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Abstract: Accurately measuring the skin temperature of pigs is essential to large-scale pig farming 

for health monitoring, as well as disease detection and prevention. Infrared thermography (IRT) is 

a promising technology for the non-invasive measuring of pig skin temperature. However, the dis-

tance and angle of view of measurement greatly affect the accuracy of IRT-measured temperature. 

To improve the accuracy of the measurement, this study starts with evaluating the effects of four 

parameters on the measurement of skin temperature: horizontal distance, camera height, pig height, 

and angle of view between the object and the IRT camera. It follows by proposing a mathematical 

model describing the relationship between the real skin temperature and the four parameters 

through means of response surface methodology. A correction algorithm is then developed based 

on the mathematical model to improve the measuring accuracy. In order to evaluate the perfor-

mance of the correction algorithm, the measured skin temperatures before and after correction are 

compared with the actual ones. The comparison was carried out in an experimental pig farm with 

25 randomly selected pigs. The results show that the mean relative error before the correction was 

−4.64% and the mean relative error after the correction was −0.70%. This study demonstrates that 

the new infrared temperature correction method is effective and can benefit skin temperature mon-

itoring for commercial pig farms. 

Keywords: correction algorithm; infrared thermography; monocular ranging; skin temperature 

sensing; response surface methodology 

 

1. Introduction 

China has developed a large pig industry to meet the demand of the large population 

[1]. Since the first detection of African Swine Fever (ASF) in China in August 2018, multi-

ple outbreaks of ASF have been reported across China [2]. The ASF became a serious 

threat, not only to individual pig farms, but also to the entire pig industry in China. Many 

pig farms experienced tremendous losses these years due to their failure to prevent ASF 

[3]. Since there is no ASF vaccine available, the most common method to prevent the 

spreading of ASF in China is to eliminate the source of infection by culling and isolating 

infected pigs [4]. Though this method can reduce the likelihood of ASF spreading to 

healthy pigs, the effectiveness of this treatment depends on how quickly infected pigs can 

be detected and isolated. Any delay will result in the death of a large number of pigs and 

enormous economic losses to affected pig farms [5]. Therefore, the timely detection of 

infected pigs plays an extremely important role in disease prevention and damage control. 

Body temperature is an important indicator of pigs’ health status [6]. Monitoring pigs’ 

body temperature can effectively identify infected pigs and prevent the spread of diseases 

by isolating the infected pigs. Most diseases cause the body temperature of pigs to rise 

prior to other symptoms, especially some infectious diseases [7]. For example, high fever 

is one of the most reliable indications of ASF infection [8]. Thus, measuring the pigs’ skin 

temperature could be an important method for ASF prevention.  
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Infrared thermography (IRT) is a promising technology, not only for the automatic 

monitoring of pigs’ skin temperature [9,10], but also for extracting pig-body shape based 

on shape segmentation [11,12] and evaluating stress conditions in pigs [13,14], although 

it has drawbacks in providing sufficient information to determine what causes the 

changes in skin temperature of animals [10,15]. Compared with other temperature meas-

uring technologies, such as rectal and contact skin thermometers or implanted thermal 

sensors, IRT is a non-contact measure for the surface temperature, which has a distinctive 

advantage in pig skin temperature sensing in the perspective of reducing the risk of viral 

infection [16]. However, the accuracy of the IRT measurement can be affected by many 

factors. The distance between the measured object and the IRT camera, for instance, is one 

of the most influencing factors in surface temperature sensing [17,18], as the measured 

temperature decreases with increasing distance between the IRT camera and the target 

object [19]. Given that the distance between the thermal camera and each pig in the pen is 

different, each pig’s skin temperature, measured by the IRT camera, could be different 

from its actual skin temperature [20]. In other words, a pig with a high temperature, far 

away from the IRT camera, could have the same or even lower measured temperature as 

one with a normal temperature, close to the camera [21]. This phenomenon could result 

in a delay in sick pig detection. Note that the emissivity of pig skin is also an influencing 

factor in surface temperature sensing, which describes a material’s ability to emit energy 

by radiation [22]. In some previous studies, the skin emissivity of pigs was set as a con-

stant value of 0.98 in pig health screening and fever detection [23,24]. The infrared emis-

sivity was determined by the skin surface condition and the viewing angle [25]. For a 

commercial pig barn, most of the pigs (particularly the skin surface condition) in a raising 

unit were the same, which means the viewing angle could be the most affecting parameter 

for the emissivity in the pig skin temperature measurement using IRT camera. Therefore, 

in order to accurately obtain pigs’ skin temperature using IRT, it is critical to systemati-

cally investigate the effects of the key influencing parameters, such as the distance and the 

angle of view between pigs and the IRT camera. Furthermore, a correction method for 

determining the effect of distance and the angle of view is needed for the application of 

infrared thermography. 

Therefore, the objectives of this study are (1) to evaluate the effect of the distance and 

the angle of view between the pigs and the IRT camera on the accuracy of IRT-measured 

skin temperature; and (2) to develop a new methodology to correct the skin measurement 

made by IRT cameras. The results of this study could benefit the health monitoring of pigs 

by using an IRT camera for commercial pig farms. 

