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Abstract: Accurate extraction of cropland distribution information using remote sensing technology 
is a key step in the monitoring, protection, and sustainable development of black soil. To obtain 
precise spatial distribution of cropland, an information extraction method is developed based on a 
fractal algorithm integrating temporal and spatial features. The method extracts multi-seasonal frac-
tal features from the Landsat 8 OLI remote sensing data. Its efficiency is demonstrated using black 
soil in Lishu County, Northeast China. First, each pixel’s upper and lower fractal signals are calcu-
lated using a blanket covering method based on the Landsat 8 OLI remote sensing data in the spring, 
summer, and autumn seasons. The fractal characteristics of the cropland and other land-cover types 
are analyzed and compared. Second, the ninth lower fractal scale is selected as the feature scale to 
extract the spatial distribution of cropland in Lishu County. The cropland vector data, the European 
Space Agency (ESA) WorldCover data, and the statistical yearbook from the same period are used 
to assess accuracy. Finally, a comparative analysis of this study and existing products at different 
scales is carried out, and the point matching degree and area matching degree are evaluated. The 
results show that the point matching degree and the area matching degree of cropland extraction 
using the multi-seasonal fractal features are 90.66% and 96.21%, and 95.33% and 83.52%, respec-
tively, which are highly consistent with the statistical data provided by the local government. The 
extracted accuracy of cropland is much better than that of existing products at different scales due 
to the contribution of the multi-seasonal fractal features. This method can be used to accurately 
extract cropland information to monitor changes in black soil, and it can be used to support the 
conservation and development of black soil in China. 

Keywords: cropland; multi-seasonal; fractal feature; feature extraction; accuracy evaluation;  
black soil 
 

1. Introduction 
Black soil, which is marked by black or dark black humus topsoil, is a valuable nat-

ural resource and the most fertile soil in the world [1]. Due to the impact of global warm-
ing and human activities, black soil has been exposed for a long time in some areas, and 
its soil structure degrades as wind and water erosions intensify [2,3]. This poses a severe 
challenge to the sustainable development of agriculture and food security in China. In 
response to the urgency to protect black soil, the Action Plan for Conservation Tillage in 
Northeast China (2020–2025) is jointly issued by the Ministry of Agriculture and Rural 
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Affairs and the Ministry of Finance. This action plan is issued to deploy comprehensive 
promotion and application of conservation tillage in appropriate areas to ensure the sus-
tainable development of black soil. The quality of black soil has changed and degraded 
markedly due to frequent human activities on the global and regional scales. Accurately 
determining the amount and spatial distribution of cropland on black soil is beneficial to 
the national government when implementing special protection measures to reduce the 
loss of black soil and improve the quality of black land. Information extraction is essential 
to implement conservation measures for the spatial distribution of cropland in black soil 
areas.  

Remote sensing technology is an efficient way to realize large-scale cropland moni-
toring. Current research mainly focuses on extracting ground object information accu-
rately. The spectral features, temporal features, and spatial features of remote sensing data 
are used for classification. Spectral features are the physical properties of natural materi-
als, which generally refer to the absorption, reflection, and transmission of electromag-
netic radiation of ground objects. Temporal features are the features that change in differ-
ent time phases. Spatial features refer to the laws of spatial relationships between ground 
object pixels in remote sensing images through numerical operations. Classification meth-
ods based on spectral features generally analyze the spectral curves of ground objects to 
classify them. Machine learning-based algorithms, such as decision trees, support vector 
machines, random forests, and deep learning-based algorithms, have been used broadly 
[4–9]. These methods require mass training samples and significant time spent controlling 
the samples’ quality and adjusting complex model parameters to obtain the optimal re-
sults. Classification methods based on temporal features mainly focus on the analysis of 
time series to obtain the changes in the features of ground objects to reduce the influence 
of incomplete information brought by the use of a single temporal phase. However, the 
frequently used low-resolution MODIS data have limitations for features with a more 
fragmented distribution [10]. Moreover, it is necessary to reduce the influence of data re-
dundancy of long-time series of remote sensing images. Classification methods based on 
spatial features are independent of mixed pixels and can directly extract the gray structure 
features of images. Examples are the gray-level co-occurrence matrix [11], fractal analysis 
[12], Fourier transform, wavelet transform, gray edge detection, variance function, and so 
on. However, there are some limitations in applying these methods to regions without 
directivity and regularity of texture features of images, such as optical images of mining 
areas [13]. Regarding the selection of data sources, some studies use many high-resolution 
images to obtain sufficient spatial features of their targets [14–16], such as planet 4, GF-2, 
and WorldView-2. Compared to a single feature, numerous studies have begun to com-
bine multiple features to achieve higher accuracy. Combining spectral and temporal fea-
tures can use spectral diversity and improve recognition ability of changes in ground ob-
ject features [17,18]. Integrating temporal and spatial features can retain the law of ground 
objects changing with time and reduce the influence of mixed pixels [19,20]. 

