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Abstract: There are some problems in the shifting process of hydraulic CVT, such as irregularity, 
low stability and high failure rate. In this paper, the BP neural network and convolutional neural 
network are used for fault diagnosis of the HMCVT hydraulic system. Firstly, through experiments, 
120 groups of pressure and flow data under normal and four typical fault modes were obtained and 
preprocessed; they were divided into 80 groups of training samples and 40 groups of test samples 
via random extraction, using the BP neural network model and convolutional neural network model 
for fault classification. The results show that compared with BP, PSO-BP and other models, the fault 
diagnosis rate of the BAS-BP neural network model can reach 92.5%, and the average diagnosis 
accuracy rate of the convolutional neural network can reach 97.5%, which can be effectively applied 
to the fault diagnosis of the HMCVT hydraulic system and provide some reference for the shifting 
reliability of hydraulic CVT. 
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1. Introduction 
Hydro-mechanical continuously variable transmission (HMCVT) [1–3] is highly au-

tomated, and its shifting process is completely carried out under its transmission control 
unit (TCU) [4,5]. The fault of the position clutch or hydraulic control system will have a 
great impact on its shifting quality [6,7]. Therefore, in order to discover potential faults in 
time and improve the reliability of the shifting operation, the TCU needs to perform real-
time fault monitoring. However, in the current fault diagnosis related to it, most of the 
research directions are mechanical traditional gearboxes, and few are specifically aimed 
at HMCVT. With the wide application of HMCVT, improving the reliability of the shifting 
process will become the direction of rapid development in the future [8,9]. 

The structure of the transmission system of HMCVT is complex, but overall it can be 
divided into mechanical systems and hydraulic systems. Mechanical system faults are 
mainly gear faults, and the current fault diagnosis methods for mechanical systems are 
relatively mature, such as wavelet analysis [10,11], support vector machine [12], hidden 
Markov model [13], etc. Hydraulic system faults include pump motor hydraulic system 
failures and clutch hydraulic system failures, which can be identified by analyzing pres-
sure, flow, power and other data. Wang Guangming et al. studied gearbox speed ratio 
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control and proposed a hydraulic system fault diagnosis method based on the Fisher cri-
terion kernel method for its clutch [14]; Grover Zurita et al. proposed a multi-channel deep 
support vector classification method for gearbox fault diagnosis [15]; Lin Ruilin et al. pro-
posed the application of a robust residual support vector machine in fault diagnosis and 
realized the leakage fault diagnosis of the electro-hydraulic servo system [16] and Han 
Zhengze studied the fault diagnosis method of the rack rail hydraulic system, and con-
structed the fault diagnosis rules of the pilot system based on the fault tree method [17]. 

From the aspect of BP neural network optimization, particle swarm optimization 
(PSO), as a random search algorithm based on population, has been applied to BP neural 
network optimization because of its high accuracy and fast convergence. Zou Lan and 
others used the PSO algorithm to optimize the SOMBP neural network prediction model, 
and the recognition rate of the optimized model increased from 90% to 95% [18]. However, 
although the model recognition rate of the PSO algorithm’s optimization has been greatly 
improved [19], the PSO algorithm also has some defects such as slow network conver-
gence speed and it being easy to fall into the local optimum with the increase in iteration 
times, which means it is difficult to meet the use requirements. Therefore, PSO still has a 
lot of room for improvement [20,21]. 

In recent years, many scholars have conducted a series of studies on the intelligent 
diagnosis method of hydraulic system faults. Additionally, the BP neural network [22–24] 
and convolutional neural network [25,26] are popular among them. In order to make up 
for the shortcomings of previous research, the BP neural network optimization model and 
the convolutional neural network model are applied to the fault diagnosis of the HMCVT 
shift hydraulic system in this paper, and the classification results are compared. 