2. Methodology and Materials 

2.1. The Affecting Parameters Identification 

The observation distance, the distance between the pig and the IRT camera, was de-

termined by the height of the pig and the camera, as well as the horizontal distance be-

tween them. The observation distance affected the transmittance of infrared radiation in 

the atmosphere, resulting in the measurement error [26]. According to the Pythagorean 

theorem, the observation distance could be further measured using the horizontal dis-

tance between the camera and the pig, camera height, and pig height. Additionally, since 

the emissivity depends on the angle of radiation, the angle of view is also an important 

affecting factor [27]. Therefore, horizontal distance, camera height, pig height, and the an-

gle of view are the factors selected for this study. 

2.2. Response Surface Methodology Modelling 

The response surface methodology (RSM), a combination of mathematical and statis-

tical techniques, was selected to investigate the effects of the five parameters on the accu-

racy of skin temperature measurement using infrared thermography. RSM provides the 

framework to explore the relationship between explanatory variables and response 
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variables, and to obtain the optimal combination for desired responses [28]. RSM is widely 

applied during both the model development phase and the model improvement and op-

timization phase. 

2.2.1. Experimental Variables and Response 

The five factors—horizontal distance, camera height, the angle of view between the 

camera and target pig, the skin temperature of the pig, and target pig height—were set as 

the input variables in the RSM model (Table 1). Given the difficulties in using pigs in the 

laboratory experiment (e.g., keeping them still and controlling the surface temperature), 

we used a black body cavity (HT-C50, temperature range: 5 to 50 °C, effective emissivity: 

0.98 ± 0.02, resolution: 0.01 °C, accuracy: ±0.15 °C) to represent the pigs, as an alternative. 

The ranges of horizontal distance (D), camera height (Hc), and the angle of view between 

the camera and black body cavity (θ) were determined based on the size of the pens (4.8 

× 3.75 m in length × width) and the height of the thermal imaging camera installed. In this 

study, the range of horizontal distance between the camera and the black body cavity was 

set at 2 to 6 m and the range of camera height was set at 1.7 to 2.3 m, and the angle between 

the camera and the black body cavity was set at 0 to 50 °C. The black body cavity temper-

ature (Tb) was determined by refereeing the skin temperature of healthy and thermal com-

fortable pigs and sick pigs, such as ASF-infected pigs. The rectal temperature of a healthy 

and thermal comfortable pig (6 weeks of age) stayed at 39.1 ± 0.68 °C [29], when the tem-

perature-humidity index (THI) was around 70. According to the relationship between the 

rectal temperature and central dorsal surface temperature of pigs [30], the normal dorsal 

surface temperature of pigs would be around 34 °C. A study shows that the rectal tem-

perature of ASF-infected pigs could rise from 39.5 °C (0 day) to a maximum of 41.7 °C (7th 

day), while the skin temperature could rise from 36.7 °C (0 day) to 40.1 °C (8th day), based 

on the progression of the infection [31]. Therefore, the range of black body cavity temper-

ature was set at 32 to 42 °C. In addition, the range of the black cavity body height was 

determined according to the height of the pigs, using the relationship between pig weight 

and its body height [32], expressed as Height = (Body Weight)0.33. Therefore, the range of 

the black body cavity height (Hb) was set at 0 to 0.6 m. Table 1 lists the three levels of each 

parameter in this study. 

Table 1. Levels of investigated parameters for the RSM modeling. D, Hc, θ, Τb, and Hb represent the 

horizontal distance, the camera height, the angle of view between the camera and black body cavity, 

the black body cavity temperature, and the black body cavity height, respectively. 

Parameter Unit Low Level Medium Level High Level 

D m 2 4 6 

Hc m 1.7 2 2.3 

θ ° 0 25 50 

Τb °C 32 37 42 

Hb m 0 0.3 0.6 

2.2.2. Setup of the Laboratory Experiment 

To investigate the effects of the identified parameters on the surface temperature 

sensing by IRT camera, a laboratory experiment was conducted. Figure 1 illustrates the 

scheme of the experiment, along with a photo of the setup. As it shows, a black body 

cavity (HT-C50, temperature range: 5 to 50 °C, effective emissivity: 0.96 ± 0.02, resolution: 

0.01 °C, accuracy: ±0.15 °C) was used to characterize the skin temperature of pigs, and a 

thermal imaging camera (Hikvision TB-1217A-3’PA, field angle: 50° × 37.2°, temperature 

measurement range: 30–45 °C, temperature measurement accuracy: ±0.5 °C, emissivity of 

pig skin: 0.98) was used to measure the temperature area of the black body cavity. The 

horizontal distance from the thermal imaging camera to the black body cavity was con-

trolled by a flexible ruler. The angle of view between the black body cavity and the optical 
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center of the thermal imaging camera was controlled by the horizontal distance because 

of the geometric relationship between the horizontal distance and the angle of view, given 

a particular camera height. The ambient temperature was recorded every 1 min by porta-

ble, hot-wire anemometers (VelociCalc® Multi-Function Ventilation Meter 9565-A, TSI, 

Shoreview, Minnesota, USA, temperature measurement range: −10 to 60 °C, resolution: 

0.1 °C, accuracy: ±0.3 °C). Undoubtedly, the condition of the lights and materials sur-

rounding the artificial pig (black body cavity) in the experiment could also potentially 

affect the temperature sensing; the interferences associated with the lights and materials 

were omitted in this modeling procedure because the condition was comparable, and it 

was difficult to build the same condition for the modeling.  

