation is influ-
enced by soil characteristics, such as AWC, pH, and BD, and mostly by the global minima 
of wind velocity (GSwv) during the growing season. NTU8 is mostly located in the south-
ern part of the region, occupying an area of 8908 ha. Its delineation is influenced by almost 
all the climatic variables, mostly by the precipitation during the winter season (WINpr). 
NTU9, situated in the southern part of the region, adjacent to NTUs 8, 7, and 3, is the 
largest terroir unit identified in the region, with an area coverage of 15,008 ha. Influenced 
by both soil and climatic variables, its delineation is heavily impacted by the global max-
imum of heat-wave occurrence that appears as a hot spot in the area occupied by this unit. 
NTU10 occupies the northwestern plateau of Kato Nevrokopi, covering an area of 4836 
ha. Its delineation is influenced by most of the climatic variables and elevation but mostly 
by the lower CEC that characterizes the loamy and sandy–loamy soils of the area. 

 
Figure 6. Cluster centroids dimensions. The largest feature dimension per cluster centroid is in bold. 
Aspect: Terrain Aspect; AWC: Available Water Capacity; BD: Soil bulk density; CEC: Cation Ex-
change Capacity; Cfvo: Coarse fragment volumetric fraction; Clay: Clay Soil fraction; DEM: Digital 
Elevation Model; GShw: GS Heat frequency; GSsrad: GS Downwards shortwave radiation; GSTavg: 
GS Mean Temp.; GSTmax: GS Max Temperature; GSTmin: GS Min Temperature; GSpET: GS Refer-
ence Evapotranspiration; GSwv: GS Wind velocity; pH: Soil pH; GSpr: GS Precipitation; WINpr: 
Winter Season Precipitation; Slope: Terrain Slope, GS: growing season April–September. 

3.3. External Validation 
External validation of the derived NTUs was performed by testing the variance of 

the observed vine response (NDVI) against the proposed terroir zonation. A time series 
of Sentinel-2 NDVI data at 10 m spatial resolution, covering the growth period from April 
to September, was extracted on a median cell basis to the polygons of the established vine-
yards scattered across the NTUs. Vineyards were distributed among all the NTUs (Figure 
7), with the exception of NTU10, which is the northwestern plateau of Kato Nevrokopi. 
This area has not been used for viticultural purposes yet but was included in terroir zona-
tion as a potential NTU, capable of supporting viticultural activities in the future. Thus, 
NTU10 was excluded from further validation due to the absence of vineyard data. The 
extracted data set consisted of 5545 NDVI measurements among nine different NTUs. 

