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Abstract: In this paper, a greenhouse tomato picking robot chassis that meets the path cruising
and setpoint positioning requirements of robots engaged in greenhouse tomato picking operations
in China is designed. Based on the trellis-cultivation growing environment of tomatoes, the basic
parameters of the chassis and operating space are analyzed to determine the chassis requirements
during picking operations. According to these requirements, a kinematic model of a robot chassis with
front-wheel steering and rear-wheel driving is constructed, and the planar positioning principle of
the chassis is introduced. SOLIDWORKS is used to simulate and design three-dimensional models of
the chassis parts, and the ANSYS WORKBENCH plug-in is used to simulate and analyze the bearing
performance of key chassis components. ADAMS is used to simulate and evaluate the motion
trajectory of the chassis, and the reasonableness of parameters such as the chassis size, selected
materials, and load-bearing performance are verified. Based on the simulation results, a physical
system is constructed to experimentally verify the straight-line motion and steering performance
of the chassis. The experimental results show that the chassis has good cruising and positioning
accuracy and meets the specific requirements of path cruising and setpoint positioning in greenhouse
tomato picking operations.

Keywords: chassis; greenhouse robot; tomato picking; operating space; trajectory planning

1. Introduction

As a key component in greenhouse picking robots, the chassis plays an important role in
robot operational performance. Many experts and scholars have researched the operational
performance of greenhouse picking robots, including the greenhouse pepper picking robot
developed by C. Wouter Bac et al. [1], the greenhouse mushroom picking robot developed by
Jiacheng Rong et al. [2], the apple picking robot developed by Abhisesh Silwal et al. [3], and the
greenhouse tomato picking robot developed by Qingchun Feng et al. [4]. These picking robots
all use a track chassis. These mobile platforms and tracks have large masses, are costly,
and require the use of special picking vehicles; moreover, the growing size and pattern in
the greenhouse cannot be adjusted according to the particular needs at the time [5–8]. In
addition, the greenhouse cherry tomato picking robot developed by Fatemah Taqi et al. [9],
the greenhouse flower picking robot developed by Hiroaki Masuzawa et al. [10], the green-
house strawberry picking robot developed by Zhang Kailiang et al. [11], the greenhouse
tomato picking robot developed by Zhongming Jin et al. [12], and the greenhouse cucumber
picking robot developed by Ji Chao et al. all use a crawler chassis [13]. These systems
include mobile platforms with good grips and passability on complex roads; however,
they are costly, bulky, heavy, and inflexible during steering [14–17]. Other research exam-
ples, such as the greenhouse strawberry picking robots developed by Ya Xiong et al. [18]
and Seungmin Woo et al. [19] and the greenhouse tomato picking robots developed by
Tao Zhu et al. [20] and Linlu Zu et al. [21], all use wheeled chassis with simple structures,
low costs, good load capacities, and steering flexibility. However, these robots can slip on
complicated road surfaces [22–24].

With an area of up to 11,572,000 m2 and an annual production of over 85.36 million
tons, China has the most extensive tomato growing area and largest tomato production in
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the world [25,26]. Greenhouse-grown tomatoes account for 70.29% of the total vegetables
grown, with an area of up to 5.82 million m2 and an annual output of over 60 million
tons [27]. However, at present, greenhouse tomato picking is mainly carried out manually,
requiring a large amount of automated tomato picking equipment [28–32]. As an important
component in tomato picking robots, the automated greenhouse chassis is in great demand
in China’s market.

In response to the considerable demand for an automated greenhouse chassis, in this
paper, a greenhouse tomato picking robot chassis is designed, and the requirements that
need to be met by the chassis to complete automated tomato picking operations in tomato
trellis-cultivation growing environments are determined. A kinematic model of a robot
chassis with front-wheel steering and rear-wheel driving is constructed, and the planar
positioning principle of the chassis is explained. Then, a tomato picking robot chassis is
simulated, and the key components of the robot chassis are investigated mechanically to
ensure that the chassis has a good load-bearing capacity. The linear walking and steering
performance of the chassis is analyzed via simulations, and the acceptability of parameters
such as the size and material is verified to guarantee that the chassis meets the specific
requirements of path cruising and setpoint positioning in greenhouse tomato picking
operations. Finally, prototypes are built, and experiments are conducted both indoors and
in greenhouse tomato growing areas to investigate the straight-line travel, steering and
setpoint parking abilities of the proposed robot.

2. Movement Mechanism of the Greenhouse Tomato Picking Robot Chassis

The greenhouse for tomato planting in Shaanxi, China, is shown in Figure 1. The
greenhouse was 30 m long and 5.2 m wide, and the environment inside the greenhouse
is shown in Figure 1. The tomato plants were 30–160 cm in height, the plant spacing was
26–82 cm, and the ridge spacing was approximately 80 cm.
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Figure 1. Solar greenhouse. (a) The appearance of the solar greenhouse; (b) Tomato planting
environment in greenhouse.

The tomato picking robot is composed of a wheeled chassis, a lifting platform, a
mechanical arm and an end-effector. The operating principle of the proposed robot is
shown in Figure 2. According to the greenhouse tomato picking operation environment
and agronomic requirements, the chassis of the picking robot adopts a four-wheel wheel
mechanism, and the kinematics model is shown in Figure 3. When the front wheel turns,
the steering mechanism adopts the Ackerman steering mechanism, and the rear wheel is
driven by a hub motor.
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Figure 2. Tomato-picking robot. 1:chassis; 2: lift platform; 3: mechanical arm; 4: end-effector; 5: fruit. 
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Figure 2. Tomato-picking robot. 1:chassis; 2: lift platform; 3: mechanical arm; 4: end-effector; 5: fruit.
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Figure 3. Movement principle of four-wheel wheel mechanism.

