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Abstract: Optimised use of liquid organic manures (LOM) can reduce the consumption of mineral
fertilisers and help reduce the emission of nutrients into nonagricultural ecosystems. To achieve this,
farmers need to be able to measure the greatly variable nutrient composition of LOMs as accurately
as possible on-farm. Since existing on-farm test methods either need to be precisely adapted to
each LOM type or take a long time to perform, a test kit was developed to measure the nutrients of
different LOM types within a short time. For the study, 619 LOMs (391 pig slurries, 139 cattle slurries,
and 89 digestates) were collected from farms in northwest Germany and analysed in the laboratory
for total N, ammonium, phosphorus, and potassium. The samples were analysed in parallel using the
on-farm test kit consisting of ion-selective ammonium and potassium electrodes and an automatic
moisture analyser to evaluate the comparability of the data. Each measurement could be performed
in less than 15 min. Regardless of LOM type, regressions with an R2 > 0.9 could be generated for total
nitrogen, ammonium, and potassium, while the models for phosphorus were not as reliable.

Keywords: ammonium; biogas digestate; cattle slurry; pig slurry; potassium; phosphorus; total nitrogen

1. Introduction

In Germany, more than 187 million m3 of liquid organic manure (LOM) were applied to
arable land in 2019. The three most important LOMs were cattle slurry with 94.7 million m3,
biogas digestate with 62.8 million m3, and pig slurry with 27.6 million m3 [1]. Optimal
use of these farm-based fertilisers can substitute costly mineral fertilisers, while plants can
still be supplied with all relevant nutrients, and the environment can be protected [2]. The
majority of mineral nitrogen fertilisers are produced via the Haber–Bosch process, which is
extremely energy-intensive and releases large quantities of greenhouse gases [3,4]. Mineral
phosphorus and potassium fertilisers are based on finite resources that must be transported
over long distances [5], while liquid organic fertilisers are produced on the farm and mostly
used locally. However, to substitute mineral fertiliser with organic manure, its nutrient
content must be known as precisely as possible.

The nutrient compositions of LOMs vary widely. Therefore, farmers must have as
much information as possible about the LOM nutrient content. Otherwise, there is a risk
that too little or too much of a nutrient may be applied to a crop, which can result in either
an undersupply of the plants or loss of nutrients in nonagricultural ecosystems. Nitrogen
and phosphorus pose the greatest risks. Nitrogen can be emitted in gaseous form as NH3 or
NO2 or leached into the groundwater as NO3

− [6,7]. Deposition of phosphorus via erosion
or surface runoff into water bodies can lead to eutrophication [8,9]. For these reasons, it is
imperative to determine the nutrient content of LOM before field application. Laboratory
measurements are the most accurate method to evaluate nutrient concentrations in LOMs.
However, they require representative sampling, which is associated with high effort for
homogenisation of the storage containers. Several days usually pass before the results of
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the measurements are available to the farmer. In addition, the costs for laboratory analyses
are comparatively high, so often only one measurement per slurry tank is carried out per
year. Therefore, there is a great need for methods with which nutrient concentrations can
be determined directly by the farmer on site. One important methodological approach is to
perform physicochemical quick tests.

Physicochemical quick tests can be used to measure various parameters of an organic
fertiliser sample in a short processing time. Nutrient contents are then calculated based on
the measured values. Since the 1970s, various regression models for cattle and pig slurries
have been published, and their accuracy for calculating the concentrations has varied
considerably depending on the LOM type, method, and nutrient in focus [10–12]. This is
due to the different compositions of the LOMs. In general, the more similar the management
systems of a group of LOM samples, the better the models fit [13]. However, the models
can then only be applied to slurries from similar management systems; otherwise, errors
occur in the calculation of nutrient concentrations. It is therefore desirable to have methods
available that can be applied to a wide range of samples without restrictions.