The distribution area of black soil in Northeast China, which comprises complex and 
heterogeneous environmental conditions and vegetation growth environments, is not 
suitable for extracting information using traditional methods. However, the main crops 
in this area have a concentrated growing period that differs significantly from natural 
vegetation, which is appropriate for extracting cropland information using remote sens-
ing images’ multi-seasonal features. Multi-seasonal remote sensing data are widely used 
for change detection and information extraction. The fusion of multi-seasonal data can 
compensate for the lack of information in single-temporal data so that the seasonal change 
information of ground objects can be effectively used for improving accuracy. When com-
bined with various information extraction techniques, the feature information of ground 
objects is enhanced, and the accuracy of information extraction is improved [21–23]. To 
reduce the effect of mixed pixels, spatial feature classification methods, such as the fractal 
method, can be combined with multi-seasonal features to improve extraction accuracy. 
Fractal is a regional algorithm for the iterative processing of surface textures without 
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selecting training samples. The texture information of natural objects may show a certain 
degree of statistical self-similarity within a limited range, which demonstrates that the 
fractal method can be used for iterative processing when extracting information from 
ground objects to narrow the scope and highlight the features of ground objects. Existing 
results suggest that the fractal method can reveal important differences in land use and 
land-cover types [12], improve classification accuracy, and reduce computational time to 
some extent [24,25]. Various studies have been conducted using fractal algorithms based 
on large-scale data with low spatial resolution [26]. However, for small-scale studies, the 
temporal variation of cropland has been neglected [27].  

In this study, the multi-seasonal features of the Landsat 8 OLI remote sensing data 
were introduced into a fractal algorithm to improve classification accuracy, taking both 
temporal and spatial features into account, and the developed method was developed 
with existing products. The remainder of this paper is organized as follows: Section 2 in-
troduces the data and the method used. The accuracy of the processing results was eval-
uated and compared with existing products at different scales, and the results are pre-
sented in Section 3. Section 4 discusses the applicability and uncertainty of the method 
developed in this study, and Section 5 provides a summary of this study. 

2. Materials and Methods 
2.1. Study Area 

Lishu County (Figure 1), which is located in the western part of Jilin province, China, 
has a temperate humid and semi-humid monsoon climate with a low annual temperature, 
with plains in the north and hills in the southeast. Many soil types in this area, mainly 
including black soil, black calcium soil, light black calcium soil, and brown soil, belong to 
the typical thin black soil area of Northeast China [28]. The main land-cover types include 
cropland, forest, grassland, impervious surfaces, bare land, and water. This area has a 
large cropland, accounting for more than 80% of the county. It is a veritable central grain-
producing area in this region and plays an irreplaceable role in ensuring China’s food 
security. Maize, rice, and soybean are the main crops, and deciduous trees are the main 
natural vegetation. The growth period of each crop is concentrated and different from that 
of natural vegetation, which is suitable for extracting information from croplands using 
multi-seasonal data. Since 2007, the national government has established a research 
demonstration area in Lishu County in conjunction with various scientific research insti-
tutes and put forward a black soil protection project named the Lishu Model, which is 
committed to protecting the sustainable development of black soil. The complex spatial 
heterogeneity of the region and frequent human activities lead to land cover changes in 
the area. 

 
Figure 1. Location of the study area. 