According to the above descriptions, the operation flow of the greenhouse tomato
picking robot chassis is constructed, as shown in Figure 4, with the robot moving intermit-
tently between the 5.2 m-wide trellis. The robot starts picking at the origin O in the lower
left corner of the aisle shown in Figure 4 and stops every 40 cm. After the tomatoes at the
current stop are picked, the robot moves to the next stop according to the trajectory shown
in Figure 4, and the picking process is repeated until the picking is finished. According to
the tomato picking operating environment, operating mechanism, and farmer’s experience,
to complete the automated picking operation the picking robot’s traveling ridge should be
80 cm wide. Considering the design allowance, the preliminary width of the chassis was
set to 60 cm. To prevent collisions between the robot and plants during the operation, the
deviation of the chassis in the X-direction should not exceed ±10 cm in a single movement
on the ridge path, and the maximum absolute deviation of the robot on the 320 cm straight
path should be 10 cm. Similarly, the deviation in the direction perpendicular to the steering
trajectory should not exceed 10 cm when the robot turns and moves, and the maximum
absolute deviation of the robot during turns and movement should be 10 cm.

Figure 5 shows a schematic diagram of the scope of the robot picking area. The figure
demonstrates that the robot positioning spacing is O0O′0 = 40 cm. Assuming the maximum
picking range of the manipulator in the Y-direction to be 42 cm, the positioning deviation
of the robot in the Y-direction O1O′0 should be kept within ±2 cm at each positioning point.
In this case, the maximum positioning deviation is ±2 cm when the chassis moves straight
for 40 cm.
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Figure 4. Schematic diagram of the intermittent mobile operation of the robotic pick. 1: chassis
operation docking point; 2: chassis cruise path; 3: tomato plant planting line; 4: the picking robot’s
traveling ridge; 5: tomato-picking robot; 6: arch bracket.
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Figure 5. Schematic diagram of the working space of the picking robotic arm. (a) Individual picking
areas; (b) Two adjacent picking areas. 1: wheeled chassis; 2: mechanical arm; 3: end-effector; 4: fan-
shaped picking operation space area; 5: lift platform; 6: fruit; 7: walking ridge road; O0, O′0: ideal
stop point; O1: actual stop point.

Existing commercially available joint robotic arms have masses of approximately 20 kg,
the end claw has a mass of approximately 350 g, and the lifting platform has a mass of
approximately 50 kg. The picking robot can carry 50 kg of tomatoes, the weight of the
chassis is approximately 55 kg, and the total weight is 175.35 kg [33,34]. Considering the
design margin, the preliminary picking robot chassis has a maximum load of 200 kg.

According to the above analysis, the basic requirements of the tomato picking robot
chassis can be summarized as follows:

1. The deviation of the robot in the X-direction must not exceed ±10 cm when the robot
moves straight along a single 320 cm-long ridge track.

2. When the robot turns, the deviation in the direction perpendicular to the turn trajectory
must not exceed 10 cm.
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3. When the robot stops every 40 cm, the deviation in the X-direction must not exceed
±10 cm, and the positioning deviation in the Y-direction must not exceed ±2 cm.

4. The robot must be capable of carrying a weight of approximately 200 kg.

3. Chassis Planar Positioning Principle

A kinematics model of front-wheel steering and rear-wheel driving with the robot
chassis is shown in Figure 6. Considering only the motion of the chassis in the two-
dimensional plane and ignoring the motion in the Z-axis direction, the world coordinate
system Ow − XwYw and the robot coordinate system Or − XrYr can be established. B was
taken as the instantaneous rolling center of the chassis, and the line segments OrB and XrB
are perpendicular to the directions of the two rolling wheels. The front-wheel angle is δ f ; β
is the slip angle, which refers to the angle between the movement direction of the chassis
and its orientation; ψ is the heading angle, which refers to the angle between the chassis
and the Xr axis. The center coordinate of the rear acle is (Xr, Yr),

.
ψ is the angular velocity,

Vr is the vehicle speed, and ω is the yaw angular velocity. Since the slip angle β is extremely
small, it is assumed to be 0. Therefore, the kinematics model of the robot chassis is:

.
Xw.
Yw.
ψ

 =

 cos ψ
sin ψ

0

Vr +

 0
0
1

ω (1)
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The kinematics model of the robot chassis is used to establish the odometer model
shown in Figure 7, and the pose of the robot chassis after a given time can be obtained. If
the linear velocity is Vr, the time is k, and the angular velocity is ω, then the distance
that the robot moves during this interval is ∆D = Vr × dt, and the change in the
angle of the robot relative to the origin is ∆ψ = ω × dt. At the time in question,
the robot’s pose is Xr = [Xr(k), Yr(k), ψr(k)], and after the time dt, the robot pose is
Xr = [Xr(k + 1), Yr(k + 1), ψr(k + 1)].