Electrical conductivity is the most commonly used method to determine ammonium
and potassium contents in LOMs [14–17]. However, since all ions present in the slurry
influence the measurement [18], the interpretation of the measured data is not straight-
forward. Usually, the more diverse the ion compositions of a sample set, the lower the
fit is of the models, because all ions that are not in focus during the measurement are
to be classified as interfering ions. One solution could be the selective measurement of
ions in LOMs. For example, attempts have been made to selectively measure ammonium
concentration with electrodes, but this has not been pursued in the last 20 years due to
technical difficulties [19,20]. Since then, no further regression models for ion-selective
electrodes have been published, although technology has improved, and ion-selective
potassium electrodes are now commercially available.

Since large proportions of nitrogen and phosphorus are organically bound in LOMs,
dry matter (DM) has been frequently used to derive these nutrient concentrations [21–23].
However, because the DM measurement can take up to 48 h [22], specific gravity (SG) has
been used as a kind of “auxiliary parameter”, because this parameter can be measured in a
few seconds [24,25]. When SG is used to derive nitrogen and phosphorus concentrations
in LOMs, it can be classified as a “double indirect” calculation (i.e., the concentrations are
indirectly determined on DM, which is indirectly determined via an SG measurement),
which may result in overall low fits of the regression models for different LOM types and
management systems. A rapid direct determination of the LOM dry matter could avoid
indirect derivation based on SG. However, no regressions using rapid DM determination
to derive organic nutrients have been published to date.

This work aims to investigate whether it is possible to determine the ammonium, total
nitrogen, total phosphorus, and total potassium concentrations of various LOMs using
modern physicochemical measurement methods in as little as 15 min. We tested to what
extent it is possible to create well-fitted regression models for very different LOM types
and animal husbandry systems using ion-selective ammonium and potassium electrodes
and an automatic moisture analyser.

2. Materials and Methods
2.1. Sample Collection and Sample Preparation

For the study, a total of 619 LOM samples (i.e., 391 pig slurries [232 fattening pig
slurries, 110 sow slurries, and 49 piglet slurries], 139 cattle slurries [64 bull-fattening
slurries and 75 dairy cattle slurries], and 89 digestates [based on various input materials])
were collected in Northwest Germany. Samples were taken by farmers following the
standard procedures used to collect samples for laboratory testing. Ten litres of each
LOM were homogenised for 3 min at 10,000 rpm at the experimental farm of Osnabrück
University of Applied Sciences using a high-performance blender (Blender CB15VXE,
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Waring Commercial, Torrington, CT, USA), filled into 500 mL containers and subsequently
frozen at −18 ◦C.

2.2. Laboratory Measurements and Quick Test Methods

In an accredited laboratory (LUFA Nord-West; Hameln, Germany), nutrient concen-
trations were determined using the standard methods in Germany. Total nitrogen (TN)
was analysed via a modified Kjeldahl method [26]. Ammoniacal nitrogen (AN) was de-
termined by making up 5 g of the sample to 100 mL with 0.0125 molar calcium chloride
solution. After filtration, the solution was measured based on a procedure using a contin-
uous flow analysis method with photometric detection [27]. For total phosphorous (TP)
and total potassium (TK), slurry samples were digested, and nutrient concentrations were
determined by inductively coupled plasma optical emission spectrometry [28].

For the electrode measurements of ammonium and potassium, a measuring system
from Mettler Toledo GmbH (Gießen, Germany) consisting of the ion meter “Seven2Go
pH/Ion meter S8”, the reference electrode “InLab Reference”, and the temperature sensor
“ATC NTC 30k Ohm” was used. For the ammonium measurement, the “DX218-NH4 ISE”
electrode was used, and for potassium measurement, the “DX239-K ISE” electrode was
used. Sample preparation was identical for both ion measurements, i.e., 10 mL of MgSO4
(250 mmol L−1) was added to 10 g of LOM to increase the ionic strength of the solution and
thus ensure a continuous ion flow to the ion-selective surface of the electrodes [20]. The
solution was then filled up to 100 mL with distilled water to ensure that the ammonium
and potassium concentrations in the sample solution were within the measuring range of
the electrodes (maximum 1 mol L−1). The samples were measured at 25 ◦C while stirring
with a magnetic stir bar.