Agriculture 2023, 13, 486 4 of 19 
 

 

2.2. Data and Data Processing 
2.2.1. Remote Sensing Data 

The Landsat 8 OLI data covering 2020 were freely downloaded from 
https://www.gscloud.cn (accessed on 7 October 2021), a data cloud computing and prod-
uct distribution platform provided by the Geospatial Data Cloud site, Computer Network 
Information Center, Chinese Academy of Sciences. The data used in this study were level 
1T standard terrain correction products, which were accurately corrected using ground 
control sites and digital elevation model data. The principle of data selection was cloud-
less or partly cloudy (<2%) to ensure monthly coverage as much as possible. According to 
Figure 2, the main crops are planted from April to May. The peak growth period for the 
crops is July to August, and the harvest period is September to October. Therefore, the 
Landsat 8 OLI satellite products on 1 April 2020, 22 July 2020, and 10 October 2020, were 
selected as the basic data to represent the spring, summer, and autumn seasons, respec-
tively. Seven multispectral bands of the Landsat 8 data for each season were selected, and 
the detailed information is shown in Table 1. A sequence dataset with 21 bands was ob-
tained in the order of spring, summer, and autumn, which was used for fractal processing. 

Table 1. The remote sensing images selected in this study. 

Acquisition Dates Season Satellite Sensors Band Name Bandwidth (μm) Resolution (m) 
1 April 2020 Spring 

Landsat 8 OLI 

Band 1 Coastal 
Band 2 Blue 
Band 3 Green 
Band 4 Red 
Band 5 NIR 
Band 6 SWIR 1 
Band 7 SWIR 2 

0.43–0.45 
0.45–0.51 
0.53–0.59 
0.64–0.67 
0.85–0.88 
1.57–1.65 
2.11–2.29 

30 22 July 2020 Summer 

10 October 2020 Autumn 

 
Figure 2. The main crop periods in the study area. 

2.2.2. Reference Data 
The reference data included a statistical yearbook, the vector data, the European 

Space Agency (ESA) WorldCover data, and three land-cover products from the same pe-
riod. The statistical yearbook, the vector data, and the ESA WorldCover data were used 
for accuracy evaluation, and the other three products were used for the comparative anal-
ysis in this study. Detailed information of the selected data is shown in Table 2. 
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Table 2. Detailed information of the selected data for Lishu County in 2020. 

Data Set Data Type Resolution/Scale Sensor 
Statistical yearbook Text / / 

Vector data Vector 1:100,000 Landsat 
ESA WorldCover data Raster 10 m Sentinel-1 and Sentinel-2 
Esri land cover dataset Raster 10 m Sentinel-2 
GlobeLand30 dataset Raster 30 m Landsat 8/GF-1/HJ-1 

CNLUCC Raster 1000 m Landsat 8 

(1) Statistical yearbook of Lishu County in 2020. The statistical yearbook was pro-
duced by the Government of Lishu County and obtained through questionnaires, field 
visits, and field measurements; thus, it provides highly suitable data for accuracy evalua-
tion. 

(2) Vector data of Lishu (2020). The vector data of cropland in Lishu County in 2020 
were produced based on a human–computer interactive interpretation using the Landsat 
images from the Institute of Geographic Sciences and Natural Resources Research, Chi-
nese Academy of Sciences, with a mapping scale of 1:100,000 and including 6 classes and 
25 subclasses [29]. Standard quality control and integration checking for each dataset were 
implemented using many field survey photographs and records during the same period 
to ensure high-quality and consistent interpretation. Therefore, the vector data are the 
most reliable and comparable data available in the area during the same period, and the 
data had been widely applied to estimate the accuracies of different classification results 
[30,31]. The vector data (Figure 3) were used as the main reference data for the accuracy 
evaluation of information extraction. 

 
Figure 3. The distribution of cropland in the vector data. 

(3) ESA WorldCover data (2020). The ESA WorldCover data provide a global land 
cover map for 2020 at a 10 m resolution based on the Sentinel-1 and Sentinel-2 data [32], 
The dataset contains 11 different land-cover classes, including tree cover, shrubland, 
grassland, cropland, built-up, bare/sparse vegetation, snow and ice, permanent water 
bodies, herbaceous wetland, mangroves, moss and lichen, and achieves an overall 
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accuracy of 74.4%. Figure 4 is the cropland distribution in the ESA WorldCover data for 
Lishu County, and the data were used for accuracy evaluation. 

 
Figure 4. The distribution of cropland in the ESA WorldCover data. 

(4) Esri land cover dataset (2020). A global land-cover map using the Sentinel-2 im-
ages was produced by a deep learning model trained using over 5 billion hand-labeled 
Sentinel-2 pixels and sampled from over 20,000 sites distributed across all major biomes 
of the world, with a resolution of 10 m [33]. It provides a 10-class map of the surface, 
including water, tree, grass, flooded vegetation, crop, built area, bare ground, shrub, 
snow/ice, and clouds, and it achieves an overall accuracy of 85% across the ten classes. In 
this study, the distribution of cropland (Figure A1) was used as a reference for the com-
parative analysis. 