Figure 6. Cluster centroids dimensions. The largest feature dimension per cluster centroid is in
bold. Aspect: Terrain Aspect; AWC: Available Water Capacity; BD: Soil bulk density; CEC: Cation
Exchange Capacity; Cfvo: Coarse fragment volumetric fraction; Clay: Clay Soil fraction; DEM:
Digital Elevation Model; GShw: GS Heat frequency; GSsrad: GS Downwards shortwave radiation;
GSTavg: GS Mean Temp.; GSTmax: GS Max Temperature; GSTmin: GS Min Temperature; GSpET: GS
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NTU1 covers a total area of 3160 ha, scattered across the entire northern part of the
region in high-altitude areas, exhibiting considerable terrain variability under soils that
appear at the lowest end of the pH scale. The pH, Slope, and DEM are highly important
features for the delineation of the terroir unit. NTU2 is situated mainly in the eastern part
of the region, covering 5369 ha of the hilly landscape of agricultural areas from south to
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northeast, where wind velocity exhibits its global maximum. Naturally, GSwv, i.e., wind
velocity during the growing season, has a high influence on its delineation. NTU3, which is
adjacent to NTU2, continues to the southern parts of the eastern region, occupying an area
of 6888 ha, exhibiting the lowest AWC of the entire agricultural region, heavily influencing
the terroir unit’s delineation. NTU4 covers an area of 4085 ha in the central–western part
of the region, where its distinctive exposure and soil coarse fragment volume percentage
have highly influenced its delineation. NTU5 is scattered in areas of high altitude in the
northwestern part of the region, delineated under the impact of almost all the climatic
variables, accumulating an area coverage of 5520 ha. NTU6 covers an area of 2942 ha
which is the minimum area coverage among the terroir units identified. Scattered across
the hilly landscape surrounding the plain of Drama, its delineation is heavily influenced
by the slope percentage of topographic variation and by the soil coarse fragment volume
percentage. NTU7 is one of the largest terroir units, with an area coverage of 13,008 ha.
Situated in the central–eastern part of the Drama region, its delineation is influenced by
soil characteristics, such as AWC, pH, and BD, and mostly by the global minima of wind
velocity (GSwv) during the growing season. NTU8 is mostly located in the southern part
of the region, occupying an area of 8908 ha. Its delineation is influenced by almost all the
climatic variables, mostly by the precipitation during the winter season (WINpr). NTU9,
situated in the southern part of the region, adjacent to NTUs 8, 7, and 3, is the largest terroir
unit identified in the region, with an area coverage of 15,008 ha. Influenced by both soil and
climatic variables, its delineation is heavily impacted by the global maximum of heat-wave
occurrence that appears as a hot spot in the area occupied by this unit. NTU10 occupies the
northwestern plateau of Kato Nevrokopi, covering an area of 4836 ha. Its delineation is
influenced by most of the climatic variables and elevation but mostly by the lower CEC
that characterizes the loamy and sandy–loamy soils of the area.

3.3. External Validation

External validation of the derived NTUs was performed by testing the variance of
the observed vine response (NDVI) against the proposed terroir zonation. A time series of
Sentinel-2 NDVI data at 10 m spatial resolution, covering the growth period from April to
September, was extracted on a median cell basis to the polygons of the established vineyards
scattered across the NTUs. Vineyards were distributed among all the NTUs (Figure 7), with
the exception of NTU10, which is the northwestern plateau of Kato Nevrokopi. This area
has not been used for viticultural purposes yet but was included in terroir zonation as a
potential NTU, capable of supporting viticultural activities in the future. Thus, NTU10 was
excluded from further validation due to the absence of vineyard data. The extracted data
set consisted of 5545 NDVI measurements among nine different NTUs.

Evaluation of the relevance of the derived NTUs based on vine NDVI was performed
through a one-way analysis of variance. Variance homogeneity was tested prior to analysis
using Levene’s test [39]. Homoscedasticity was not met since the variances were found to
be significantly different. Alternatively, in the absence of homogeneity of variances, Welch
ANOVA was adopted [40]. The initial results showed significant differences among the
derived NTUs (DFd = 121.5, statistic = 21.4, p ≤ 0.0001). The presence of spatial autocor-
relation in the response variable’s (NDVI) residuals that were evident (Moran’s I = 0.65,
p ≤ 0.0001) compromised the above result because it violated the assumption of stochastic
independence among observations, on which statistical inference is based. Overlooking this
issue could potentially lead to biased standard errors and/or biased parameter estimates,
as well as artificially inflated degrees of freedom. Thus, we applied semiparametric filtering
of spatial dependence, using simultaneous autoregressive (SAR) spatial models, imple-
mented in package “spatialreg” in R-environment, resulting in spatially uncorrelated NDVI
residuals (Moran’s I = −0.08, p = 0.46) [41,42]. Welch test confirmed the significant differ-
ences among the NTUs (DFd = 132.4, statistic = 47.7, p ≤ 0.0001), i.e., the between-cluster
variability of NDVI is significantly higher compared to the within-cluster variability.
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The mean NDVI from Sentinel-2 during the growth period was plotted per NTU
and grape variety (Figure 7). Sauvignon blanc is absent only from NTU9 and generally
presents the higher canopy growth in NTUs 5 and 6 with the higher AWC (Figure 5),
where it represents the total area of vineyards. Sauvignon blanc is a variety cultivated to
produce wines with green/unripe aromas, which are maximized in soils with high water
and nitrogen content. These soils lead to denser canopies reducing light penetration to the
fruiting zone of the vines. Thus, NDVI values of Sauvignon blanc vineyards are relatively
high in all NTUs, except for the NTU1 with the steeper slope and highest amount of course
elements in the soil. The second most important white variety of the area, Assyrtiko,
a medium vigor variety, presents lower NDVI in all NTUs. Among the red varieties,
although Agiorgitiko is considered more vigorous than Merlot and Cabernet Sauvignon,
it presents on average lower NDVI values than Cabernet Sauvignon and Merlot, but no
clear differences were observed either between varieties or between NTUs within the same
variety. It has been previously shown that NDVI has certain limitations, mostly related
to the interference of different vineyard management practices used between locations,
cultivars, or growers, which can significantly reduce NDVI credibility in the delineation of
management zones in vineyards [43].