The MA35 infrared heated automatic moisture analyser from Sartorius AG (Göttingen,
Germany) was used for the rapid determination of the dry matter in the LOM samples.
For this measurement, 3 g of sample material was weighed using the scale integrated with
the MA35. The sample was heated to 105 ◦C, and the weight loss of the sample due to
evaporation was measured. As soon as no further weight loss was detected, the instrument
automatically terminated the measurement and displayed the dry matter content in per
cent. None of the measurements required more than 15 min.

2.3. Statistical Analyses

Simple descriptive statistical indicators (mean, minimum, and maximum) for the
ammonium, total nitrogen, phosphorus, and potassium concentrations determined in
the laboratory and by the quick tests, respectively, were calculated for the entire sample
set and separately for the three LOM types. Simple linear regressions were created to
estimate ammonium and potassium concentrations based on the electrode measurements
as well as phosphorus concentrations based on the dry matter values of the moisture
analyser. Multiple linear regression models were calculated to determine total nitrogen
concentrations based on the ammonium electrode measurements and dry matter values
determined by the moisture analyser.

To evaluate the quality of the models created, the coefficient of determination (R2) and
root mean square error (RMSE) were used:

R2 =
∑n

i=1(Oi−O)×(Pi−P)√
∑n

i−1(Pi−P)2×
√

∑n
i−1(Oi−O)2

RMSE =

√
∑n

i=1(Pi−Oi)2

n

where Pi is the predicted value, Oi is the observed value, n is the number of observations,
O is the average of the observed values, and P is the average of the predicted values. The
model fit improves as R2 approaches 1. The magnitude of the RMSE must be considered
separately for each model because it depends on the magnitude of the measured value.
When the RMSE is 0, there are no discrepancies between laboratory measurements and
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quick tests. The greater the RMSE, the greater the deviations between the laboratory
measurement and the quick test. All statistical calculations were performed with RStudio
v1.4.1106 [29].

3. Results

The results of the laboratory measurements and the three quick tests are summarised
in Table 1. The nutrient concentrations of the different LOM types (pig, cattle, digestate)
differed strongly from each other, but there were also clear differences within one type of
LOM. For total nitrogen as well as for ammonium, digestates show the highest average
concentrations (5.43 and 2.83 kg m−3). This is followed by pig slurry, with average concen-
trations of 3.66 and 2.33 kg m−3 and cattle slurry with the lowest concentrations of 3.78 and
1.73 kg m−3. In pig slurry, the ammonium concentration accounts for an average of 64% of
the total nitrogen, in digestate for 52%, and in cattle manure for 46%. As for the phosphorus
concentration, the digestates also have the highest average concentration with 0.87 kg m−3,
followed by the pig slurries with 0.71 kg m−3, and the cattle slurries with 0.66 kg m−3. The
range of the pig slurries was wider than that of the digestates. While the pig slurry with the
lowest concentration contained only 0.02 kg m−3 phosphorus, the sample with the highest
concentration contained 2.88 kg m−3. This corresponds to a difference of 2.86 kg m−3,
while the differences were much smaller for the digestates with 1.69 kg m−3 and the cattle
slurries with 1.13 kg m−3 (Table 1). The highest average potassium concentration was
found again in the digestates with 4.64 kg m−3. The second highest concentration of this
nutrient was measured in the cattle slurries with 3.55 kg m−3, and the lowest was in the
pig slurries, with 2.37 kg m−3. The digestates also had the largest range in potassium
concentration, followed by the pig slurries and the cattle slurries.

Table 1. Total nitrogen, ammonium nitrogen, total phosphorus, and total potassium concentrations
in liquid organic manures based on laboratory measurements (Lab) and quick tests.