(5) GlobeLand30 dataset (2020). A global land-cover data product with a spatial res-
olution of 30 m was provided by the National Geographic Information Centre of China 
[34], which mainly includes ten land-cover types: cropland, forest, grassland, shrubland, 
wetland, water, tundra, artificial land, bare land, and glacier/permanent snow. The overall 
accuracy of the GlobeLand30 dataset in 2020 was 85.72%, and the kappa coefficient was 
0.82. This product (Figure A2) was also used for the comparative analysis of cropland 
information extraction. 

(6) China Land Use and Land Cover Dataset (CNLUCC) (2020). This dataset was gen-
erated by the Resources and Environmental Science and Data Center (RESDC) of the Chi-
nese Academy of Sciences based on Landsat 8 images through manual visual interpreta-
tion [35]. The land-cover types include cropland, woodland, grassland, water, residential 
land, unused land, and 25 secondary classifications, with a spatial resolution of 1000 m. 
This dataset (Figure A3) was used as a reference for the comparative analysis. 

2.2.3. Data Processing 
The downloaded remote sensing data and reference data for the study area were first 

converted by file formatting and re-projected into the UTM Zone 51 N with the WGS84 
datum using nearest neighbor resampling. A spatial subset was extracted according to the 
boundary of Lishu County. Next, all raster data were converted into vector data using the 
Conversion Tools. Data processing was supported by ENVI 5.3 and ArcGIS 10.6, and the 
fractal programming operations were performed using IDL 8.5. 
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2.3. Methods 
Figure 5 shows the flowchart of the information extraction method developed in this 

study. Firstly, data preprocessing was achieved, and fractal processing of the multi-sea-
sonal images was used to select the feature-scale image of cropland. Secondly, cropland 
information was extracted using the degree of separation between cropland and other 
land-cover types in the statistical curve of the feature-scale image. An accuracy evaluation 
of the information extraction results was conducted using overlay analysis. Thirdly, 
through the comparison with other products, especially the local comparative analysis, 
the advantages and disadvantages of the method were summarized. 

 
Figure 5. Flowchart of the information extraction method. 

This method was divided into four aspects, including the principle of the blanket 
covering method, the feature-scale selection method, the information extraction method, 
and the accuracy evaluation metrics. 

2.3.1. Blanket Covering Method 
The blanket covering method can be used in remote sensing for texture analysis, pat-

tern recognition, and image classification. The purpose of the method is to treat a remote 
sensing image as a three-dimensional space, with the gray value of each pixel representing 
the height of the three-dimensional surface, and then sandwich the terrain surface with 
two blankets, with both the upper and lower blankets at a distance of 𝜀 from the terrain 
surface. The fractal dimension can be calculated from the relationship between the area of 
the blanket and the volume of the space surrounded by these two blankets [36]. This study 
used a mathematical transformation iterative analysis from the perspective of signal anal-
ysis to select the feature scales of different land-cover types. The fractal dimension of each 
image’s element spectral curve was calculated from the mathematical relationship be-
tween the area enclosed by the upper and lower two-dimensional curves and the lengths 
of these two curves. The specific calculation details are shown in [36,37]. 

The spectral curve is formulated as a function of 𝑓(𝑚) (𝑚 = 1, 2, 3, …, 𝑘, where 𝑘 
is the number of samples in the band series selected), with two curves at a distance 𝜀 
above and below the curve, which are called the upper fractal curve (𝑢ఌ(𝑚)) and the lower 
fractal curve (𝑑ఌ(𝑚)), respectively, and 𝜀 is the measurement scale. 
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where 𝑛 is the value of discrete points in close proximity to 𝑚. 
According to the polygon area surrounded by these two curves and Mandelbrot’s 

definition of curve length, the upper curve length 𝐿௨(𝜀) and the lower curve length 𝐿ௗ(𝜀) 
can be calculated using the following formula:  
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where 𝑠ఌ௨ is the area of the upper curve enclosed by the proposed curve at measurement 
scale 𝜀, and 𝑠ఌିଵ௨  is the area of the upper curve enclosed by the proposed curve at meas-
urement scale 𝜀 − 1. Similarly, 𝑠ఌௗ is the area of the lower curve enclosed by the proposed 
curve at measurement scale 𝜀, and 𝑠ఌିଵௗ  is the area of the lower curve enclosed by the 
proposed curve at measurement scale 𝜀. 