2. Construction of HMCVT Shift Hydraulic System Test Platform 
The structure of the test platform of the HMCVT shift hydraulic system is shown in 

Figure 1. In the hydraulic oil circuit system, the external motor, 1, drives the oil pump, 2, 
to supply oil to the system, and the overflow valve, 4, adjusts the pressure of the oil circuit 
into the clutch; the five electromagnetic directional valves, 8, are all installed on the inte-
grated valve plate, 9, to control the pressure oil of the wet clutch to be turned on or off to 
realize the shifting operation; the oil flow of the clutch is controlled and regulated by the 
flow speed regulating valve, 7; at the same time, in order to detect the oil pressure fluctu-
ations that occur during the engagement and disengagement of each clutch, a pressure 
sensor, 6, is installed in each clutch oil circuit; the flow sensor, 5, installed in the main oil 
passage is used to detect changes in hydraulic oil. Table 1 shows the relevant parameters 
of the main components in the clutch oil circuit control system. The HMCVT overall bench 
test system is shown in Figure 2. To increase the objectivity and comparability of the data 
calculation, when calculating statistics, the starting point is the first sampling point after 
the controller sends the segment change command, and the end point is the sampling 
point with a time of 1 s from the start point. That is, the length of the data set is measured 
in time and the scale is 1 s. 

Table 1. Main components of the test bench for the shift hydraulic system. 

Number Part Name Model Main Performance Parameters 
1 Asynchronous motor JO2-22-4 Rated speed: 1450 r/min 
2 Vane pump YB1-6.3 Displacement: 6.3 mL/r 
3 Relief valve 2FRM5/10QB Adjustment range: 0~10 L/min 

4 Pressure sensor NS-F 
Measuring range: 0~10 MPa 

Output signal: 0~5 V 

5 Flow sensors 
LWGB-4 Tur-
bine flow sen-

sor 

Measuring range: 0~0.4 m3/h 

Output signal: 4~20 mA 



Agriculture 2023, 13, 461 3 of 18 
 

 

 
Figure 1. HMCVT shift hydraulic control system. 1. Motor. 2. Oil pump. 3. Check valve. 4. Relief 
valve. 5. Flow sensors. 6. Pressure sensor. 7. Control valve. 8. Electromagnetic valve. 9. Integrated 
valve plate. 

 
Figure 2. HMCVT overall test bench. 1. Diesel engines. 2. Front speed torque meter. 3. Transmission. 
4. Hydraulic fixed motor. 5. Hydraulic variable pump. 6. Rear speed torque meter. 7. Loader. 8. 
Measurement and control platform. 9. Shift hydraulic control system. 

3. Obtaining Test of Fault Sample of HMCVT Shift Hydraulic System 
3.1. Typical Failure Type 

According to the operation record of the HMCVT test platform, the fault of the shift 
hydraulic system of the HMCVT can be defined as five types of modes to be identified, 
namely: 

(1) Normal mode (Fault Type 1): all of the parameters of the shift hydraulic system 
are in the normal working range, and there is no abnormality in the shifting process. 

(2) The clutch piston is stuck (Fault Type 2): The clutch will always be in a different 
degree of slipping state. The lighter can change the segment but cannot load (the slip will 
stall as soon as it is loaded), and the heavy will directly burn the clutch. 

(3) The seal ring at the rotary joint is damaged (Fault Type 3): Local internal leakage 
occurs in the oil passage, but this leakage occurs inside the oil passage. When the oil pas-
sage is filled for the first time, the oil pressure is difficult to establish. As the oil channel is 
filled with hydraulic oil, its influence on the establishment of the shift section hydraulic 
pressure is no longer significant, and this fault has an impact on the shift section quality 
of the transmission. 

(4) The outlet oil passage of the governor valve is blocked (Fault Type 4): The oil 
filling flow of the clutch is reduced, and the sliding time between the main and driven 
friction plates is extended. This not only deteriorates the quality of the shift, but also 
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increases the risk of power interruption and clutch burnout. This fault mode has a gradual 
characteristic and is not easy to detect. 

(5) Leakage of the branch of the oil pipeline (Fault Type 5): the fault generally occurs 
at the place of the pipe joint of the branch oil pipeline, and a partial external leakage occurs 
in the oil pipeline. 

The oil pressure may be established normally, but the steady-state pressure of the 
clutch branch oil circuit is reduced, and it will cause air to mix in, causing cavitation and 
vibration of the hydraulic oil during the circulation process. This situation also reduces 
the shift section quality of the transmission. 