3.4. Implications of NTUs in Vini-Viticulture

A major outcome of terroir studies is assisting in the selection of the right grape variety
with respect to the soil and climate in order to maximize the expression of terroir at specific
locations [16,44]. Thus, the assessment of the compiled clustering results can be helpful in
highlighting the most suitable NTUs for each major grape variety in the Drama region.

The temperature regime during grape ripening is of major importance in aroma type
in wine and is expected to be of high influence in most of the derived NTUs. Temperature
modulates the biosynthesis of the grape aroma precursors and also their breakdown
rate, with different requirements between volatile chemical groups. For example, cooler
regions are associated with increased expression of vegetative aromas [45]. On the contrary,
for red grapes, for which more fruity aromas are desirable, warmer climates with higher
temperatures are more suitable [46]. Grape exposure to sunlight also exerts a significant role
on the metabolic pathway of grape aroma-related compounds, stimulating the production
of those associated with floral and fruity characteristics while, conversely, decreasing those
related to vegetative or spicy ones [47,48].
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Terroir’s effect on wine flavor is also reported to be linked to water and nutrient
availability. Bramley, Ouzman, and Trought [6] accomplished terroir zoning on the basis
of identifying the strong impact of topographic variation on both soil hydrology and soil
fertility. Vine water status is also influenced by meteorological factors, such as rainfall
and reference evapotranspiration [44]. Grape metabolites responsible for the fruity wine
aromas are maximized under conditions of moderate water and nutrient availability, while
those related to the more vegetative ones are more expressed under higher nitrogen and
water reserves [49]. As a result, winegrape cultivars respond differently to water conditions
depending on the prevailing volatile compounds responsible for their ‘varietal’ character
and their vocation for certain styles of wines.

Sauvignon blanc, a French cultivar known for producing “green” aromas, is the
most widely planted white variety in the Drama region. It has been previously shown
that a sustained water deficit limits Sauvignon blanc aroma potential [49]. Water deficit
is also reported to decrease the levels of compounds responsible for vegetative aromas
(methoxypyrazines), which are desirable in white wines from this variety [50]. Moreover,
its cultivation in cool sites can lead to less tropical fruit, and more boxwood-like aromas in
wines are generally considered the most “typical” for Sauvignon blanc wines. However,
for Assyrtiko, the second most important white variety of the Drama region originating
from Santorini island, moderate to high water deficits are more suitable for the expression
of its flagship “mineral” aromatic character. Similarly, the aromatic quality of red grapes
and wines from the varieties Agiorgitiko and Cabernet Sauvignon is achieved under more
stressful water conditions [51,52].

In cooler conditions and/or higher water availability conditions (NTUs of the northern
part of the Drama region), Sauvignon blanc grapes would be expected to achieve better
aromatic ripeness. Slope percentage and orientation (aspect), though, could allow for a
fine-tuning of variety selection within sub-regions as south-facing slopes in the Northern
Hemisphere are generally warmer. However, the aspect contributing to the terroir effect
is more pronounced with increasing slope, i.e., in the case of cooler climate NTUs 1 and
6, their S slope orientation may alleviate some of the climatic restrictions regarding the
adaptation of late ripening varieties related to elevation (especially for NTU 1).