According to Equations (3) and (4), the measurement scale 𝜀 (𝜀 = 2, 3, 4, … , 𝑛) and 
the left and right neighbors are taken from the upper and lower curves, respectively, and 
three points (log (𝜀 − 1), log (𝐿(𝜀 − 1))), (log (𝜀), log (𝐿(𝜀 − 1))), (log (𝜀 + 1), log (𝐿(𝜀 +1))) are obtained. The slope of the line 𝑆(𝜀) is the fractal signal value of the current scale 𝜀. Finally, the upper and lower fractal signal values for each image are calculated to obtain 
the upper and lower fractal images. The fractal signal of each pixel in the remote sensing 
image is calculated using different measurement scales. 

2.3.2. Feature Scale Selection Method 
The fractal signal images and fractal signal variation curves were obtained at differ-

ent measurement scales. The signal value of each pixel in the fractal signal image reflects 
the complexity of the variation of the time series curve comprising 21 bands of three sea-
sons for a certain measurement scale. The time series curve for ground objects with more 
complex variation has a much higher fractal signal value. 

The fractal signal images and the fractal signal variation curves were combined for a 
comprehensive evaluation to select feature scales of different targets. The scale with a high 
signal value of the land-cover type and a significant difference from other land-cover 
types is the feature scale of this land-cover type. 

2.3.3. Information Extraction Method 
An appropriate threshold range for information extraction determines the accuracy 

of the final extraction results. The feature-scale images selected can adequately distinguish 
the target land-cover type from other land-cover types, so the steps of information extrac-
tion based on the feature-scale images were carried out in this study. First, the rough dis-
tribution interval of the fractal signal value of the target land-cover type was determined 
based on the fractal signal curve of the sampling statistics and the feature-scale images. 
Second, all pixels of the feature-scale images were counted to obtain a statistical curve, 
and the suitable threshold value of image segmentation was selected according to the 
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change characteristics of the curve. Finally, by combining prior knowledge, information 
extraction was carried out according to the determined threshold. 

2.3.4. Accuracy Evaluation Metrics 
This study measured the extraction accuracy using a spatial analysis algorithm. 

Firstly, a spatial location analysis was carried out using the overlay analysis of the data to 
be evaluated and the reference data. Secondly, the area’s similarity was compared, and 
the two indicators, including the point matching degree and the area matching degree, 
were combined for a comprehensive evaluation.  

The point matching degree refers to the degree to which the extracted results match 
the reference data space. The extraction results and the reference vector data of cropland 
were matched at the spatial boundary, and their intersection was obtained. The spatial 
position attributes were counted and compared to the reference vector. The point match-
ing degree reflects the spatial relationship between the extracted results and the reference 
vector. The higher the point matching degree, the higher the coincidence degree of the 
two kinds of data. 

The area matching degree refers to the similarity between the extracted results and 
the reference data. The calculation method used was the ratio of the extracted area of 
cropland to the cropland area in the reference data, in which the cropland area was calcu-
lated using vector geometric statistics, as shown in Equation (5):  

(1 ) 100t z
c

z

S SS
S

％
−= − ×  (5) 

where 𝑆௧ is the extracted area of cropland; 𝑆௭ is the cropland area of the reference data; 
and 𝑆௖ is the area matching degree, which reflects the relationship between the extracted 
result and the area value of the reference data. The higher the area matching degree, the 
closer the area value of the two sets of data. 

3. Results 
3.1. Fractal Processing and Feature Analysis 

According to the survey data and the land-cover classification products, six typical 
land-cover types, including cropland, grassland, impervious surface, forest, water, and 
bare land, were selected for the fractal feature analysis. Six pixels of each type were ran-
domly selected from the upper and lower fractal signal images, respectively. Their aver-
age was considered as the fractal signal value of the variation curves in Figure 6. As shown 
in Figure 6, the variation curves of the upper and lower fractal signal values of different 
land-cover types with different scales were calculated, and the horizontal axis “scale” n 
denotes the nth iteration based on Equations (1) and (2). 
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Figure 6. The variation curves of upper (a) and lower (b) fractal signals of different land-cover types 
in Lishu County in 2020. 

The fractal features of different land-cover types were analyzed based on the varia-
tion curves of the upper and lower fractal signals and have different change features. 