Changes in the parameters of the hydraulic system can have a greater impact on the 
quality of the change section. Therefore, if the fault is not diagnosed in time, when this 
change reaches a certain level, it will inevitably have a significant impact on the shift sec-
tion quality, thereby affecting driving comfort and threatening driving safety. 

3.2. Fault Simulation and Data Obtained 
Before the test operation, the standard of the experimental parameters needs to be 

determined first. After a number of optimization experiments on the shift section of the 
continuously variable transmission, it was found that when the oil pressure is 4 MPa and 
the flow rate is 5 L/min, the overall performance of the shift section is the best. Therefore, 
all of the following experiments were conducted under this parameter index. 

Among the aforementioned fault modes, the T1 mode does not require special pro-
cessing, and can directly collect oil pressure and flow data; the T2 mode can be simulated 
when the clutch is in the state of oil drain disconnection, by filling the joint gap between 
the clutch’s main and driven shafts with sandpaper. At this time, the clutch piston was 
completely unable to extend and was forced to be stuck in place; the T3 mode can be sim-
ulated by installing seal rings with different degrees of wear on the rotary joint; T4 can be 
used to conduct simulation tests while reducing the opening of the governor valve. Addi-
tionally, because the characteristic component of the T4 mode is the gradual fault, the flow 
level can be controlled within the range of 0~4 L/min, while ensuring the interval of 1 
L/min for the test. The T5 mode can be simulated by unscrewing the branch pipe joint. 

The data to be measured in the test are the flow data of the clutch main oil circuit and 
the pressure data of the clutch branch oil circuit. Due to the strict proportional relationship 
between the observed value and the actual value of the original data, the original data can 
be directly identified without conversion. The data recording cycle of the data and pro-
grams obtained through the high-speed data acquisition system is 16 ms. The test was 
conducted 120 times in total, 24 times for each fault simulation test. In addition, we con-
sidered that the original data points of the flow and pressure of the hydraulic system were 
huge in the shifting process, so its characteristic attributes were calculated based on the 
following six statistics: 

𝑋௙ = ඩ
1

𝑁௙

෍ 𝑥௙௜
ଶ

ே

௜ୀଵ

 (1)

𝐶௙ =
௠௔௫൫ห௫೑೔ห൯

௑
  (2)

𝐾௙ =
∑ ௫೑೔

రಿ
೔సభ

ே೑௑ర   (3)

𝐼௙ =
௠௔௫൫ห௫೑೔ห൯
భ

ಿ೑
∑ ห௫೑೔หಿ

೔సభ

  (4)

𝑆௙ =
௑

భ
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𝑋௣ = ඩ
1

𝑁௣

෍ 𝑥௣௜
ଶ

ே

௜ୀଵ

 (6)

In the formula, Xf, Cf, Kf, If and Sf are flow statistics, respectively, representing the root 
mean square value of flow, peak factor, kurtosis factor, pulse factor and form factor during 
the transition period; Xp is the pressure statistic, which represents the root mean square 
pressure of the pressure during the transition; xfi and xpi represent the data of the i-th sam-
pling point of flow and pressure, respectively, and Nf and Np represent the total number 
of data sampling points of flow and pressure, respectively. After the attribute calculation, 
a sample set of 120 fault data characteristic attributes was obtained. Randomly, we set 80 
of them as training samples and 40 of them as test samples. 

4. BP Method for FAULT diagnosis of HMCVT Shift Hydraulic System 
4.1. Fault Diagnosis of Shift Hydraulic System Based on BP Neural Network 

The BP neural network is mainly composed of an input layer. The output layer and 
hidden layer are composed of three parts, in which the number of input layers is deter-
mined by the eigenvalue of fault data and the number of output layers is determined by 
the fault diagnosis result. In the data collection, this paper collects the flow and pressure 
fault signals of the HMCVT hydraulic system as characteristic values, and takes the cor-
responding working state as output characteristics. The structure of the neural network is 
constructed according to the actual training results. Therefore, the number of neurons in 
the input layer of the neural network is set to six, the number of neurons in the output 
layer is one and the number of hidden layer neurons is as follows. 