Pig Slurries (n = 391) Cattle Slurries (n = 139) Digestates (n = 89)

Min Mean Max SD Min Mean Max SD Min Mean Max SD

TN Lab (kg m−3) 0.50 3.66 9.08 1.59 0.90 3.78 5.69 0.86 2.60 5.43 11.10 1.35
AN Lab (kg m−3) 0.20 2.33 5.06 0.91 0.31 1.73 2.88 0.46 1.10 2.83 7.90 1.05
TP Lab (kg m−3) 0.02 0.71 2.88 0.62 0.11 0.66 1.24 0.24 0.13 0.87 1.82 0.25
TK Lab (kg m−3) 0.33 2.37 5.83 0.98 0.75 3.55 5.97 0.92 1.25 4.64 8.22 1.05
AN ISE (kg m−3) 0.19 2.05 4.99 0.80 0.39 1.60 2.66 0.43 0.86 2.57 6.70 0.90
TK ISE (kg m−3) 0.27 2.16 5.64 0.87 0.72 3.13 4.96 0.79 1.26 4.02 7.11 0.98

DM MA (%) 0.15 3.42 15.31 2.84 1.00 7.12 11.52 2.30 1.48 6.60 10.14 1.73

AN = Ammonium nitrogen, TN = Total nitrogen, TP = Total phosphorus, TK = Total potassium. DM = Dry matter,
EC = Electrical conductivity, ISE = Ion-selective electrode, MA = Moisture analyser.

The ammonium and potassium concentrations of the LOMs were also measured
with ion-selective electrodes under close-to-farm conditions on the experimental farm of
Osnabrück University of Applied Sciences. All mean values of the electrode measurements
for ammonium are below the mean values of the respective laboratory measurements. For
the pig slurries, a mean value of 2.05 kg m−3 was measured with the electrode. For the
digestates, a mean value of 2.57 kg m−3 was determined, and for the cattle slurries, the
measurement resulted in a value of 1.60 kg m−3.

Similar results were obtained with the potassium electrode. As shown for the labo-
ratory measurement, the electrode measured the lowest average concentration in the pig
slurries with 2.16 kg m−3. The cattle slurries had the second highest average value, with
3.13 kg m−3. For the digestates, both the highest potassium concentration of 4.02 kg m−3

and the largest difference from the laboratory value of 0.62 kg m−3 were found. The dry
matter of the pig slurries measured with the moisture analyser showed an average value
of 3.42%; the range is largest for the LOM type. The digestates have the second largest
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mean value with 6.60% and the smallest range. For cattle slurries, the highest mean value
of 7.12% was detected.

Regression models for the determination of the four nutrients—ammonium nitrogen,
total nitrogen, total phosphorus, and total potassium—were constructed using the three
quick tests. For ammonium and potassium, data from the respective ion-selective electrode
were used. Phosphorus concentrations were derived from the dry matter determined with
the moisture analyser. For the total nitrogen model, both the data from the ion-selective
ammonium electrode and the dry matter values from the moisture analyser were used.
To check whether the methods are applicable regardless of the LOM type, a model was
created for each nutrient for the respective type as well as a joint model for all 619 LOM
samples (Table 2).

Table 2. Regression models for the different sample sets: laboratory measurements versus quick tests
with coefficients of determination (R2) and root mean square errors (RMSE) (significance level for all
regressions p < 0.001).