The robot’s motion in a very short time interval can be regarded as an arc motion.
Because the radius of the arc is rk = ∆Dk

∆ψk
and ∆ψk 6= 0, the robot’s pose can be obtained

from the odometer model as follows: Xr(k + 1)
Yr(k + 1)
ψr(k + 1)

 =

 Xr(k) + rk(sin(ψr(k) + ∆ψk)− sin ψr(k))
Yr(k) + rk(cos(ψr(k) + ∆ψk)− cos ψr(k))

ψr(k) + ∆ψk

 (2)
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Figure 7. Mileometer model.

The robot achieves chassis steering via a steering mechanism driven by the steering
engine. The steering principle is shown in Figure 8. The relationship among the steering
engine angle µ, the inner steering wheel angle α1 and the outer steering wheel angle α2 is
formulated as follows [35]:{

µ = 0.0001509α3
1 − 0.008748α2

1 + 1.047α1 − 0.03573
µ = −0.0001592α3

2 − 0.006714α2
2 + 0.944α1 + 5.595

(3)

To reduce the chassis steering deviation, the four-wheel chassis is simplified into a
two-wheel model, as shown in Figure 9, where δ is the front wheel angle, L is the wheelbase,
R is the radius of the circle to be traveled at this angle, Ld is the preview distance of the
chassis, and α is the angle between the current chassis pose and the target trajectory point.
The model takes the rear axle of the chassis as the tangent point and controls the rotation
angle of the front wheel, thereby allowing the chassis to follow a path through the set
trajectory point (Px, Py).
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Figure 8. The steering gear controls the steering mechanism movement. 
Figure 8. A Schematic diagram of the simplified two-round model.

After adding the time variable t, the relationship between δ and α can be formulated as:

δ(t) = arctan(
2L sin(α(t))

Ld
) (4)

According to the references, the preview distance is Ld = 0.25V2 + 0.2V + 0.775 [36,37],
which can be used to obtain Equation (5), as follows:

δ(t) = arctan(
2L sin(α(t))

0.25V2 + 0.2V + 0.775
) (5)
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Figure 9. The steering gear controls the steering mechanism movement.

Considering Equations (3) and (5) and the reference [38,39]:{
µ1(t) = 0.0001509δ(t)3 − 0.008748δ(t)2 + 1.047δ(t)− 0.03573
µ2(t) = −0.0001592δ(t)3 − 0.006714δ(t)2 + 0.944δ(t) + 5.595

(6)

Thus, the relationships between the planned waypoint and the angle δ(t) between the
current chassis pose and the steering engine angle µ are obtained. When the controller pro-
vides a command, the engine executes the corresponding action to ensure smooth steering.

4. Chassis Simulation Design and Verification

According to the above analysis and relevant parameters, SOLIDWORKS is used to
simulate the design of the greenhouse tomato picking robot chassis, which is 80 cm in length,
60 cm in width and 45 cm in height, as shown in Figure 10, including the frame, car shell,
wheeled moving mechanism, broken steering trapezoidal mechanism, and independent
suspension mechanism. The various mechanisms of the chassis are connected by bolts.
Frame 4 is located at the bottom of the robot chassis and plays an important role in its
load-bearing performance. To protect the internal components, car shell 5 was designed for
the chassis. During operation, the rotation of driving wheel 6 allows the robot to travel,
and the movement of steering mechanism 1 steers the robot.
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4.1. Load-Bearing Performance Simulation Analysis

The frame, which is located at the bottom of the robot chassis, plays a crucial role in
the load-bearing performance. Therefore, to analyze the load-bearing performance of the
robot chassis, the load-bearing performance of the frame must be investigated. The frame
material is set as ordinary carbon steel, with a compressive yield strength of 235 MPa, an
elastic modulus of 1.67× 1011 Pa, a Poisson’s ratio of 0.3, a Young’s modulus of 2× 1011 Pa,
and a density of 7850 kg/m3 [40]. A 3D model of a frame with a length of 790 mm, a
width of 590 mm, and a height of 140 mm was built in SOLIDWORKS and imported into
the WORKBENCH module of ANSYS for deformation and stress simulation analyses. A
tetrahedron was used to divide the mesh, and the minimum mesh unit size was set to
10 mm. A stress constraint of a weight of 200 kg was added to the frame, and the combined
displacement and stress distribution of the frame under the two working conditions of
full-load bending and full-load torsion were simulated and analyzed. The simulation
results are shown in Figure 11.

According to the simulation results, the maximum displacements of the frame are
0.55 mm and 0.53 mm under the full-load bending and full-load torsion conditions, re-
spectively. Compared with the frame size, the deformation is small and meets the stiffness
requirements of the robot chassis. The maximum stresses on the frame are 84.6 MPa and
90.0 MPa in the two conditions, which are less than the yield strength of ordinary carbon
steel and thus satisfy the strength requirements of the robot chassis.

Because the motor connector and lower fork arm are very fragile, the authors also
check their mechanical properties. Their material is set as aluminum alloy 7075-T6, with a
compressive yield strength of 564 MPa, an elastic modulus of, 7.2× 1010 Pa, and a Poisson’s
ratio of 0.25 [41]. The WORKBENCH module of ANSYS software was used for deformation
and stress simulation analyses. A tetrahedron was used to divide the mesh, and the
minimum mesh unit size was set to 10 mm. A stress constraint of a weight of 50 kg was
added to the motor connector and lower fork arm, and the combined displacement and
stress distribution of the frame were simulated and analyzed. The simulation results are
shown in Figure 12.
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considered to analyze the motion law of the chassis moving in a straight line. Taking the 
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13. The figure shows that the robot can complete a straight motion with a length of 320 
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Figure 11. Simulation results of the motor connector and lower fork arm. (a) Distribution of resultant
displacement of motor connector; (b) Stress distribution of motor connector; (c) Distribution of
resultant displacement of lower fork arm; (d) Stress distribution of lower fork arm.
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Figure 12. Simulation results of frame under different working conditions. (a) Distribution of
resultant displacement under full load bending; (b) Stress distribution under full load bending;
(c) Distribution of resultant displacement under full load torsion; (d) Stress distribution under full
load torsion.