𝑁 = 2𝑛 + 1  (7)

𝑁 = √𝑛 + 𝑚 + 𝛼  (8)

𝑁 = 𝑙𝑜𝑔ଶ 𝑛  (9)

In the formula, N—the number of neurons in the hidden layer; n—the number of 
neurons in the input layer; m—the number of neurons in the output layer; α—the constant 
from 1 to 10. After many neural network trainings, the number of neurons in the hidden 
layer of this paper was selected as 10. Its network structure is shown in Figure 3. 
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Figure 3. The topology of the three-layer neural network. 

The BP neural network established in this paper comprises the following: one input 
layer, one hidden layer and one output layer. The BP neural network established in this 
paper comprises the following: one input layer, one hidden layer and one output layer, in 
which the number of neurons in the input layer is six, the number of neurons in the hidden 
layer is ten and the number of neurons in the output layer is one. The transfer function of 
the hidden layer uses the tansig function, and the output layer uses the purelin function. 
We inputted 40 groups of test samples into the unoptimized BP neural network model, 
and the resulting diagnosis results of the test samples are shown in Figure 4. 
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Figure 4. The effect of fault diagnosis of the unoptimized BP neural network test sample. 
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It can be seen from Figure 4 that the unoptimized BP neural network model has a 
good recognition ability for the normal mode (Fault Type 1), the clutch piston being stuck 
(Fault Type 2) and branch oil pipeline joint leakage (Fault Type 5). 

4.2. Fault Diagnosis of Shift Hydraulic System Based on PSO-BP Neural Network 
Number of population particles and population particle number: The determination 

of particle number mainly depends on the complexity of fault type. If the total number of 
particles is small, it is not conducive to the overall optimization, and if the total number 
of particles is large, it will increase the calculation of the population. According to relevant 
data, generally, when the number of particles is maintained in the range of 20–40, the 
optimization result will be relatively good. If the problem is very complicated, the number 
of particles can be increased to more than 100 [27]. Aiming at the problem of fault diag-
nosis of the shift hydraulic system, this paper sets the number of population particles to 
20. 

The dimension of the particle: The value of the problem can be determined by the 
dimension of the problem. According to the fault diagnosis and data characteristics of the 
hydraulic system, the selected dimension is 81 in this paper. 

The range of the particles: From the characteristics of the optimized problem, differ-
ent change intervals for each dimension can be determined. According to the characteris-
tics of the flow and pressure data of the shift hydraulic system, the range selected in this 
paper is (−5, 5). 

Maximum speed 𝑉௠௔௫: In general, the range of particles will be represented by 𝑉௠௔௫, 
which is an important basis for determining the maximum distance that particles can 
move in each iteration. According to the characteristics of the flow and pressure data of 
the shift hydraulic system, the range is selected as (−1, 1). 

Learning factor c: generally, the learning factors c1 and c2 take the value of two. 
Forty groups of test samples were inputted into the BP neural network optimized by 

particle swarm, and the resulting diagnosis results of the test samples are shown in Figure 
5. The BP neural network optimized by the particle swarm has a strong ability to recognize 
the five fault modes of the shift hydraulic system. It mainly has deviations in the identifi-
cation process of seal ring damage (Fault Type 3) and oil passage blockage fault (Fault 
Type 4), but it has a more obvious improvement in fault recognition compared to the un-
optimized BP neural network model. 
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Figure 5. The effect of fault diagnosis of the PSO-BP neural network test sample. 

4.3. Fault Diagnosis of Shift Hydraulic System Based on BAS-BP Neural Network Model 
Beetle antennae search (BAS) is more effective than particle swarm optimization. Be-

cause the beetle antenna search can accurately find the expected target without specific 
function form and gradient information, it is applied to various optimization models to 
improve the efficiency of fault diagnosis [28]. 

Combining the beetle antennae search algorithm with the neural network, the global 
search capability of the beetle antennae search algorithm was used to optimize the initial 
weights and thresholds of the neural network. Moreover, compared with the particle 
swarm algorithm, the beetle antennae search algorithm is much simpler, because it only 
requires one beetle, which greatly reduces the amount of calculation. Its specific process 
roadmap is shown in Figure 6. 