Nutrient Manure Type Equation RMSE
(kg m−3) R2

AN Pig y = 0.096 + 1.088 AN ISE 0.262 0.92
Cattle y = 0.096 + 1.022 AN ISE 0.149 0.90
Digestate y = 0.078 + 1.132 AN ISE 0.268 0.93
All y = 0.039 + 1.100 AN ISE 0.247 0.93

TN Pig y = 0.205 + 1.231 AN ISE + 0.273 DM MA 0.354 0.95
Cattle y = 0.379 + 1.190 AN ISE + 0.211 DM MA 0.285 0.89
Digestate y = 0.055 + 1.424 AN ISE + 0.261 DM MA 0.438 0.89
All y = 0.030 + 1.371 AN ISE + 0.242 DM MA 0.391 0.94

TP Pig y = 0.020 + 0.202 DM MA 0.232 0.86
Cattle y = 0.096 + 0.079 DM MA 0.148 0.60
Digestate y = 0.343 + 0.080 DM MA 0.204 0.31
All y = 0.145 + 0.122 DM MA 0.350 0.54

TK Pig y = 0.043 + 1.077 TK ISE 0.298 0.91
Cattle y = 0.039 + 1.125 TK ISE 0.248 0.93
Digestate y = 0.534 + 1.021 TK ISE 0.315 0.91
All y = 0.032 + 1.132 TK ISE 0.302 0.94

AN = Ammonium nitrogen, TN = Total nitrogen, TP = Total phosphorus, TK = Total potassium. DM = Dry matter,
EC = Electrical conductivity, ISE = Ion-selective electrode, MA = Moisture analyser.

The four models calculated with the measured values of the ammonium electrode
have an R2 ≥ 0.90 for all types of manure (Table 2, Figure 1). The highest R2 was found
for the digestates with 0.93 (Figure 1D), followed by the models for the pig slurries with
0.92 (Figure 1C) and the cattle slurries with 0.90 (Figure 1B). The model based on all farm
manures had an R2 of 0.93 (Figure 1A). The RMSE for the model for the entire sample set
with 0.247 was lower than the value for the model for the pig slurries, with 0.262.
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Figure 1. Relationships for the ammonium concentrations measured in the laboratory versus the
ammonium concentrations measured with ion-selective electrode of the total sample set (n = 619):
(A), cattle slurries (�) (n = 139); (B), pig slurries (N) (n = 391); (C) and digestates (•) (n = 89); (D).

The total nitrogen model for all LOM samples had an R2 of 0.94 and an RMSE of 0.391.
The model for the pig slurries had a higher R2 of 0.95 and a lower RMSE of 0.354. As
mentioned earlier, the percentage of ammonium to total nitrogen was also highest for pig
slurries. The model for the cattle slurries had a smaller R2 of 0.89 than the overall model,
but the RMSE for this model was also smaller. The model for the digestates had a smaller
R2 and a larger RMSE than the model for all farm manures (Table 2).

Figure 2 shows the regression models for the total phosphorus concentrations and the
dry matter measured with the moisture analyser. It clearly shows that the R2 of the models
differed. The model of all farm manures had an R2 of 0.54 and an RMSE of 0.350. As can be
seen in Figure 2A, the deviations from the regression line became larger with increasing
dry matter, and the total phosphorus concentration in pig slurries was overestimated based
on the moisture analyser readings, while the values for cattle slurries and digestates were
underestimated. The pig slurry model had a clearly higher R2 of 0.86 and a lower RMSE
of 0.232. However, Figure 2C also shows that the deviations from the trend line increased
with an increasing dry matter for this data subset. The model for the cattle slurries had
a higher R2 of 0.60 and a lower RMSE of 0.148 than the overall model. However, higher
deviations occurred with the increasing dry matter. The R2 value for the digestate model
was 0.31, the smallest value for all calculated models. The RMSE of 0.204 was lower than
that of the overall model, but there were still large deviations for both low and high dry
matter data (Figure 2D).
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Figure 2. Relationships for the phosphorus concentrations measured in the laboratory versus dry
matter measured with moisture analyser of the total sample set (n = 619): (A), cattle slurries (�)
(n = 139); (B), pig slurries (N) (n = 391); (C) and digestates (•) (n = 89); (D).