Based on these considerations, within the two northern sub-regions, the coolest north-
west NTUs 5 and 10 should favor more “vegetative”-style wines, while NTU 1, character-
ized by steep slopes facing south (e.g., possibly more limiting water conditions and higher
sun exposure), could be more suitable for concentrated white wines. Similarly, between the
northeast NTUs situated in the intermediate elevation and climate zone, NTU 2 would be
more suited for Sauvignon blanc, while NTU 6, characterized by higher slopes of southern
exposure, would be more adapted to the cultivation of early-ripening red varieties, such as
Merlot [53]. In these areas, the cultivation of red and late ripening varieties would require
the reduction of yields, the use of rootstocks of the shorter vegetative growth cycle, and
other vineyard adaptations by the growers to allow a better ripening.

Warmer locations of the lowest elevation zone should be avoided for Sauvignon blanc,
with the exception of NTU 4. Narrow valleys are often associated with cool valley floor
temperatures due to the downhill movement of the heavier cool air masses. In addition, the
mean slope of NTU 4, although not high (approximately 5% on average), must be taken into
consideration since it is the only one among the warmer low-elevation areas of the south-
ern sub-region with a north aspect, a feature that can significantly alter its microclimate
compared to the rest of the NTUs of this sub-region, with positive consequences regarding
its suitability to grow early ripening varieties, such as Sauvignon blanc and Merlot. The
warmer NTUs 7 and 3 of the southern part of the region would be suited to either Assyrtiko
or late red varieties, such as Agiorgitiko and Cabernet Sauvignon. However, Sauvignon
blanc forms a significant part of the cultivated surface under vines in those NTUs. In those
areas, a more severe intervention by the vineyard managers will be needed in terms of
canopy management, rational use of irrigation and fertilization, and soil management to
improve grapevine performance, even though this would mask the terroir effect.
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Finally, the very warm NTUs 8 and 9, on flat soils, are generally the least suitable
for quality wines. Sauvignon blanc is scarce or completely absent from these areas, while
red varieties and late-ripening ones (i.e., Cabernet Sauvignon, Agiorgitiko, and Assyrtiko)
are cultivated. In the frame of current and future global warming, those areas would be
either excluded from the demarcated areas of Geographical Indication wines or adopt more
prescriptive legislation for recommended varieties and wine styles per NTU.

This article presents a new approach to terroir studies through a new zoning method-
ology, with the aim to provide useful directions to the expanding wineries of the region
and also to contribute to terroir resilience to climate change. Protected Designation Areas
(PDO—Protected Designation of Origin or PGI—Protected Geographical Indication) will
be most likely threatened by climate change in the future, mostly by challenging their
ability to produce wines that will continue to reflect their geographical origin and meet
consumer expectations. The resilience of the wine industry will, therefore, depend on the
adaptation policies in the viticultural and enological processes. In this view, the results of
this work offer a powerful tool for the whole wine sector to successfully define the precise
adaptation strategies to preserve the “expression” of terroir, such as (1) rearrangement
of PDO areas boundaries, (2) optimization of variety distribution within the PDO areas,
(3) modification of vineyard decisions, such as choice of rootstocks, clones, training systems,
or (4) identification of new suitable land for viticulture.

3.5. Advantages and Limitations of the Proposed Methodology

The spatial modeling of NTUs includes the acquisition and processing of a large array
of geospatial information regarding the three most important environmental factors that
make up the terroir effect on different scales. Since the issue of scale is inherent in any
characterization of terroir, the spatial level of analysis of each NTU should be studied
further, taking into account the concept of viticultural validation. The hierarchy of the
terroir variables’ effects may vary according to the scale. The climate, in combination with
grapevine variety, is perhaps the most important component of the terroir influence at
the regional level. Sub-regionally, geomorphology and related topo-climatic effects might
be the driving factors that are able to explain differences in vine development and grape
composition. Locally, the terroir effect is governed by the spatial distribution of pedological
soil properties, i.e., clay fraction, coarse fragments, and bulk density, which greatly affect
soil hydrology (AWC).