(1) Both the upper and lower fractal signal values of different land-cover types are 
different at the same scale, and the fractal signal value of the same land-cover type signif-
icantly differs at different scales. 

(2) For the variation curve of the upper fractal signal, the variations are concentrated 
at the third to tenth and fifteenth to eighteenth scales. The variations in the lower fractal 
signal variation curve are mainly concentrated at the second to eighteenth scales. 

(3) The fractals can selectively highlight the features of different land-cover types at 
specific scales. Taking cropland as an example, cropland is reflected at the eighth and 
ninth scales of the upper fractal signal curve, and at the ninth and tenth scales of the lower 
fractal signal curve. According to the method of feature scale selection and significant dif-
ferences in fractal features for different land-cover types, the ninth scale of the lower frac-
tal was selected as the fractal feature scale of cropland, as depicted in Figure 7. 

 
Figure 7. Lower fractal image at the ninth scale. 
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3.2. Cropland Information Extraction and Accuracy Evaluation 
According to Figure 6b and the feature-scale image in Figure 7, the fractal signal val-

ues of cropland and other land-cover types differ and have an obvious separation. Figure 
6b shows that the signal value of cropland is concentrated around 20, while those of other 
land-cover types are concentrated around 2. However, the result of Figure 6b was calcu-
lated based on the sampling sites and only represents the approximate range of signal 
values of each land-cover type. Therefore, we plotted a statistical curve of the fractal signal 
values of all pixels at the feature scale, which reflects the relationship between the fractal 
signal value and the number of pixels, as shown in Figure 8. As the signal value increases, 
the number of pixels shows the characteristics of sharp increase, sharp decrease, slow in-
crease, and slight decrease, and finally tends to be smooth. Specifically, the number of 
pixels reaches the highest value at a signal value of 2 and decreases sharply to a trough at 
a signal value of 7.30 (blue point in Figure 8). Then, the number of pixels starts to increase 
slowly with an increase in the signal value and reaches a peak at a signal value of 17.68, 
which is generally consistent with the result obtained for cropland, as shown in Figure 6b. 
Finally, the number of pixels begins to decrease slowly. After the signal value of 21.58 
(green point in Figure 8), the number of pixels begins to smooth again. Combined with 
the actual spatial distribution of cropland in the remote sensing image, we determined 
that the signal segmentation threshold of cropland is from 7.30 to 21.58 in the feature-scale 
image, and we extracted the spatial distribution of cropland, as shown in Figure 9. 

 
Figure 8. Statistical curve of the feature-scale image. 
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Figure 9. Spatial distribution of cropland based on fractal extraction. The subsets (blue and red 
boxes) are used for detailed exhibition in Figures 10 and 11. 

An accuracy assessment of the results was conducted using the vector data (Figure 
3) and the ESA WorldCover data (Figure 4) of cropland in Lishu County in 2020. The ex-
tracted area of cropland based on the fractal method is 2759.86 km2, and the total areas of 
cropland in the vector data and the ESA WorldCover data are 2659.10 km2 and 3304.54 
km2, respectively. Compared to the vector data and the ESA WorldCover data, according 
to Equation (5) and the matching methods developed in this study, the calculated area 
matching degree of cropland extraction is 96.21% and 83.52%, respectively, and the point 
matching degree is 90.66% and 95.33%, respectively. The extracted results show that 
cropland located in the central, eastern, and northern plain areas has a high extraction 
accuracy, while cropland located in the southeastern mountainous and hilly areas and 
northwestern plain areas has a low extraction accuracy. 

3.3. Comparative Analysis of Fractal Extracted Results with Existing Products 
3.3.1. Comparative Analysis for the Extracted Area of Cropland 

A comparative analysis of this study and existing products was performed. The ex-
isting products were selected, including the Esri land cover dataset, the GlobeLand30 da-
taset, and the CNLUCC, and the statistical yearbook, vector data, and ESA WorldCover 
data of Lishu County were employed for evaluating the accuracies. The area matching 
degree and point matching degree were used to evaluate the accuracy of the comparative 
analysis, and the comparison results are shown in Table 3. 
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Table 3. Comparative analysis results. 