 

Figure 1. The setup and the schematic graph of the laboratory experiment. 

2.2.3. Establishment of RSM Model 

There are different approaches to designing an RSM modelling. In this study, the 

Box-Behnken design (BBD), a rotatable or nearly rotatable design based on three levels of 

incomplete factors [33], was used in order to reduce the number of tests. The number of 

tests (N) required in BBD was calculated according to Equation (1) [34]: 

𝑁 = 2𝑘(𝑘 − 1) + 𝑐 (1) 

where k is the number of experimental variables; c is the specified number of replicated 

central points. In this study, we set 6 replicates for the central point. The resulting N be-

comes 46 for k = 5 and c = 6. All 46 cases listed in Table 2 served as the training dataset for 

the RSM model development. 

Table 2. BBD with the values of each variable and the corresponding values of the response (served 

as the training dataset). D, Hc, θ, Τb, and Hb represent the horizontal distance, the camera height, the 

angle of view between the camera and black body cavity, the black body cavity temperature, and 

the black body cavity height, respectively. 

Case 

Experimental Variables Response 

D 

(m) 

Hc 

(m) 

θ 

(°) 

Τb 

(°C) 

Hb 

(m) 

Tm 

(°C) 

∆T 

(°C) 

1 4 2.3 25 37 0.3 26.22 −10.78 

2 4 2 12.5 37 0.3 27.89 −9.11 

3 4 1.7 12.5 32 0.3 26.04 −5.96 

4 4 1.7 12.5 42 0.3 30.55 −11.45 

5 4 2.3 12.5 37 0 27.22 −9.78 

6 2 2 0 37 0.3 30.36 −6.64 

7 4 2 12.5 32 0.6 26.22 −5.78 

8 2 2 25 37 0.3 30.14 −6.86 
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9 6 2 25 37 0.3 25.99 −11.01 

10 4 1.7 25 37 0.3 28.28 −8.72 

11 4 2 12.5 37 0.3 27.84 −9.16 

12 4 2 25 42 0.3 28.61 −13.39 

13 4 2 25 37 0 27.03 −9.97 

14 2 2 12.5 37 0 30.41 −6.59 

15 4 2 0 37 0.6 28.23 −8.77 

16 6 2 12.5 37 0 25.11 −11.89 

17 4 2 25 37 0.6 27.92 −9.08 

18 6 1.7 12.5 37 0.3 25.63 −11.37 

19 4 2 12.5 37 0.3 28.07 −8.93 

20 2 1.7 12.5 37 0.3 31.07 −5.93 

21 4 2 0 32 0.3 25.91 −6.09 

22 6 2 12.5 42 0.3 27.69 −14.31 

23 4 2 12.5 42 0 30.56 −11.44 

24 4 2 12.5 42 0.6 31.07 −10.93 

25 4 2 0 37 0 27.23 −9.77 

26 4 2 25 32 0.3 26.2 −5.8 

27 6 2 12.5 37 0.6 25.55 −11.45 

28 2 2 12.5 37 0.6 30.96 −6.04 

29 4 2 0 42 0.3 30.84 −11.16 

30 4 2.3 0 37 0.3 27.07 −9.93 

31 2 2.3 12.5 37 0.3 29.62 −7.38 

32 4 2 12.5 37 0.3 27.46 −9.54 

33 4 2.3 12.5 37 0.6 27.71 −9.29 

34 4 2 12.5 37 0.3 27.68 −9.32 

35 6 2.3 12.5 37 0.3 25.42 −11.58 

36 2 2 12.5 42 0.3 34.1 −7.9 

37 4 2 12.5 32 0 25.98 −6.02 

38 4 2.3 12.5 42 0.3 28.6 −13.4 

39 4 1.7 12.5 37 0 27.91 −9.09 

40 4 2.3 12.5 32 0.3 24.85 −7.15 

41 4 1.7 12.5 37 0.6 28.48 −8.52 

42 6 2 0 37 0.3 25.98 −11.02 

43 6 2 12.5 32 0.3 24.48 −7.52 

44 4 2 12.5 37 0.3 27.43 −9.57 

45 4 1.7 0 37 0.3 28.21 −8.79 

46 2 2 12.5 32 0.3 27.12 −4.88 

The final second-order RSM model can be written as: 

𝑦 = 𝛽0 + ∑𝛽𝑖𝑥𝑖 + ∑𝛽𝑖𝑖𝑥𝑖
2 + ∑∑𝛽𝑖𝑗

5

𝑗>𝑖

5

𝑖=1

5

𝑖=1

5

𝑖=1

𝑥𝑖𝑥𝑗 (2) 

where y is the predicted response; β0 is the model constant; βi are linear coefficients; βii are 

the quadratic coefficients; βij are the coefficients of the cross products; xi and xj are inde-

pendent variables. 