According to the simulation results, the maximum displacement of the motor con-
nector and the lower fork arm are 0.001 mm and 4.03 mm, respectively, with a small
deformation, which satisfies the rigidity requirements of the robot chassis. The maximum
stresses of the motor connector and the lower fork arm are 18.9 MPa and 475.7 MPa, respec-
tively, which are less than the yield strength of aluminum alloy 7075-T6 and thus satisfy
the strength requirements of the robot chassis. The simulation results show that the chassis
can carry 200 kg.

4.2. Motion Trajectory Simulation

In ADAMS, the 3D model of the robot chassis designed with SOLIDWORKS was
considered to analyze the motion law of the chassis moving in a straight line. Taking the
total time as 20 s and the total number of steps as 500, the speed function of the two driving
wheels in the Y-direction is step 5 (time, 0, 0, 8, 33.4) + step 5 (time, 12, 0, 20, −33.4). Finally,
the linear motion track and the curves of the displacement S versus time t in the X, Y, and
Z directions in the Cartesian coordinate system are obtained, as shown in Figure 13. The
figure shows that the robot can complete a straight motion with a length of 320 cm.

Moreover, in ADAMS, the 3D model of the robot chassis constructed by SOLIDWORKS
was used to simulate and analyze the steering behavior of the chassis. Taking the total
time as 200 s and the total number of steps as 500, the obtained steering trajectory curve is
shown in Figure 14. According to the figure, the turning radius of the robot chassis is 40 cm,
which means that the robot can complete a circular motion with a turning radius of 40 cm.
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5.1. Physical System Construction 
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5. Experimental Verification and Analysis
5.1. Physical System Construction

According to the simulation analysis results, the chassis of the greenhouse tomato
picking robot was built, as shown in Figure 15. The frame of the robot chassis was made
of ordinary carbon steel, and the car shell was made of an aluminum alloy. The other
nonstandard components were made of aluminum profiles for laser cutting.
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Figure 16. The chassis control system of the greenhouse tomato picking robot. 

The correction process when the robot chassis moves in a straight line is shown in 

Figure 17. The GY953 nine-axis inertial navigation sensor detects and transmits the head-

ing angle in real time during the chassis movement. The heading angle before the chassis 

Figure 15. Assembly drawing of the test prototype.

The chassis control system of the greenhouse tomato picking robot is shown in
Figure 16. The system includes an industrial computer (GK4000, Shenzhen Chammei
High-tech Electronics Co., Ltd., Shenzhen, China), a motion controller (STM32F103VET6,
Guangzhou Xingyi Electronic Technology Co., Ltd., Guangzhou, China), a servo motor
(Time Chaoqun Technology Co., Ltd., Beijing, China), a servo motor driver (DM-055B, Time
Chaoqun Technology Co., Ltd., Beijing, China), a steering engine (DS3218, Premium Robot
Co., Ltd., Shenzhen, China), a steering engine driver (LSC-16-V1.3, Magic Robot Official
Mall, Shenzhen, China), an incremental photoelectric encoder (OVW2–2MHT, Jiangnan
Coding Technology Co., Ltd., Wuxi, China), and a GY953 nine-axis inertial navigation
sensor (GY953, Guangyun Electronics GY Series Module Manufacturing Co., Ltd., Guilin,
China). The motion controller receives the ideal speed set by the industrial computer and
sends this speed value to the motor driver via serial communication to drive the motor to
rotate. The encoder detects the actual rotational speed of the motor in real time and trans-
mits this value to the industrial computer through the motion controller. The industrial
computer compares the actual rotational speed with the ideal speed. When the deviation is
too large, an incremental digital PID algorithm is used to adjust the motor speed to ensure
that the actual speed is consistent with the ideal rotational speed. The industrial computer
uses Equation (6) to analyze the desired target pose information of the chassis according
to the rotation angle of the steering engine and sends the results to the motion controller.
Through the steering gear driver, the motion controller drives the steering engine to steer
the chassis. The GY953 nine-axis inertial navigation sensor detects the pose of the chassis
in real time and sends the pose to the motion controller through serial communication. The
motion controller adjusts the traveling direction of the chassis according to the received
pose information to ensure that the robot does not yaw when traveling in a straight line.
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Figure 16. The chassis control system of the greenhouse tomato picking robot.