The four regression models based on the potassium electrode readings are shown in
Figure 3. The model of all LOMs had an R2 of 0.94 and an RMSE of 0.302. The model of
the pig slurries (C) had a lower R2 of 0.91 than the overall model and an identical RMSE of
0.302. The digestates model had a lower R2 (0.91) than the model for all LOMs and a larger
RMSE (0.315), while the cattle slurries model had a higher R2 of 0.93 and a lower RMSE
calculated with 0.248.
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Figure 3. Relationships for the potassium concentrations measured in the laboratory versus the
potassium concentrations measured with ion-selective electrode of the total sample set (n = 619):
(A), cattle slurries (�) (n = 139); (B), pig slurries (N) (n = 391); (C) and digestates (•) (n = 89); (D).

4. Discussion

The focus of this study was to evaluate a test kit that can be used to determine
ammonium nitrogen, total nitrogen, total phosphorus, and total potassium on farms. To
integrate the methods into the practical processes on a farm, a time window of 15 min was
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targeted for the measurements and calculations of the nutrient concentrations based on the
respective regression equations.

When using the standard method according to APHA [30], the DM measurement
takes at least 1 h [13,24,25]. For larger sample volumes, the measurement may require up
to 24 h [14] or even 48 h [22]. To reduce the time required for DM analysis, an electronic
moisture analyser was used in this study. After weighing the sample, the weight loss in
the drying process was automatically measured, and the process stopped when the weight
remained constant. In our study, DM measurement did not take longer than 15 min for any
sample. Since the electrode measurement can be carried out simultaneously during this
period, it is possible to perform all measurements of the test set in the targeted timeframe.

4.1. Evaluation of the Ammonium Models

The values of the ion-selective ammonium electrode were used to create four models.
Based on these models, it can be decided whether it makes sense to create a separate
model for the individual LOM types or to calculate the ammonium concentration using the
overall model.

Both the overall model and the models for the different LOM types have an R2 ≥ 0.9
and are thus at a similar level to the models for cattle and pig slurries published by
Chescheir et al. [31] and Williams et al. [20]. In addition, it must be mentioned that the
electrode used in our study did not drift during the measurement, and that linear rather
than exponential models showed the best fits. Thus, large errors for the assessment of NH4–
N (especially at higher concentrations in the LOMs), as mentioned by Williams et al. [20],
do not occur (Figure 1).

The Chescheir et al. [31] model for cattle and pig slurries had a higher R2 of 0.98 than
the models in this study, but they used only 15 slurries in their model. Since they used an
NH3-sensitive electrode, they had to increase the pH of each sample to >12 with a strong
alkaline leach. The sample preparation for the NH4+ measurement used in this study does
not include any substances potentially hazardous to farmers.

The durability of the membranes of the electrodes has also improved considerably
in the meantime. While Byrne and Power [32] noted a deterioration in measurement
quality after only 20 samples, all 619 samples in our sample set could be measured with
the same membrane. However, when using modern ion-selective electrodes, the overall
ionic strength must first be increased. In the second step, the LOM must be diluted before
starting the measurement to ensure that the concentrations fit into the measuring range
of the electrode. This is different for the determination of electrical conductivity. This
measurement can be performed without any sample preparation. Due to this unprob-
lematic measurement procedure, electrical conductivity is probably the physicochemical
method with the most published regression models for ammonium determination in cattle
slurries [15,33,34] as well as pig slurries [16,35,36]. However, since electrical conductivity
correlates with the general ionic strength in LOMs [18,19] and ionic compositions differ
between regions, manure type, and husbandry management systems [13], it is impossible to
create well-fitted models for LOMs of different origins based on electrical conductivity data.
This can be seen by looking at the models developed by Martínez-Suller et al. [14]. While
the variability-limited model for the integrated farrow-to-finish slurries (n = 13) showed
an R2 of 0.95, the model of all slurries (n = 83) only had an R2 of 0.82. For the calf slurries
(n = 13), the R2 for the total cattle manure (n = 49) was only 0.62. Variations in electrical
conductivity were also found in the study by Singh and Bicudo [23]. While a model with
an R2 of 0.96 was calculated for the cattle slurries from the Monroe County region, the R2

for the best model for the slurries from Barren County was only 0.61. Obviously, model fits
differ regarding husbandry systems and regions.