The beetle antennae search algorithm only has two parameters that need to be set, 
namely, the distance, d0, between the two whiskers and the ratio constant, c, between the 
step size and the distance of the two whiskers. In this paper, d0 = 1 and c = 5. 

When applying the BP neural network model optimized by the beetle antennae 
search algorithm to the fault diagnosis of the shift hydraulic system, the fitness curve of 
samples is shown in Figure 7. 
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Figure 6. BAS-BP neural network algorithm flowchart. 
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Figure 7. Fitness curve of BAS-BP neural network. 
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It can be seen from Figure 7 that when using the beetle antennae search algorithm to 
optimize the BP neural network, the optimization speed of its fitness value is slow, which 
is mainly caused by its lesser parameters and lesser calculation amount. Although the 
optimization speed of the beetle antennae search algorithm must be slow, its optimization 
calculation process is faster. 

Forty groups of test samples were inputted into the BP neural network optimized by 
the beetle antennae search algorithm, and the resulting diagnosis results of the test sam-
ples are shown in Figure 8. 
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Figure 8. The effect of fault diagnosis of the BAS-BP neural network test sample. 

It can be seen from Figure 8 that the BP neural network model optimized by the beetle 
antennae search algorithm must have the strongest ability to recognize the five fault 
modes of the shift hydraulic system. Compared with the unoptimized BP neural network 
model and the particle-swarm-optimized BP neural network model, the fault recognition 
accuracy rate of the oil channel blockage fault (Fault Type 4) can reach 100%. However, it 
has a large deviation in the process of identifying the seal ring fault (Fault Type 3). Its 
recognition accuracy rate for pipeline joint leakage (Fault Type 5) is no higher than that of 
the unoptimized BP neural network model and the particle-swarm-optimized BP neural 
network model. 

From the above analysis, it can be seen that the optimized BP neural network model 
is better than the unoptimized BP neural network model for fault recognition. Addition-
ally, the BAS-BP neural network model has the strongest ability to identify the fault of the 
oil channel blockage fault T4, which is conducive to further analysis to determine and 
eliminate the fault. 

The comparison of the fault diagnoses of the test samples of the three neural network 
models is shown in Figure 9 and the test sample fault diagnosis correct rate of the three 
neural network models is shown in Table 2. 
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Figure 9. Contrast diagram of fault diagnoses for BP, PSO-BP and BAS-BP. 

Table 2. The accuracy of test samples fault diagnosis 

Models
Modes 

T1 T2 T3 T4 T5 Correct Rate 

BP 100% 100% 87.5% 50% 100% 87.5% 
PSO-BP 100% 100% 87.5% 75% 100% 92.5% 
BAS-BP 100% 100% 75% 100% 87.5% 92.5% 

5. CNN Method for Fault Diagnosis of HMCVT Shift Hydraulic System 
5.1. Convolutional Neural Network Overview 

The convolutional neural network (CNN) is a hierarchical neural network. Its ad-
vantage is that the network model is simple, and the image can be directly used as the 
input of the network, which reduces the workload. These characteristics make the convo-
lutional neural network have obvious advantages in identifying two-dimensional 
graphics [29]. 

5.1.1. Convolutional Layer 
The convolution layer uses the convolution kernel to convolute the input image. Ad-

ditionally, the activation function is used to extract the texture features of the image to 
enhance the features. The convolution operation can be expressed as: 

𝑥௝
௟ = 𝑓 ቌ ෍ 𝑥௜

௟ିଵ ∗ 𝑘௜௝
௟ + 𝑏௝

௜∈ெೕ

ቍ (10)

where 𝑙 represents the current layer number, 𝑘௜௝ is the weight matrix of the convolution 
kernel and 𝑀௝ represents the set of input feature maps; 𝑏௝ is an offset term corresponding 
to each feature in the convolution layer. 
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5.1.2. Pooling Layer 
The pooling layer is also called a sub-sampling layer. It is usually located after the 

convolution layer. Using the sub-sampling function can reduce redundant features, fur-
ther avoid overfitting and reduce network parameters. The mathematical model can be 
described as: 

𝑥௝
௟ =  𝑓(𝛽௝

௟  𝑑𝑜𝑤𝑛(𝑥௝
௟ − 1 + 𝑏௝

௟))  (11)

where down(.) represents the sub-sampling function. Generally, this function sums each 
different 𝑛𝑥𝑛 block in the input image, so that the output image is 𝑛 times smaller in 
both spatial dimensions. Each output map has its own multiplication bias 𝛽 and addition 
bias 𝑏. 