The correction process when the robot chassis moves in a straight line is shown in
Figure 17. The GY953 nine-axis inertial navigation sensor detects and transmits the heading
angle in real time during the chassis movement. The heading angle before the chassis
movement is denoted as θx, and the heading angle as the chassis moves is denoted as
θs. The angle tolerance threshold is specified as ε. When θs − θx > ε, the robot chassis
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is in a right-biased state, and the motion controller needs to adjust the motor speed of
the left driving wheel to ensure that the robot chassis travels in a straight line. Similarly,
when θx − θs > ε, the robot chassis is in a left-biased state, and the motion controller needs
to adjust the motor speed of the right driving wheel to ensure that the robot travels in a
straight line. When |θs − θx| < ε, the robot chassis does not yaw. During chassis movement,
the encoder updates the interrupt count values PR and PL in real time. When their mean
values are greater than the preset value X of the chassis travel distance, namely, when
(PR + PL)/2 > X, the motor brakes, and the robot chassis stops moving.
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5.2. Experiment and Analysis of Straight-Line Motion in the Laboratory

To verify the actual straight-line traveling performance of the robot chassis, a straight-
line motion experiment with the chassis was carried out in a laboratory at Northwest A&F
University, and the experimental scene is shown in Figure 18. A plastic bottle with red ink
was placed at the center of the back-end position of the chassis, with the top of the bottle
facing down and a small hole pierced by a needle on the cap. As the robot chassis moves,
red ink flows from the hole, thus leaving a red tracking line on the ground to represent the
movement of the chassis.
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In the initial position of the robot chassis, the vertical projection point of the bottle
on the ground is taken as the origin, the traveling direction of the robot chassis is taken
as the Y-axis, and the direction perpendicular to the traveling direction is taken as the
X-axis, to establish the plane cartesian coordinate system. The coordinate of the target point
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that the robot chassis walks toward in a straight line is set as (0, 320), and the coordinate
of the actual arrival point is recorded. The experiments were repeated 30 times, and the
experimental results are shown in Table 1.

Table 1. Experiment data of straight-line motion in the laboratory.

Number The Coordinate of
the Actual Point/cm Number The Coordinate of

the Actual Point/cm

1 (0.7, 320.2) 16 (0.2, 319.7)
2 (1.2, 318.9) 17 (−0.3, 319.8)
3 (0.7, 320.5) 18 (−0.5, 320.4)
4 (−2.1, 320.4) 19 (1.2, 321.1)
5 (−0.7, 319.9) 20 (−0.6, 320.4)
6 (−0.5, 319.7) 21 (1.9, 320.1)
7 (−0.2, 320.9) 22 (−0.2, 319.9)
8 (1.6, 319.5) 23 (0.5, 318.9)
9 (0.8, 318.8) 24 (−0.2, 320.0)
10 (−1.9, 320.9) 25 (−0.3, 319.7)
11 (−1.1, 319.5) 26 (−0.6, 320.1)
12 (0.0, 320.4) 27 (0.4, 321.2)
13 (1.3, 319.9) 28 (−1.3, 320.4)
14 (−1.6, 320.2) 29 (0.3, 320.2)
15 (0.3, 320.1) 30 (−0.2, 319.9)

The experimental results were analyzed, and the average transverse deviation in the
chassis motion is calculated as

X =
1
N

N

∑
i=1
|Xi| (7)

The average longitudinal deviation in the chassis motion is calculated as

Y =
1
N

N

∑
i=1
|Yi| (8)

In the equation, N is the number of actual coordinates, Xi is the abscissa and Yi is
the ordinate.

According to the data in Table 1 and Equation (7), when the robot chassis travels
straight indoors, the average lateral deviation in the deviated trajectory is X = 0.78 cm,
and the maximum deviation is Xmax = −2.1 cm, which satisfy the requirement that the
deviation of the robot chassis in the X direction should not exceed ±10 cm when the
chassis moves along the straight 320 cm long path. Moreover, according to the data in
Table 1 and Equation (8), the average longitudinal deviation in the deviated trajectory is
Y = 0.45 cm, and the maximum deviation is Ymax = ±1.2 cm, which satisfy the requirement
that the deviation in the Y direction should not exceed ±2 cm. Therefore, the straight travel
deviations of the greenhouse tomato picking robot chassis are within the threshold ranges,
demonstrating that the robot chassis has good indoor straight travel performance.

5.3. Experiment and Analysis of Steering in the Laboratory

To verify the actual steering performance of the robot chassis, the steering scene as
shown in Figure 19 was built in a laboratory at Northwest A&F University using flowerpots
to simulate tomato ridges and PVC pipes to simulate tomato plants. A plastic bottle with
red ink was placed at the center of the back end position of the chassis, with the top of the
bottle facing down and a small hole pierced by a needle on the cap. As the robot chassis
moved, red ink flowed out of the hole, leaving a red track line on the ground to indicate
the moving track of the chassis.
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At the starting steering point of the robot chassis, the vertical projection point of the
bottle on the ground is taken as the origin, the traveling direction of the robot chassis is
taken as the Y-axis, and the direction perpendicular to the traveling direction is taken as
the X-axis, to establish the plane cartesian coordinate system. A semicircle with a radius of
40 cm is chosen in the coordinate system, and the starting and ending point coordinates are
(0, 0) and (80, 0). The semicircular arc is taken as the ideal turning trajectory for the robot
chassis. The robot chassis is placed at the origin (0, 0), and the robot is controlled to turn
along the semicircular arc. The red ink trace on the ground is taken as the actual track of
the chassis during turning. The ideal trajectory is divided into 12 equal, ideal trajectory
points. Then, the equally divided points are connected with the center of the circle, and
the intersection point between the two lines and the actual trajectory is taken as the actual
trajectory point. The coordinates of the ideal and actual trajectory points are both recorded,
and the deviation in their distances is calculated according to Equation (9). The results
are shown in Table 2. The data in Table 2 were imported into MATLAB for curve fitting,
and the ideal, and the actual trajectories of the chassis during turning are presented on
two-dimensional planes, as shown in Figure 20.