The statistical significance (p-value) of each term in Equation (2) was determined by 

the multiple analysis of variance (MANOVA). The smaller p-value meant a higher statis-

tical significance of the corresponding term. Only the terms that corresponded with p-

values [35] lower than 0.1 were kept in the final RSM model. Both the experimental design 

and data analysis for the RSM modeling were conducted in Design Experts Version 8.0 

(Stat-Ease, Inc., Minneapolis, MN, USA). 
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2.2.4. RSM Model Verification 

RSM, coupled with BBD, can effectively reduce the number of tests compared with 

the one using a full factorial design; however, model uncertainty might be introduced [36]. 

To avoid overfitting, the RSM model was verified using 9 separate cases (served as the 

testing dataset, as shown in Table 3) in which all the values of the experimental variables 

were selected randomly within the experimental domain. The relative difference was cal-

culated between the experimental results and predicted results, also shown in Table 3. 

Table 3. Levels of investigated parameters in the cases for testing the RSM model. 

Case No. 
Experimental Variables Response 

D (m) Hc (m) θ (°) Τb (°C) Hb (m) Tm (°C) ΔT (°C) 

1 2.32 1.72 5.3 41.8 0.16 40.26 −1.54 

2 3.56 1.76 8.7 39.6 0.34 37.41 −2.19 

3 3.72 1.87 10.2 38.9 0.19 36.44 −2.46 

4 4.22 1.81 12.1 38.2 0.41 35.64 −2.56 

5 4.36 1.92 16.5 35.1 0.06 33.07 −2.03 

6 5.18 1.97 15.2 36.7 0.46 33.61 −3.09 

7 5.32 1.79 13.6 41.6 0.1 37 −4.6 

8 5.61 2.16 18.6 35.4 0.51 32.25 −3.15 

9 5.86 2.24 24.6 33.1 0.56 30.45 −2.65 

2.3. Correction Algorithm 

2.3.1. Distance Determination 

Vision-based target ranging can be divided into two types: monocular ranging and 

binocular ranging [37]. Monocular ranging is the most common way to measure the dis-

tance between the IRT camera and the object in the view. For monocular ranging tech-

nique, the models can be further divided into geometric imaging-based methods [38], per-

spective transformation-based methods [39], and data fitting-based methods [40]. 

In this study, the imaging-based geometric method model was adopted for monocu-

lar ranging. According to the IRT system in the pig barn, as described previously, the 

geometric relationship between the camera and the object is illustrated in Figure 2a. If 

point E was the optical center of the camera and point P was the location of the object, the 

line EP would be the distance between the camera and the object (pig in this study). Let 

trapezoid ABCD be the field of view for the camera mounted on the inspection robot and 

point F be the center of that view. Select X-G-Y as the coordinate system with point G, the 

midpoint of line CD, as the origin. One would notice that line EF denoted the optical axis 

of the camera and point O was the projection of point E onto plane ABN. Figure 2b shows 

the side view of the geometric relationship between the camera and the object. Let 2α 

denote the vertical, angular field of view. 
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Figure 2. Diagram illustrating the camera’s field of view. (a) Object plane coordinate view; (b) pro-

jected view along the X-axis direction; (c) top view of the image plane. 

Figure 2c illustrates the relationship between the points on the object plane and those 

on the image plane, where L and W were the length and width of the image plane, respec-

tively. On the image plane, X’-G’-Y’ was the coordinate system with point G’, the mid-

point of C’D’, as the origin. Points in the object plane coordinate system can be mapped 

one-on-one to points in the image plane coordinate system. 

Let P (xP, yP) be a point in the object plane and P’ (xP’, yP’) be the corresponding point 

in the image plane. Given the camera height, h, and the elevation angle, μ, the distance 

between the IRT camera and the object could be obtained through the following steps: 

1. Determine yP of point P. 

As shown in Figure 2b, yP can be calculated as follows: 

𝑦𝑃 = 𝑂𝐾̅̅ ̅̅ − 𝑂𝐺̅̅ ̅̅ = ℎ × 𝑡𝑎𝑛(𝜇 + 𝛾) − ℎ × 𝑡𝑎𝑛(𝜇 − 𝛼), for GK > GF 

𝑦𝑃 = 𝑂𝐾̅̅ ̅̅ − 𝑂𝐺̅̅ ̅̅ = ℎ × 𝑡𝑎𝑛(𝜇 − 𝛾) − ℎ × 𝑡𝑎𝑛(𝜇 − 𝛼), for GK < GF 

(3) 

𝛾 = arctan(|
𝑦𝑃′ −

𝐿
2

𝑓
|) 

(4) 

𝑓 =
𝐿

2 tan𝛼 
 (5) 

where h is the camera height, m; α is half of the vertical field of view, o; μ is the elevation 

angle of the camera, o; γ is the angle of view in the y-axis direction, o; which could be 

determined using Equation (4), L is the height of the image plane, pixel; and f is the focal 

length of the camera, pixel, derived from the Equation (5). 