5.1.3. Fully Connected Layer 
The fully connected layer is located at the end of the convolutional neural network 

and it is used to calculate the output of the entire network. After the downsampling is 
completed, many corresponding feature maps can be obtained. At this time, all of its pix-
els must be arranged in columns to form a feature vector, and then all of them are con-
nected to the output layer to serve as a fully connected layer. Additionally, Softmax was 
used as the classifier. 

5.1.4. Convolutional Neural Network Structure 
Convolutional neural networks can determine the basic parameters of the corre-

sponding structure of the network by analyzing specific problems. Figure 10 shows the 
structure of a basic convolutional neural network. Its overall architecture is similar to the 
convolutional neural network model corresponding to the CNN code in Deep Learning 
Toolbox. 

 
Figure 10. Convolution neural network structure. 

It can be clearly seen from Figure 10 that the number of input layers, output layers 
and feature vector layers is one, and the number of convolutional layers and downsam-
pling layers is two. They connect and cooperate with each other to construct a complete 
network. In this process, when a pixel value of 𝑝 × 𝑝 is used as an input layer signal, 𝑚 



Agriculture 2023, 13, 461 13 of 18 
 

 

convolution kernels of type 𝑘ଵ × 𝑘ଵ start to perform the corresponding convolution op-
eration with a step size of one. Additionally, through the activation function 𝑚 (𝑝 − 𝑘ଵ +

1)  ×  (𝑝 − 𝑘ଵ + 1), feature maps are obtained to form the convolution layer 𝐶1. Then, it 
completes the entire pooling process through the pooling area of model size 𝑐 × 𝑐, so as 
to obtain the sampling layer 𝑆2. At this time, there are still 𝑚 feature maps, and the side 
length becomes (𝑝 − 𝑘ଵ + 1)/𝑐. Next, the 𝑆2 layer and the 𝑛 convolution kernels of all 
models of 𝑘ଵ × 𝑘ଵ each start to perform the corresponding convolution operation, and 
then use the activation function to obtain the convolution layer 𝐶3. After completing the 
pooling process again, the sampling layer 𝑆4 can be obtained. Then, arrange all of its 𝑛 
feature maps in columns to obtain the feature vector layer 𝑉5 that was originally re-
quired. 𝑉5 is fully connected to the output layer to obtain the output. 

5.2. Attribute Reduction Based on Rough Set 
The aforementioned six sets of sample attributes Xf, Cf, Kf, If, Sf and Xp have different 

abilities to distinguish the fault mode. In order to reduce unnecessary attribute calcula-
tion, on the premise of ensuring the correct rate of fault diagnosis, the attributes that con-
tribute less to fault diagnosis can be deleted. This paper is based on the rough set theory 

[30–32] for attribute reduction. 
For a fixed decision system 𝑆 = (𝑈, 𝐶 ∪ 𝐷, 𝑉, 𝑓), once there is 𝐵ଵ ⊆ 𝐵ଶ ⊆ 𝐶, then there 

is ห𝑃𝑜𝑠஻భ
(𝐷)ห ≤ ห𝑃𝑜𝑠஻మ

(𝐷)ห ≤ |𝑃𝑜𝑠஼(𝐷)|, while ห𝛾஻భ
(𝐷)ห ≤ ห𝛾஻మ

(𝐷)ห ≤ |𝛾஼(𝐷)|, that is, the 
dependence formula intuitively shows that the dependence degree and the attribute set 
have an inverse proportional relationship. Additionally, the calculation method based on 
attribute dependency is as follows [33,34]: 