The distance deviation in the chassis turning motion is calculated as

s =
√
(xl − xa)

2 + (yl − ya)
2 (9)

In the equation, s is the deviation in the distance, (Xl , Yl) are the coordinates of the
ideal trajectory point and (Xa, Ya) is the deviation in the distance.

Table 2. Experiment data of steering in the laboratory.

Number
The Coordinates of

the Ideal
Trajectory Point/cm

The Coordinates of
the Actual Trajectory

Point/cm

The Deviation in the
Distance/cm

1 (1.4, 10.4) (1.4, 10.4) 0
2 (5.4, 20.0) (5.8, 19.7) 0.50
3 (11.7,28.3) (11.1, 28.9) 0.85
4 (20.0, 34.6) (19.6, 35.2) 0.72
5 (29.6, 38.6) (29.1, 40.6) 2.06
6 (40.0, 40.0) (40.0, 43.3) 2.60
7 (50.4, 38.6) (51.1, 41.0) 2.50
8 (60.0, 34.6) (60.7,35.7) 1.30
9 (68.3, 28.3) (69.4, 29.4) 1.56
10 (74.6, 20.0) (74.9, 20.2) 0.36
11 (78.6, 10.4) (79.6, 10.7) 1.04
12 (80.0, 0) (80.3, 0) 0.30
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Figure 20. The turning trajectories of the chassis in the laboratory.

By substituting the data in Table 2 into Equation (7), it can be concluded that when
the robot chassis turns indoors, the average deviation in the X direction is 0.50 cm. By
substituting the data into Equation (8), the average deviation in the Y direction is calculated
to be 0.93 cm. The maximum distance deviation is 2.60 cm, which meets the requirement
that the deviation in the direction perpendicular to the turning track should not exceed
10 cm when the chassis turns and moves. In conclusion, the greenhouse tomato picking
robot chassis has a small turning deviation, can successfully enter the next ridge, and shows
good indoor steering performance.

5.4. Experiment and Analysis of Setpoint Parking in the Laboratory

To verify the setpoint parking performance of the robot chassis, a setpoint parking
experiment was carried out in a laboratory at Northwest A&F University. The experiment
scene is shown in Figure 21. A plastic bottle with red ink was placed at the center of the
back-end position of the chassis, with the top of the bottle facing down and a small hole
pierced by a needle on the cap. As the robot chassis moves, red ink flows from the hole,
leaving a red track line on the ground that indicates the movement of the chassis.
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At the initial position of the robot chassis, the vertical projection point of the bottle
on the ground is taken as the origin, the traveling direction of the robot chassis is taken as
the Y-axis, and the direction perpendicular to the traveling direction is taken as the X-axis
to establish the plane cartesian coordinate system. The straight-line moving distance of
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the chassis is set to 320 cm, and the robot stops once every 40 cm, yielding a total of eight
stops. The coordinates of the target and actual points of the robot chassis during parking
are recorded, and the results are shown in Table 3.

Table 3. Experiment data of setpoint parking in the laboratory.

Number The Coordinate of the Target
Point/cm

The Coordinate of the Actual
Point/cm

1 (0, 40) (0.3, 40.4)
2 (0, 80) (0.5, 79.3)
3 (0, 120) (−0.2, 119.8)
4 (0, 160) (0.6, 160.8)
5 (0, 200) (0.9, 199.7)
6 (0, 240) (−0.6, 240.5)
7 (0, 280) (0.8, 281.1)
8 (0, 320) (0.9, 321.3)

According to the data in Table 3 and Equation (7), the average lateral deviation in the
deviated trajectory is X = 0.6 cm and the maximum deviation is Xmax = 0.9 cm, when
the robot chassis stops at a fixed point indoors, which satisfies the requirement that when
the chassis stops every 40 cm, the deviation in the X direction should not exceed ±10 cm.
According to the data in Table 3 and Equation (8), the average longitudinal deviation in
the deviated trajectory is Y = 0.66 cm, and the maximum deviation is Ymax = 1.3 cm,
which satisfies the requirement that when the chassis stops every 40 cm, the deviation
in the Y direction should not exceed ±2 cm. Therefore, the positioning deviation of the
greenhouse tomato picking robot chassis is within the threshold range, demonstrating that
the proposed robot performs well at indoor setpoint parking.

5.5. Experiment and Analysis of Straight-Line Motion in the Greenhouse Tomato Growing Area

Since the robot chassis shows good straight-line traveling performance on flat indoor
roads, a straight-line motion experiment was conducted in the greenhouse tomato growing
area of Yangling Modern Agriculture Innovation Park in Yangling Demonstration Zone,
Xianyang City, Shaanxi Province, and the experimental scene is shown in Figure 22. A
plastic bottle with red ink was placed at the center of the back-end position of the chassis,
with the top of the bottle facing down and a small hole pierced by a needle on the cap. As
the robot chassis moves, red ink flows from the hole, thus leaving a red tracking line on the
ground to represent the movement of the chassis.
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In the initial position of the robot chassis, the vertical projection point of the bottle on
the ground is taken as the origin, the traveling direction of the robot chassis is taken as the
Y-axis, and the direction perpendicular to the traveling direction is taken as the X-axis to
establish the plane cartesian coordinate system. The coordinates of the target point that
the robot chassis walks toward in a straight line are set as (0, 320), and the coordinates of
the actual arrival point are recorded. The experiments were repeated 30 times, and the
experimental results are shown in Table 4.