2. Determine xP of point P. 

Triangle similarity was used to determine xp. Since ∆KPN~∆GIN, xp could be derived 

using: 

𝑥𝑃 =
𝐺𝐼̅̅ ̅ × (𝑁𝐺̅̅ ̅̅ + 𝑦𝑃)

𝑁𝐺̅̅ ̅̅
 

(6) 

where 
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𝐺𝐼̅̅ ̅ =
𝐺′𝐼′̅̅ ̅̅ ̅ × 𝐸𝐺̅̅ ̅̅

𝐸𝐺′̅̅ ̅̅ ̅
=

|𝑥𝑝′| × ℎ × cos 𝛼

𝑓 × cos(𝜇 − 𝛼) 
 

(7) 

Since ∆NGC~∆NFJ, we could find a relationship among 𝑁𝐺̅̅ ̅̅ , 𝐺𝐹̅̅ ̅̅ , 𝐺𝐶̅̅ ̅̅ , and 𝐹𝐽̅̅ ̅, as shown 

in Equation (8): 

𝑁𝐺̅̅ ̅̅

𝑁𝐹̅̅ ̅̅
=

𝑁𝐺̅̅ ̅̅

𝑁𝐺̅̅ ̅̅ + 𝐺𝐹̅̅ ̅̅
=

𝐺𝐶̅̅ ̅̅

𝐹𝐽̅̅ ̅
 

(8) 

where 

𝐺𝐹̅̅ ̅̅ = 𝑂𝐹̅̅ ̅̅ − 𝑂𝐺̅̅ ̅̅ = ℎ × tan 𝜇 − ℎ × tan(𝜇 − 𝛼)  (9) 

𝐺𝐶̅̅ ̅̅ =
𝐸𝐺̅̅ ̅̅ × 𝑊

2𝑓
=

ℎ × 𝑊

2𝑓 × cos(𝜇 − 𝛼)
 (10) 

𝐹𝐽̅̅ ̅ =
𝐸𝐹̅̅ ̅̅ × 𝑊

2𝑓
=

ℎ × 𝑊

2𝑓 × cos 𝜇
 

(11) 

Using results from Equations (8), (10) and (11), 𝑁𝐺̅̅ ̅̅  becomes:  

𝑁𝐺̅̅ ̅̅ =
ℎ × [tan 𝜇 − tan(𝜇 − 𝛼)]

cos(𝜇 − 𝛼)
cos 𝜇

− 1
 (12) 

where h is the camera height, m; α is half of the vertical field of view, o; μ is the elevation 

angle of the camera, o; W is the width of the image plane, pixel; and f is the focal length of 

the camera, pixel. 

3. Determine the horizontal distance between camera and object. 

The length of 𝑂𝑃̅̅ ̅̅  can then be determined by the following equation:  

𝑂𝑃̅̅ ̅̅ = √𝑥𝑃
2 + (𝑦𝑃 + 𝑙𝑂𝐺)2 = √𝑥𝑃

2 + (𝑦𝑃 + ℎ × tan(𝜇 − 𝛼))2 (13) 

where h is the camera height, m; α is half of the vertical field of view, o; μ is the elevation 

angle of the camera, o. 

2.3.2. Determination of the Angle of View 

The ∠PEF, θ, was the angle of view between the object and IRT camera, which could 

be calculated using the following equation: 

𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠(
𝐸𝐹⃗⃗⃗⃗  ⃗ ∙ 𝐸𝑃⃗⃗⃗⃗  ⃗

|𝐸𝐹⃗⃗⃗⃗  ⃗| ∙ |𝐸𝑃⃗⃗⃗⃗  ⃗|
) = 𝑎𝑟𝑐𝑐𝑜𝑠(

ℎ × tan 𝜇 × [𝑦𝑃 + ℎ × tan(𝜇 − 𝛼)]+ℎ2

√(ℎ × tan 𝜇)2 + ℎ2 × √𝑥𝑃
2 + (𝑦𝑃 + ℎ × tan(𝜇 − 𝛼))2 + ℎ2

) 
(14) 

2.3.3. Correction Algorithm Development 

The IRT camera used in this study could measure the temperature for each pixel of 

the image. Using the temperature data above, a temperature distribution map could be 

created. To develop the correction algorithm, the mathematical model from RSM, the ob-

servation distance (Equation (13)), and the angle of view (Equation (14)) were all compiled 

into the correction algorithm, together with the data from the IRT camera in Python 3.8. 

Thus, the temperature information associated with each pixel could be corrected accord-

ingly, and a new infrared image could be generated. 

2.4. Case Study 

2.4.1. Experimental Barn and Animal 

In order to evaluate the performance of the correction method, a field experiment 

was carried out in a commercial pig farm located in Huzhou, Zhejiang Province, China on 
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30 August 2022. The layout of the experimental barn was illustrated in Figure 3. Its di-

mensions were 31 m in length, 8.5 m in width, and 2.85 m in height. As shown in Figure 

3, there were two rows of pig pens. Each row had 6 identical pens (4.8 × 3.75 m). A total 

of 330 pigs (Yorkshire × Landrace × Duroc, aged 67 days) were raised in the barn. Pigs 

were fed by an automatic feeder and water was provided. Standard cleaning and mainte-

nance procedures for the pig room were followed. 

 

Figure 3. Infrared thermography system in pig building. Geometry of the system (a) and a photo 

of the inspection robot (b). 