Reference Data Data Set Area/km2 Area Matching Degree/% Point Matching Degree/% 

Statistical yearbook 

Extracted data 2759.86 94.88 / 
Esri land cover dataset 3074.49 82.89 / 
GlobeLand30 dataset 3151.74 79.95 / 

CNLUCC 3021.39 84.91 / 

Vector data 

Extracted data 2759.86 96.21 90.66 
Esri land cover dataset 3074.49 84.38 98.74 
GlobeLand30 dataset 3151.74 81.45 97.17 

CNLUCC 3021.39 86.38 95.86 

ESA WorldCover 
data 

Extracted data 2759.86 83.52 95.33 
Esri land cover dataset 3074.49 93.04 96.49 
GlobeLand30 dataset 3151.74 95.38 94.02 

CNLUCC 3021.39 91.43 89.55 

For the statistical yearbook data, the cropland area is 2625.33 km2, and the cropland 
areas of the extracted data and the other three products are 2759.86 km2, 3074.49 km2, 
3151.74 km2, and 3021.39 km2, respectively. Compared to the cropland area of the statisti-
cal yearbook, the area matching degree of the extracted data is 94.88%, which is much 
bigger than other values, as shown in Table 3. For the vector data of Lishu County, the 
area matching degrees of three products are lower than that of the extracted data (96.21%), 
ranging from 81.45% to 86.38%. The area matching degree of the extracted data increases 
by 9.83%-14.76%. However, the point matching degrees of the three products are higher 
than that of the extracted data (90.66%), ranging from 95.86% to 98.74%, because the ex-
isting three products have excessive extraction results of the cropland, as shown in Table 
3. For the ESA WorldCover data, the area matching degrees of three products are higher 
than that of the extracted data (83.52%), ranging from 91.43% to 95.38%. However, the 
point matching degree of the extracted data has the second highest accuracy (95.33%) out 
of the four datasets. Therefore, given both the area matching degree and point matching 
degree, these three comparative results suggest that the extraction accuracy of cropland 
in this study is better than that of existing products at different scales because of the con-
tribution of multi-seasonal fractal features. 

3.3.2. Comparative Analysis for the Spatial Distribution of Cropland 
The area matching degrees of the extracted results in this study are consistent with 

the results of the statistical yearbook and the vector data. Still, the point matching degree 
is slightly lower than that of existing products of different scales. The main feature of frac-
tal geometry can describe irregular or fragmented natural features [37]. Because of multi-
seasonal fractal features, many field ridges and roads were finely divided into other land-
cover types, leading to fragmentation of the spatial distribution of cropland in this study. 
However, field ridges and roads are all classed as croplands in the vector data, the ESA 
WorldCover data, and the existing three products, including the Esri land cover dataset, 
the GlobeLand30 dataset, and the CNLUCC, as depicted in Figures 10 and 11. 

Two typical subsets were selected and analyzed. The first subregion in the blue box 
in Figure 9 is comprised of cropland, forest, and impervious surface in Lishu County, as 
depicted in Figure 10. According to Figure 10, the fractal algorithm clearly distinguishes 
cropland, forest, and impervious surface, and field roads are also accurately identified. In 
the CNLUCC, the delineations of cropland and other land-cover types need to be more 
accurate due to their low resolution. The spatial distributions of cropland in the ESA 
WorldCover data, the Esri land cover dataset, and the GlobeLand30 dataset, are relatively 
consistent, but part of the forest land is misclassified as cropland. The limited accuracy for 
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these land-cover types might be attributed to the need for training samples in this area 
and seasonal variations of vegetation used for remote sensing classification. 

 
Figure 10. Comparison of the fractal extraction results (a), vector data (b), ESA WorldCover data (c), 
Google Earth image (d), Esri land cover dataset (e), GlobeLand30 dataset (f), and CNLUCC (g) lo-
cated in the blue box in Figure 9. 

The second subregion, located in the red box in Figure 9, is mainly dominated by 
greenhouses in Lishu County, as depicted in Figure 11. According to Figure 11, for the 
spatial distribution of cropland, the fractal extracted results are much better than the re-
sults of the CNLUCC, worse than the results of the vector data, the GlobeLand30 dataset, 
and the Esri land cover dataset, and are relatively consistent with the ESA WorldCover 
data. However, compared to the other products, the fractal method developed in this 
study could extract cropland outside the greenhouses with high accuracy and clearly 
identify the outline of the greenhouses according to the Google Earth image, as depicted 
in Figure 11a,d.  