Cluster analysis is ideal for the multi-variate nature of viticultural terroir spatial
modeling. Still, it is important to note that cluster analysis is of exploratory nature, and the
output of clustering only suggests hypotheses. While several clustering methods have been
published, and more are constantly being developed, no one clustering algorithm has been
demonstrated to be superior to other algorithms in the terroir modeling application space.
K-means’ major constraint is that the outcome of clustering strongly depends on the process
initialization, which can be addressed to an extent by better initialization techniques and
repetitive k-means.

4. Conclusions

Based on public-access geospatial information from online sources regarding soil,
climate, and topography of the wine-production environment, we established a data-
driven approach toward terroir zoning and NTUs identification, which was demonstrated
in the Drama region (Greece). The optimum number of clusters (n = 10) was identified
by the Dunn index and CCC computations and performed by k-means clustering using
the Hartigan and Wong algorithm. The clustering solution was proven stable by bootstrap
repetitions of the Jaccard similarity index, while all deviations around the suggested number
of clusters yielded unstable solutions. Therefore, the 10-cluster k-means solution is optimal
in the sense that it exhibits sufficient overall stability in order to receive a meaningful
description toward a true understanding of the drivers of terroir. The practical value of
the proposed methodology lies in the fact that it provides the wine-makers the necessary
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tool to make unbiased, i.e., data-driven decisions regarding the distribution of appropriate
plant material (varieties) across the varying landscape of environmental factors based on
the established terroir zonation.

Spatial modeling of viticultural terroir lays the foundation to address major environ-
mental challenges in the forthcoming years, such as terroir sustainability and efficient
implementation of appropriate management strategies at multiple spatial scales. Such
strategies, by taking into account the potential impact of climate change in viticulture and
considering the narrow climatic range for optimum quality and production that individual
wine-grape varieties exhibit, can provide proper mitigation measures (e.g., management
practices or plant relocation) based on the established terroir zonation. Overall, terroir
modeling is highly possible to be viewed as part of the concept of ecosystem services, such
as agricultural ecosystems for viticulture, whose services need to be assessed and updated
on an ongoing basis.

Author Contributions: Conceptualization, T.K.A. and S.K.; methodology, N.K. and T.K.A.; software,
N.K.; validation, N.K., S.T. and S.K.; formal analysis, N.K. and T.K.A.; data curation, N.K. and G.B.;
writing—original draft preparation, N.K., T.K.A. and S.K.; writing—review and editing, all authors;
visualization, N.K.; supervision, T.K.A. and S.K.; funding acquisition, S.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was co-financed by the European Regional Development Fund of the
European Union and Greek national funds through the Operational Program Competitiveness,
Entrepreneurship, and Innovation, under the call RESEARCH—CREATE—INNOVATE (project
code: T2E∆K-02974).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found at the respective sources mentioned in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carey, V.A. Spatial Characterisation of Natural Terroir Units for Viticulture in the Bottelaryberg-Simonsberg-Helderberg Winegrowing Area;

Stellenbosch University: Stellenbosch, South Africa, 2001.
2. Bodin, F.; Morlat, R. Characterization of viticultural terroirs using a simple field model based on soil depth I. Validation of the

water supply regime, phenology and vine vigour, in the Anjou vineyard (France). Plant Soil 2006, 281, 37–54. [CrossRef]
3. Tesic, D.; Woolley, D.J.; Hewett, E.W.; Martin, D.J. Environmental effects on cv. Cabernet Sauvignon (Vitis vinifera L.) grown

in Hawke’s Bay, New Zealand.: 1. Phenology and characterisation of viticultural environments. Aust. J. Grape Wine Res.
2002, 8, 15–26. [CrossRef]

4. Van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of Climate, Soil, and Cultivar on
Terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [CrossRef]

5. Priori, S.; Barbetti, R.; L’Abate, G.; Bucelli, P.; Storchi, P.; Costantini, E.A. Natural terroir units, Siena province, Tuscany. J. Map.
2014, 10, 466–477. [CrossRef]