2.4.2. Infrared Thermography System in Pig Building 

Figure 3 shows the infrared thermography system used in a commercial pig barn in 

Changxing, Zhejiang, China. The system consists of two parts: the IRT camera and the 

overhead rail. To automatically take infrared thermal photos for all the pens, the IRT cam-

era (Hikvision TB-1217A-3’PA, angular field of view: 50° × 37.2°, temperature measure-

ment accuracy: ±0.5 °C) rode the overhead rail and scanned all the pens. The inspection 

time and the interval could be determined by the farm managers. In this study, each in-

spection lasted 10 min and the interval between two inspections was 4 h. In order to take 

the ideal picture of pigs, the elevation angle of the IRT camera was set to 55°. 

2.4.3. Setup of the Field Experiment 

To test the correction model, a comparison between the skin surface temperature be-

fore correction (TBC) and the corresponding actual skin surface temperature (TA) of pigs, 

and a comparison between the skin surface temperature after correction (TAC) and the cor-

responding actual skin surface temperature (TA) of pigs, were evaluated. During the ex-

periment, the inspection robot stayed in front of each pen for 5 min. Within each 5 min 

stay, the IRT camera took a thermal image of the pigs. Meanwhile, the central inguinal or 

hip of 1 to 3 pigs was selected for the skin temperature measurement, using a portable 

infrared thermometer (Raytek MX4, Fluke Corp., Everett, Wash.) with an accuracy of ±0.1 

°C. In total, 25 pigs were randomly selected from different pens for the experiment. Note 

that, in order to ensure the accuracy of the measured skin surface temperature of pigs, the 

measuring distances of the Raytek MX4 to the skin surface were maintained around 10 

cm. The corresponding skin surface temperatures, after correction (TAC), were then calcu-

lated using the correction algorithm. In addition, the indoor air temperature and relative 

humidity were recorded continuously during the experiment by portable hot-wire ane-

mometers (VelociCalc® Multi-Function Ventilation Meter9565-A, TSI, Shoreview, Minne-

sota, MN, USA).  
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2.4.4. Comparison Criteria 

The accuracy of the correction method was evaluated using relative error (Er):  

𝐸𝑟−𝐵𝐶 =
𝑇𝐵𝐶 − 𝑇𝑎

𝑇𝑎

× 100% (15) 

𝐸𝑟−𝐴𝐶 =
𝑇𝐴𝐶 − 𝑇𝑎

𝑇𝑎

× 100% (16) 

where Er-BC is the relative error of temperature before correction; Er-AC is the relative error 

of correction temperature after correction; TBC is the temperature before correction, °C; TAC 

is the temperature after correction, °C; TA is the actual temperature, °C. 

3. Results and Discussion 

3.1. RSM Model 

3.1.1. RSM Model Development 

According to the MANOVA result from the original RSM model , based on Equation 

(2), the p-value of the model was <0.0001, which means the regression model is highly 

significant. However, only 8 terms, i.e., A, B, C, D, E, AD, A2, C2, D2, were significant (p-

values < 0.05), and the remaining terms were not significant. Therefore, the terms with a 

p-value > 0.05 were removed from the RSM model. Table 4 lists the MANOVA results of 

the modified RSM model. The modified RSM model was significant (p-value < 0.0001) and 

the p-values of all the examined terms were less than 0.05, indicating that the terms could 

significantly affect the response. Based on the R2 at 0.9970, adjusted R2 at 0.9962, and pre-

dicted R2 at 0.9954, the modified RSM model was therefore deemed suitable to predict 

surface temperature. 

Table 4. MANOVA for RSM model. 

Source SS df MS F-Value p-Value 

Model 184.14 20 9.21 49.65 <0.0001 

Model 308.29 9 34.25 1321.89 <0.0001 

A-horizontal distance 33.58 1 33.58 1295.93 <0.0001 

B-camera height 1.16 1 1.16 44.80 <0.0001 

C-angle 0.5852 1 0.5852 22.58 <0.0001 

D-temperature 269.45 1 269.45 10,398.19 <0.0001 

E-black body height 0.2093 1 0.2093 8.08 0.0073 

AD 1.56 1 1.56 60.30 <0.0001 

A² 0.3527 1 0.3527 13.61 0.0007 

C² 0.5104 1 0.5104 19.70 <0.0001 

D² 0.6065 1 0.6065 23.41 <0.0001 

Residual 0.9329 36 0.0259   

Lack of Fit 0.8309 31 0.0268 1.31 0.4149 

Pure Error 0.1019 5 0.0204   

Cor Total 309.23 45    

R2 = 0.9970; R2-adj = 0.9962; R2-pred = 0.9954. SS: sum of squares, df: degree of freedom, MS: mean 

square. 

The coefficient of each term listed in Table 4 was estimated using regression analysis. 