Therefore, the comparison experiments demonstrated that the fractal extraction 
method based on multi-seasonal remote sensing data could better distinguish cropland 
and other land-cover types. 
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Figure 11. Comparison of the fractal extraction results (a), vector data (b), ESA WorldCover data (c), 
Google Earth image (d), Esri land cover dataset (e), GlobeLand30 dataset (f), and CNLUCC (g) lo-
cated in the red box in Figure 9. 

4. Discussion 
4.1. Theoretical Assumptions of the Fractal Method Proposed in this Study 

The cropland information extracted by the fractal method based on multi-seasonal 
remote sensing data developed in this study was effective. Firstly, fractal analysis meth-
ods are sensitive to regional variations in land-cover types [38]. In fractal calculation, land 
cover with more complex variation is easier to distinguish. The impact of a curve’s com-
plexity is embodied in the fractal calculation process. According to Equations (1) and (2), 
the upper fractal curve tends toward a gradually narrowing trough and smoothing peak, 
while the inverse is true for the lower fractal curve [39]. After fractal processing, different 
land-cover types have different feature scales in the upper fractal or lower fractal. For 
example, water is reflected at the seventeenth scale of the upper fractal signal curve, whilst 
cropland is reflected at the ninth scale of the lower fractal signal curve in this study, which 
has been determined by the change characteristic curves of different ground objects [40].  

Secondly, Lishu County is mainly dominated by plains with flat terrain, which are 
suitable for implementing various planting measures. Under the guidance of the “Lishu 
mode”, the quality of black soil has been improved, which is reflected in the well growth 
status of crops. The time divisions of sowing, heading, and maturity are obvious, and the 
spectral curve and texture characteristics differ from those of natural vegetation. Com-
pared to the other land-cover types, cropland has more complex feature curve changes at 
different time stages, and the corresponding texture information is richer. In the fractal 
calculation, the boundary of cropland converges faster than the other land-cover types, 
and the fractal features are much easier to distinguish [26]. 

Finally, by combining multi-seasonal remote sensing images with a fractal analysis 
algorithm, the method proposed in this study can accurately obtain the spatial distribu-
tion of cropland and reduce the time required to select samples. Moreover, the Chinese 
governments have attached great importance to the conservation of black soil in Northeast 
China and clearly stated that effective measures should be taken to protect this precious 
resource. Therefore, supported by the National Key Research and Development Program 
of China, this method is being applied to extract cropland information for spatial and tem-
poral analysis to evaluate the effectiveness and sustainability of local government pro-
jects.  

4.2. Uncertainty Analysis of Fractal Method 
Although the proposed method achieved satisfactory results, further improvement 

can be conducted from three aspects. The first one is the spatial resolution of the remote 
sensing images used. The Landsat 8 OLI data with a resolution of 30 m might have led to 
additional uncertainty in this study. High-resolution data, such as GF-2 or WorldView-3, 
should be integrated for the information extraction of cropland. Secondly, the incon-
sistency of land use and land cover nomenclature for different remote sensing data prod-
ucts might have affected the accuracy assessment of cropland extraction. Thirdly, alt-
hough the main reference data were obtained using the vector data with a scale of 
1:100,000 and the ESA WorldCover data at a 10 m resolution, systematic validations at 
different scales and regions should be employed to enhance the suitability of the method 
developed in this study for future implementation. In addition, the relation of the feature 
scale with a number of sampling sites results in poor comparability for different remote 
sensing images that have originated from different phases or sensors. 
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5. Conclusions 
This study proposed an information extraction method of cropland based on multi-

seasonal fractal features, and its performance was demonstrated in a case study of Lishu 
County, China. The results showed that fractals could reveal clear separations of different 
land-cover types at different scales, and the ninth scale of the lower fractal signal was 
selected as the fractal feature scale for cropland. Compared to the vector data and the ESA 
WorldCover data, the point matching degree and the area matching degree of cropland 
extraction based on multi-seasonal fractal features were 90.66% and 96.21%, and 95.33% 
and 83.52%, respectively, which were highly consistent with the data derived from the 
statistical yearbook. The extracted accuracy of cropland in this study was much better 
than that of existing products at different scales. This method can accurately extract 
cropland information and provide technical support for change monitoring, conservation, 
and development of black soil in China. 
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Appendix A 

 
Figure A1. The distribution of cropland in the Esri land cover dataset. 
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Figure A2. The distribution of cropland in the GlobeLand30 dataset. 

 
Figure A3. The distribution of cropland in the CNLUCC. 
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