Both electrical conductivity and ion-selective electrodes offer great potential for on-
farm ammonium determination. When using data from electrical conductivity measure-
ments, regression models adapted to the specific region and husbandry system must be
calculated and updated when relevant changes (e.g., usage of other feeding ingredients)
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occur. Measurements with ion-selective electrodes require careful sample preparation,
which might be a bit time-consuming and challenging for farmers. However, with only one
sample preparation procedure, ammonium and potassium concentrations can be measured,
regardless of region, slurry type, and management system.

4.2. Evaluation of the Total Nitrogen Models

The total nitrogen in LOMs is composed of a mineral and an organic fraction. Since
the mineral part consists essentially of ammonium, attempts have been made in the past to
determine the total nitrogen concentration based on the electrical conductivity data [14,15,25].
On the other hand, most of the organic components are bound in the dry matter, so
there are also regression models available to derive total nitrogen based on dry matter
data [21,23,24]. To include both fractions in the calculation of the total N concentrations
in LOMs, multiple regressions can be used, for example, with electrical conductivity and
dry matter data [14,15,25]. The models developed in this study to derive the total nitrogen
concentrations also include both fractions. Since the ion-selective ammonium electrode
provided reliable data for the ammonium concentrations in LOMs independent of the
slurry type and husbandry system, it was used to characterise the mineral fraction, while
the dry matter measured with the moisture analyser was used to derive the organic fraction.
The results show that the regression models fit as highly as models based on dry matter
data determined in the laboratory. Marino et al. [15] calculated an R2 of 0.91 based on
electrical conductivity and conventionally determined dry matter for 93 dairy cow slurries.
Martínez-Suller et al. [14] obtained an R2 of 0.90 for the same parameters for 22 dairy cow
slurries. This corresponds well to the fit of our model for the 139 cattle slurries. The best
total N model for pig slurries was obtained by Martínez-Suller et al. [14] with a sample
set of 40 farrowing sows (R2 0.89). This corresponds roughly to the model of Suresh and
Choi [25] with 41 slurries and an R2 of 0.88. The R2 of the total N model for the pig slurries
based on 391 samples in this study is even higher with 0.95 due to the use of the electronic
moisture analyser to determine the dry matter within a maximum of 15 min. The overall
model of all LOMs has an R2 of 0.94. Obviously, the proposed test set using the ammonium
electrode and the DM data from the automatic moisture analyser is thus promising for the
determination of total nitrogen on-farm.

4.3. Evaluation of the Phosphorus Models

Up to now, there is no quick physicochemical test available that can measure phospho-
rus concentration in liquid organic manures directly on the farm. Therefore, phosphorus
concentrations must be derived indirectly from other parameters. Since most of the phos-
phorus is organically bound, dry matter, which can be quickly determined with the moisture
analyser, was used to build the models in this study. The P models for the different LOM
types differ more clearly from each other than the models for the other nutrients. Although
the pig slurry model has an R2 of 0.86, the deviations from the trend line increase with
increasing dry matter (Figure 2). The cattle slurry model has a slightly higher R2 of 0.60
than the overall model, while the digestate model, with an R2 of 0.31, is the worst-fitting
model in this study.

The differences in the accuracy of the model fit are also found in the literature. Mostly
oven drying according to APHA [30] is used, and this procedure can take up to 48 h [22].
Nevertheless, the cattle model in our study has an R2 of 0.60, which is comparable to models
from other studies with similar variable sample sets. Martínez-Suller et al. [14] obtained
an R2 of 0.62 for their combined cattle slurry data set (n = 49), and Marino et al. [15] an R2