Thus, the mathematical model for predicting the measured surface temperature was es-

tablished as: 

𝑇𝑚 = 12.41943 + 1.96598𝐷 − 0.897917𝐻𝑐 + 0.021062𝜃 + 0.337445𝑇𝑏 + 0.38125𝐻𝑏 − 0.0625 × 𝐷 × 𝑇𝑏

− 0.047232𝐷2 − 0.001454𝜃2 + 0.00991𝑇𝑏
2 

(17) 
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Accordingly, the body temperature of the black body cavity can then be calculated as fol-

lows: 

𝑇𝑏 = 3.153380424𝐷

+ 50.45408678 × (0.00005763656𝜃2 − 0.000834898𝜃 − 0.01511275𝐻𝑏

+ 0.03559343𝐻𝑐 + 0.03964𝑇𝑚 − 0.120112072𝐷 + 0.005778526𝐷2 − 0.378437077)0.5

− 17.02547931 

(18) 

where Tb is the actual surface temperature of the black body cavity, °C; Tm is the average 

surface temperature of the black body cavity measured by the IRT camera, °C; D is the 

horizontal distance between the black body cavity and the camera, m; Hc is the height of 

the camera, m; Hb is the height of the black body cavity from the ground, m; θ is the angle 

of view between the black body cavity and the camera, o. 

3.1.2. RSM Model Verification 

Figure 4 shows the comparison of the predicted values by the RSM model and the 

measured values. Theoretically, the data points should be split evenly by the 45 degree 

line. The closer they are to the solid line, the better the prediction model. From Figure 4, 

the data points were very close to the 45 degree solid line, which indicated that the math-

ematical model could predict the relation between the investigated variables and the re-

sponse well. 

 

Figure 4. Predicted values versus the experimental data values. Training data and testing data were 

listed in Tables 2 and 3, respectively. 

3.2. Effect of the Parameters on Surface Temperature Detection 

Based on Tb calculation from the RSM model, the effect of camera height (Hc), hori-

zontal distance (D), pig height (Hb), and angle of view between the IRT camera and pigs 

(θ) on the skin temperature difference (ΔT) between Tb and Tm were analyzed using Origin 

Pro (OriginLab, Northampton, MA, USA). Figure 5 illustrates the perturbation of the rel-

ative significance of each factor. 
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Figure 5. Perturbation of the relative significance of factors, including the camera height (a), hori-

zontal distance (b), object height (c), and angle of view (d), on response. 

According to Figure 5, as Hc increased from 1.7 to 2.3 m, ΔT increased linearly from 

0.45 to 1.22 °C, with Tm, D, θ, and Hb held at 30 °C, 4 m, 25°, and 0.3 m, respectively. Sim-

ilarly, as horizontal distance (D) increased from 2 to 6 m, the ΔT increased non-linearly 

from 0.24 to 2.31 °C, with Tm, Hc, θ, and Hb at 30 °C, 2 m, 25°, and 0.3 m, respectively. In 

addition, as the height (Hb) of the object increased from 0 to 0.6 m, the ΔT decreased line-

arly from 1 to 0.67 °C when Tm, D, θ, and Hc were at 30 °C, 4 m, 25°, and 2 m, respectively. 

According to the Pythagorean theorem, the observation distance between the IRT camera 

and the object was determined by the three parameters, i.e., the camera height, the hori-

zontal distance, and the object height. Therefore, the observation distance negatively af-

fects the accuracy of the surface temperature measurement in the application of infrared 

thermography. Zhou, Wei, Xie, Tang and Cui [26] reported that the phenomenon could 

be attributed to the decrease in the transmittance of infrared radiation in the atmosphere, 

with increasing observation distances. Among these three parameters, the variation of 

horizontal distance had the most impact because the horizontal distance was much larger 

than the height difference between the camera and the object. Thus, it had the greatest 

impact on the temperature difference. Since the ranges of the other factors were fixed ac-

cording to the situation in practice, the horizontal distance between pigs and the IRT cam-

era became the most impacting factor.  

Regarding the effect of the angle of view θ (Figure 5), as the angle of view increased 

from 0° to 25°, the temperature difference, ΔT, initially decreased from 0.89 to 0.78 °C but 

then increased from 0.78 to 1.43 °C, with Tm, Hc, D, and Hb at 30 °C, 2 m, 4 m, and 0.3 m, 

respectively. However, some research found that the measurement could be deemed reli-

able as long as the angle of view is less than 45° [27,41]. The slight decline of temperature 

difference, ΔT, in this study has not been reported in the literature. The decline could be 

attributed to the removal of some terms in the process of RSM modeling. Generally, the 

effect of Hb variation between 0 to 0.6 m on ΔT was less than 0.5 °C. Therefore, the height 

of the pig was fixed at 0.3 m in the correction algorithm development and the height of 

the IRT camera was fixed at 2 m, according to the situation in the experimental barn. 
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3.3. Performance of the Correction Method 

3.3.1. Comparison Between Skin Temperature Before and After Correction 

Figure 6 is a boxplot illustrating the difference in relative error before correction (Er-

BC) and after correction (Er-AC) of all 25 samples. It shows that the relative error before cor-

rection had a median value of −4.73%, while the median value of relative error after the 

correction improved to −0.60%. The mean relative error before and after the correction 

was −4.64% and −0.70%, respectively. In addition, the maximum and the minimum of Er-

BC were −1.51% and −7%, respectively. After correction, the maximum and minimum of Er-

AC improved to 1.47% and −2.98%, respectively. Although the maximum relative error af-

ter correction increased (above 0), the absolute value of the maximum and the minimum 

still improved from 6.98% to 2.98%. Fixing the pig’s height at 0.3 m in the correction algo-

rithm may have caused the Er-AC > 0. Additionally, the interquartile range (IQR) of the 

boxplot associated with BC was 2.52, while the IQR of the boxplot associated with AC was 

1.19. Note that IQR is a measure that describes the dispersion of each variable in the sta-

tistical data. The larger the IQR is, the greater the discrete degree is. The decline of IQR 

indicated that the discrete degree of relative error was improved after correction. Based 

on the above analysis, the accuracy of IRT temperature measurement can be improved by 

using the correction method proposed in this research. 