Table 4. Experiment data of straight-line motion in the greenhouse tomato growing area.

Number The Coordinate of
the Actual Point/cm Number The Coordinate of

the Actual Point/cm

1 (2.7, 321.2) 16 (1.4, 320.1)
2 (3.5, 318.4) 17 (−0.3, 320.3)
3 (1.5, 321.5) 18 (−2.5, 319.6)
4 (3.4, 320.4) 19 (−2.1, 318.7)
5 (0.9, 319.5) 20 (1.9, 319.7)
6 (−2.6, 319.3) 21 (3.7, 320.0)
7 (−7.3, 321.8) 22 (−0.5, 319.9)
8 (−4.7, 320.5) 23 (−6.8, 320.6)
9 (4.2, 321.3) 24 (2.1, 320.3)
10 (3.9, 318.9) 25 (−3.3, 321.1)
11 (3.6, 318.5) 26 (3.6, 320.3)
12 (2.2, 321.9) 27 (0.3, 321.2)
13 (1.3, 320.9) 28 (2.5, 320.5)
14 (3.0, 319.5) 29 (−5.3, 320.4)
15 (0.4, 320.1) 30 (4.7, 321.6)

According to the data in Table 4 and Equation (7), when the robot chassis travels
straight in the greenhouse tomato growing area, the average lateral deviation in the deviated
trajectory is X = 2.87 cm, and the maximum deviation is Xmax = −7.3 cm, which satisfies
the requirement that the deviation of the robot chassis in the X direction should not exceed
±10 cm when the chassis moves along the straight 320 cm long path. Moreover, according
to the data in Table 1 and Equation (8), the average longitudinal deviation in the deviated
trajectory is Y = 0.80 cm, and the maximum deviation is Ymax = 1.8 cm, which satisfies
the requirement that the deviation in the Y direction should not exceed ±2 cm. Therefore,
the straight-line deviation of the greenhouse tomato picking robot chassis is within the
threshold range, demonstrating that the proposed robot has good straight-line walking
performance between ridges.

5.6. Experiment and Analysis of Steering in the Greenhouse Tomato Growing Area

Since the chassis has good steering performance on flat indoor roads, a steering
experiment was carried out in the greenhouse tomato growing area of Yangling Modern
Agriculture Innovation Park in the Yangling Demonstration Zone, Xianyang City, Shaanxi
Province, and the experimental scene is shown in Figure 23. A plastic bottle with red ink
was placed at the center of the back-end position of the chassis, with the top of the bottle
facing down and a small hole pierced by a needle on the cap. As the robot chassis moved,
red ink flowed out of the hole, leaving a red track line on the ground to indicate the moving
track of the chassis.

At the starting steering point of the robot chassis, the vertical projection point of the
bottle on the ground is taken as the origin, the traveling direction of the robot chassis is
taken as the Y-axis, and the direction perpendicular to the traveling direction is taken as
the X-axis, to establish the plane cartesian coordinate system. A semicircle with a radius of
40 cm is chosen in the coordinate system, and the starting and ending point coordinates
are (0, 0) and (80, 0). The semicircular arc is taken as the ideal turning trajectory for the
robot chassis. The robot chassis is placed at the origin (0, 0), and the robot is controlled to
turn along the semicircular arc. The red ink trace on the ground is taken as the actual track



Agriculture 2023, 13, 532 18 of 23

of the chassis during turning. The ideal trajectory is divided into 12 equal ideal trajectory
points. Then, the equally divided points are connected with the center of the circle, and
the intersection point between the two lines and the actual trajectory is taken as the actual
trajectory point. The coordinates of the ideal and actual trajectory points are both recorded,
and the deviation in their distances is calculated according to Equation (9). The results are
shown in Table 5. The data in Table 5 were imported into MATLAB for curve fitting, and the
ideal and actual trajectories of the chassis during turning are presented on two-dimensional
planes, as shown in Figure 24.
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Table 5. Experiment data of steering in the greenhouse tomato growing area.

Number
The Coordinates of
the Ideal Trajectory

Point/cm

The Coordinates of
the Actual Trajectory

Point/cm

The Deviation in the
Distance/cm

1 (1.4, 10.4) (1.1, 10.5) 0.32
2 (5.4, 20.0) (4.8, 20.4) 0.72
3 (11.7,28.3) (10.8, 29.2) 1.27
4 (20.0, 34.6) (18.6, 36.9) 2.69
5 (29.6, 38.6) (28.4, 42.9) 4.46
6 (40.0, 40.0) (40.0, 43.9) 3.90
7 (50.4, 38.6) (51.3, 42.0) 3.52
8 (60.0, 34.6) (62.4, 38.7) 4.75
9 (68.3, 28.3) (72.6, 32.6) 6.08
10 (74.6, 20.0) (78.8, 22.4) 4.84
11 (78.6, 10.4) (81.7, 11.2) 3.20
12 (80.0, 0) (81.4, 0) 1.40

By substituting the data in Table 5 into Equation (7), it can be concluded that when the
robot chassis turns into the greenhouse tomato growing area, the average deviation in the X
direction is 1.73 cm. By substituting the data into Equation (8), the average deviation in the
Y direction is calculated to be 2.24 cm. The maximum distance deviation is 6.08 cm, which
meets the requirement that the deviation in the direction perpendicular to the turning track
should not exceed 10 cm when the chassis turns and moves. In conclusion, the greenhouse
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tomato picking robot chassis has a small steering deviation, can successfully enter the next
ridge, and shows good steering performance between ridges.
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5.7. Experiment and Analysis of Setpoint Parking in the Greenhouse Tomato Growing Area