6. Bramley, R.G.; Ouzman, J.; Trought, M.C. Making sense of a sense of place: Precision viticulture approaches to the analysis of
terroir at different scales. OENO One 2020, 54, 903–917. [CrossRef]

7. Vaudour, E.; Costantini, E.; Jones, G.V.; Mocali, S. An overview of the recent approaches to terroir functional modelling,
footprinting and zoning. Soil 2015, 1, 287–312. [CrossRef]

8. Mackenzie, D.; Christy, A. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Water
Sci. Technol. 2005, 51, 27–37. [CrossRef] [PubMed]

9. Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Cardoso, R.M.; Soares, P.M.; Cancela, J.J.; Pinto, J.G.; Santos, J.A. Integrated
analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions. PLoS ONE 2014, 9, e108078. [CrossRef]

10. Flexas, J.; Galmés, J.; Gallé, A.; Gulías, J.; Pou, A.; Ribas-Carbo, M.; Tomàs, M.; Medrano, H. Improving water use efficiency
in grapevines: Potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 2010, 16, 106–121.
[CrossRef]

11. Jones, G.; Snead, N.; Nelson, P. Geology and wine 8. Modeling viticultural landscapes: A GIS analysis of the terroir potential in
the Umpqua Valley of Oregon. Geosci. Can. 2004, 31, 167–178.

12. Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for
Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [CrossRef]

http://doi.org/10.1007/s11104-005-3768-0
http://doi.org/10.1111/j.1755-0238.2002.tb00207.x
http://doi.org/10.5344/ajev.2004.55.3.207
http://doi.org/10.1080/17445647.2014.885853
http://doi.org/10.20870/oeno-one.2020.54.4.3858
http://doi.org/10.5194/soil-1-287-2015
http://doi.org/10.2166/wst.2005.0004
http://www.ncbi.nlm.nih.gov/pubmed/15771096
http://doi.org/10.1371/journal.pone.0108078
http://doi.org/10.1111/j.1755-0238.2009.00057.x
http://doi.org/10.5344/ajev.2000.51.3.249


Agriculture 2023, 13, 629 17 of 18

13. Santos, J.A.; Malheiro, A.C.; Karremann, M.K.; Pinto, J.G. Statistical modelling of grapevine yield in the Port Wine region under
present and future climate conditions. Int. J. Biometeorol. 2011, 55, 119–131. [CrossRef]

14. Jones, G.V. Climate and terroir: Impacts of climate variability and change on wine. Geosci. Can. Repr. Ser. 2006, 9, 203–217.
15. Zsófi, Z.; Tóth, E.; Rusjan, D.; Bálo, B. Terroir aspects of grape quality in a cool climate wine region: Relationship between water

deficit, vegetative growth and berry sugar concentration. Sci. Hortic. 2011, 127, 494–499. [CrossRef]
16. Van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.;

et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines. OENO One 2020, 54, 985–1006.
[CrossRef]

17. Costantini, E.A.C.; Bucelli, P. Soil and terroir. In Soil Security for Ecosystem Management; Springer International Publishing: Cham,
Switzerland, 2014; pp. 97–133.

18. Vaudour, E. The Quality of Grapes and Wine in Relation to Geography: Notions of Terroir at Various Scales. J. Wine Res.
2002, 13, 117–141. [CrossRef]

19. Lagacherie, P.; Bailly, J.-S.; Monestiez, P.; Gomez, C. Using scattered hyperspectral imagery data to map the soil properties of a
region. Eur. J. Soil Sci. 2012, 63, 110–119. [CrossRef]

20. Morari, F.; Castrignanò, A.; Pagliarin, C. Application of multivariate geostatistics in delineating management zones within a
gravelly vineyard using geo-electrical sensors. Comput. Electron. Agric. 2009, 68, 97–107. [CrossRef]

21. Castrignanò, A.; Costantini, E.A.; Barbetti, R.; Sollitto, D. Accounting for extensive topographic and pedologic secondary
information to improve soil mapping. Catena 2009, 77, 28–38. [CrossRef]

22. Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright,
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