 

Figure 6. Box plot of the relative error for the measured skin temperature before correction (BC) and 

after correction (AC). 

3.3.2. Comparison Between IRT Images 

Figure 7a shows the temperature distribution images in a pig pen before and after 

correction, which was obtained at a thermal comfort condition (THI = 70.54). The skin 

temperature of each pig was similar under normal circumstances. The temperature distri-

bution image before correction showed that the skin temperatures of pigs close to the 

camera appeared higher than the skin temperatures of pigs further away from the camera. 

This was in line with the known limitation of the IRT camera. Comparatively, the skin 

temperatures of pigs in the temperature distribution image, after correction, became closer 

to each other and stayed in the range of 36 to 37 °C. This demonstrates the good perfor-

mance of the correction model. 

Particularly, a piglet with a low skin temperature area on its neck was detected in the 

infrared image, as shown in the red box. Referring to the corresponding visible image 

(Figure 7b), the area of skin with the lower temperature piglet was dirty in the scale-up 

image. Many studies have reported that the clearness of skin is very important to surface 

temperature sensing [42] because the dirty stuff not only blocks the heat transfer from the 

pig body to the ambient air, but also impacts the emissivity level of the target surface [43]. 

In this case, the dried feces stuck on the skin surface could be the potential reason for the 

dirty skin. Therefore, in order to ensure the accuracy of the measurement result, pigs in 

pig pens should have a sufficient area of clean skin. 
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Figure 7. Infrared images (a) and visible image (b) of a pig pen. 

Additionally, it could be found that the temperatures of the pigs in the right zone 

were around 0.3 °C higher than those in the other area, according to Figure 7a. This phe-

nomenon could be attributed to the difference in the density of pigs. As can be seen, more 

pigs stayed in the right zone of the pen. A similar result was reported by Abudabos, et al. 

[44], who, in a comparison of the skin temperatures of birds under different stocking den-

sities, found that the skin temperatures of birds increased as the stocking density in-

creased. Therefore, to better assess the health of group pigs by skin temperature, the den-

sity of the area where pigs are located should also be considered. Overall, the IRT camera, 

compiled with the correction algorithm, has a good measuring performance for clean pigs, 

although it has limitations for dirty pigs and the density of pigs. 

3.4. Limitations and Perspectives 

Since the tested IRT camera only has a single lens, monocular ranging was adopted 

to detect the distance between the objects in the picture and the IRT camera. However, the 

monocular ranging model can only detect the horizontal distance and angle of view be-

tween the camera and the pig, but not the pig’s height. Therefore, there is an error between 

the measured distance and the actual observation distance. To improve the accuracy of 

the correction method and make it more robust, how to detect pig height remains an area 

of future work. Additionally, since different IRT cameras consist of different hardware, 

the correction algorithm is just reliable for the tested IRT camera (Hikvision TB-1217A-

3’PA). Even so, the outcome of this study is still meaningful because (1) the producer of 

the tested IRT camera was a world-famous producer, which means that the proposed cor-

rection algorithm could be potentially embedded into their further products and more 

animal farms would benefit from these; (2) the test IRT camera has already been widely 

applied in many livestock farms in Zhejiang Province. Thus, direct application of the cor-

rection algorithm could also be acceptable; (3) this study provides a potential method to 

better monitor the animals’ skin surface temperature using IRT camera. A further modifi-

cation is, perhaps, required when adapted to other IRT cameras. Even so, the proposed 

correction method for IRT cameras can benefit from a better skin temperature measure-

ment of pigs in the future. 
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4. Conclusions 

The study investigated the effects of the observation distance and the angle of view 

on the surface temperature sensing, and then proposed an infrared temperature correction 

method for processing the skin temperatures of pigs in infrared image. Based on the re-

sults, the following conclusions can be drawn: 

1. Response surface methodology can be applied in the modeling of the relationship 

between the actual skin temperature and the affecting parameters, along with the 

monocular ranging being applied in the determination of the observation distance. 

2. The observation distance significantly affects the accuracy of the skin temperature 

measurement. The horizontal distance, the camera height, and the angle of view be-

tween the camera and the object positively affect the accuracy between the measure-

ments and the actual skin temperatures, while the heights of pigs negatively affect 

the accuracy between the measurements and the actual skin temperatures. 

3. A skin temperature correction algorithm was developed and evaluated using field-

measured data. The average relative error of measured skin temperatures before the 

correction was −4.63%, and the corresponding mean relative error after the correction 

was reduced to −0.25%. 
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