of 0.62 for their dairy cattle slurry data set (n = 93). Singh and Bicudo [23] showed that
higher model fits are possible. They collected cattle slurry samples from different regions
and determined the specific gravity of the slurry to derive dry matter data to calculate
phosphorus concentrations. While their Hart County sample set only had an R2 of 0.58,
the Monroe County sample set had an R2 of 0.99. This shows that regional differences in
model fits can occur.
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For pig slurries, limiting sample variability by selecting certain husbandry systems
may result in higher model fits. While the model of the total sample set of pig slurry
(n = 83) by Martínez-Suller et al. [14] had an R2 of 0.37, R2 increased to 0.83 by restricting
variability using only finisher pig slurries (n = 30). Even better results were achieved by
Zhu et al. [24]. They restricted their sample origin by taking samples from just nine farms,
adjusted different dry matter values by adding water, and then were able to calculate an R2

of 0.99.
The derivation of phosphorus concentration in digestates has not yet been published.

Nevertheless, it can be assumed that it might also be possible to increase the R2 of the
models for digestates if the variability is restricted. This could be achieved, for example, by
selecting specific digestate types (e.g., biogas plants just with maize as feeding substrate)
or even by creating models for individual farms.

Overall, the model fits of the phosphorus models in this study are not satisfactory
compared to the models for the other nutrients. To enable farmers to derive P concentrations
in LOMs based on dry matter measurements, models need to be created for individual
regions and husbandry systems. Piepel et al. [37] presented a smartphone app to make this
possible in the future, i.e., farmers can create their own models for their region or even for
their own farms.

4.4. Evaluation of the Potassium Models

As with ammonium nitrogen, most of the potassium in liquid manure is present in
dissolved form. Therefore, electrical conductivity is the most commonly used parameter to
derive this nutrient [14,15,38]. However, K+ ions are only the second largest cation fraction
after NH4

+ ions in most organic manures [39]. Thus, NH4
+ ions have a greater influence

compared to K+ on the electrical conductivity in most cases [18]. The potassium models are
therefore usually worse fitted than the ammonium models. For example, the potassium
model of Marino et al. [15] with 38 cattle slurries had an R2 of only 0.30, whereas the
ammonium model for the same sample set had an R2 of 0.76. As with ammonium, attempts
have been made in the past to increase the model fit by selecting certain husbandry systems.
The combined cattle model of Martínez-Suller et al. [14] had an R2 of only 0.27, and the
model of the dairy cow slurries had an R2 of 0.64. For the pig slurries, they obtained the
highest R2 (0.84) for their sample set by only focusing on the 13 integrated farrow-finish
slurries. The R2 for the total pig slurries set, however, was only 0.52. Moral et al. [40]
calculated an R2 of 0.82 based on 36 pig slurries. Up to now, no physicochemical models
for the determination of the potassium concentration in digestates have yet been published.
The ion-selective potassium electrode could probably provide the highest fitted models, as
all models of this study have an R2 > 0.9. The overall model of all LOMs shows that no
restrictions on sample variability are necessary.

5. Conclusions

With the test kit consisting of ion-selective electrodes and an automatic moisture
analyser, it is possible to perform all the necessary measurements to assess the nutrient
concentrations in LOMs on-farm and in a fast and uncomplicated manner. The ion-selective
electrodes provided very well-fitted models for ammonium and potassium determination
independent of the region of origin, LOM type, or husbandry system and are therefore
more universally applicable than the measurement of electrical conductivity. With the
moisture analyser, the measuring time for determining dry matter can be reduced to less
than 15 min. Together with the ammonium electrode, it was possible to calculate well-fitted
models for the total nitrogen concentration. It should be emphasised that the sample type
(i.e., pig, cattle, digestate) does not affect the prediction quality of the model. The goodness
of fit of the phosphorus models based on the dry matter was significantly lower than those
of the other nutrients. In order to determine phosphorus concentrations in LOMs directly
on the farm in the future, better fitted dry matter models need to be created. This will
require determining how to limit variability in the sample set and how this will improve
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model fit. Alternatively, methods for direct measurement of phosphorus concentration
could be developed.
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