Since the robot chassis has good setpoint parking performance on flat indoor roads,
a setpoint parking experiment was carried out in the greenhouse tomato growing area of
Yangling Modern Agriculture Innovation Park in Yangling Demonstration Zone, Xianyang
City, Shaanxi Province, and the experimental scene is shown in Figure 25. A plastic bottle
with red ink was placed at the center of the back-end position of the chassis, with the top of
the bottle facing down and a small hole pierced by a needle on the cap. As the robot chassis
moves, red ink flows from the hole, leaving a red track line on the ground that indicates
the movement of the chassis.
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At the initial position of the robot chassis, the vertical projection point of the bottle
on the ground is taken as the origin, the traveling direction of the robot chassis is taken as
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the Y-axis, and the direction perpendicular to the traveling direction is taken as the X-axis
to establish the plane cartesian coordinate system. The straight-line moving distance of
the chassis is set to 320 cm, and the robot stops once every 40 cm, yielding a total of eight
stops. The coordinates of the target and actual points of the robot chassis during parking
are recorded, and the results are shown in Table 6.

Table 6. Experiment data of setpoint parking in the greenhouse tomato growing area.

Number The Coordinate of the Target
Point/cm

The Coordinate of the Actual
Point/cm

1 (0, 40) (0.5, 40.7)
2 (0, 80) (−0.7, 80.9)
3 (0, 120) (−1.5, 120.4)
4 (0, 160) (0.8, 159.1)
5 (0, 200) (1.8, 201.3)
6 (0, 240) (2.1, 238.9)
7 (0, 280) (−1.9, 281.5)
8 (0, 320) (2.5, 321.8)

According to the data in Table 6 and Equation (7), the average lateral deviation in the
deviated trajectory is X = 1.48 cm, and the maximum deviation is Xmax = 2.5 cm when the
robot chassis stops at a fixed point in the greenhouse tomato growing area, which satisfies
the requirement that when the chassis stops every 40 cm, the deviation in the X direction
should not exceed ±10 cm. According to the data in Table 6 and Equation (8), the average
longitudinal deviation in the deviated trajectory is Y = 1.08 cm and maximum deviation is
Ymax = 1.8 cm, which satisfies the requirement that when the chassis stops every 40 cm, the
deviation in the Y direction should not exceed ±2 cm. Therefore, the positioning deviation
of the greenhouse tomato picking robot chassis is within the threshold range, showing that
the proposed robot has good setpoint parking performance between ridges.

6. Conclusions

In this paper, a greenhouse tomato picking robot chassis is designed to meet the
specific requirements of path cruising and setpoint positioning of robots during automatic
tomato picking operations in China. First, based on the trellis-cultivation environment of
tomatoes, the basic parameters and operating space of the tomato picking robot chassis
are determined, and the chassis requirements are proposed. Then, a kinematics model of a
robot chassis with front-wheel steering and rear-wheel driving is constructed to determine
the posture of the chassis and transmit the pose in real time to a controller, which inputs the
pose information into a PID algorithm to control the motion of the chassis and improve its
straight-line walking performance. The Ackermann steering mechanism is implemented to
improve the steering accuracy of the chassis. SOLIDWORKS is used to design a 3D model of
the chassis; the ANSYS WORKBENCH plug-in is used to simulate and analyze the bearing
performance of key chassis components; and ADAMS is used to simulate and analyze the
straight-line walking and turning performance of the robot chassis. The reasonableness of
parameters such as the chassis size and selected materials and the bearing performance are
verified. Finally, the robot chassis prototype is constructed, the motion control system is
developed, and the actual motion performance is verified. The experimental results in the
laboratory show that when the robot chassis travels in a straight line along a 320 cm-long
track, the average deviations in the X and Y directions are 0.78 cm and 0.45 cm, respectively.
When the robot chassis travels in a 40 cm-radius turn, the average deviations in the X and
Y directions are 0.50 cm and 0.93 cm, respectively. Moreover, when the robot chassis travels
in a 40 cm zone, the average deviations in the X and Y directions are 0.60 cm and 0.66 cm,
respectively. The experimental results in a greenhouse tomato growing area show that the
average deviations in the X-axis and Y-axis directions are 2.87 cm and 0.80 cm when the
robot chassis travels along a straight 320 cm-long path; the average deviations in the X and
Y directions are 1.73 cm and 2.24 cm when the robot travels in a 40 cm-radius turn; and the
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average deviations in the X- and Y-directions are 1.48 cm and 1.08 cm when the robot travels
in a 40 cm zone. The experimental results show that the average motion deviations of the
robot chassis in the X-axis and Y-axis directions are small during straight line, turning, and
positioning motions, which proves that the robot chassis has good kinematic performance.

This study presents a novel chassis design for automatic greenhouse equipment that
can be widely used in other automatic greenhouse operations, such as spraying, fertilization,
and material transport. Thus, the proposed design has high practical value and broad
development prospects. Additionally, the designed chassis has a certain significance for
designing chassis systems for other greenhouse robots. Due to time and cost limitations,
there is a certain error between the angle of the robot chassis designed in this paper and the
ideal Ackerman angle. In future work, the picking performance of the robot chassis can be
further improved by optimizing its structure.
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