(1) Calculation method in the case of deleting attributes: for a fixed decision system 
𝐷𝑆 = (𝑈, 𝐶 ∪ 𝐷, 𝑉, 𝑓), ∀𝐵 ⊆ 𝐶; once the attribute 𝑎 ∈ 𝐵, then the calculation method of the 
importance of the conditional attribute 𝑎 for the decision attribute 𝐷 is as follows: 

𝑆𝑖𝑔(𝑎, 𝐵, 𝐷) = 𝛾஻(𝐷) − 𝛾஻ି{௔}(𝐷)  (12)

According to the formula, it can be seen that when the attribute is removed from the 
condition attribute set, the weakened dependence of the decision attribute on the condi-
tion attribute can be used as the basis for the meaning of the attribute to the decision at-
tribute. 

(2) Calculation method in the case of adding attributes: for a fixed decision system 
𝐷𝑆, once the attribute 𝑎 ∈ 𝐶, but 𝑎 ∉ 𝐵, the expression of the importance of the condi-
tional attribute 𝑎 relative to the conditional attribute set 𝐵 for the decision attribute 𝐷 
is as follows: 

𝑆𝑖𝑔(𝑎, 𝐵, 𝐷) = 𝛾஻∪{௔}(𝐷) − 𝛾஻(𝐷)  (13)

In the same way, when the attributes in the conditional attribute set are greatly 
added, the size of the increased dependence of the decision attribute on the condition at-
tribute can be used as the basis for the meaning of the attribute to the decision attribute. 

In this paper, the attribute reduction in the neighborhood rough set was applied to 
the fault diagnosis of the shift hydraulic system, and the attribute reduction in the training 
sample set collected by the experiment was performed. 

After calculation, the attribute importance values of the characteristic attributes are 
shown in Table 3. Obviously, after attribute reduction, mode T1 retains one characteristic 
attribute of Xp; mode T2 retains two characteristic attributes of Xf and Xp; mode T3 retains 
two feature attributes of Xf and Xp; mode T4 retains three feature attributes of Xf, Sf and Xp 
and mode T5 retains two feature attributes of Sf and Xp. 
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Table 3. Calculated results of attributes’ importance values. 

Modes Xf Cf Kf If Sf Xp 
T1 0 0 0 0 0 1 
T2 0.0278 0 0 0 0 0.9722 
T3 0.2222 0 0 0 0 0.7778 
T4 0.0217 0 0 0 0.3478 0.6304 
T5 0 0 0 0 0.4324 0.5676 

As can be seen from Table 3, among the six characteristic attributes of the five failure 
modes, after the attribute reduction, the attribute importance of the root mean square 
value of the pressure Xp exceeds 50%, which are common and indispensable characteristic 
attributes in the fault modes. That is to say, compared with the flow data, the pressure 
data has the greatest influence on the recognition of the fault mode of the shift hydraulic 
system. Therefore, on the premise of ensuring a high accuracy of fault diagnosis, it can be 
considered to use only the original pressure data of the shift hydraulic system as the input 
to train the convolutional neural network model, and then to obtain a fault diagnosis 
model with an ideal effect. 

5.3. Fault Diagnosis Results Based on CNN and Neighborhood Rough Set 
Convolutional neural network training generally requires a large number of data 

sets, and the input datum is a two-dimensional image, so this paper uses the translation 
transformation method to amplify the data of 1000 original pressure data in each of the 
five modes obtained by the experiment. That is to say, in each mode, 400 data are contin-
uously taken as a group for each of the 1000 data at intervals of five to generate a 20 × 20 
size two-dimensional grayscale image in PNG format. After translation transformation, 
120 grayscale images were generated in each fault mode, 80 groups were set as training 
samples and 40 groups were set as test samples using a random method. The two-dimen-
sional grayscale image under the five fault modes is shown in Figure 11. 

 

(a) (b) (c) 

 
(d) (e) 
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Figure 11. Two-dimensional gray image under five types of fault modes. (a) Normal mode T1, (b) 
spring fault T2, (c) seal ring fault T3, (d) blockage of oil passage T4 and (e) cavitation seal T5. 

This paper used an eight-layer neural network, an input layer, three convolutional 
layers, two pooling layers, a fully connected layer and an output layer to establish a con-
volutional neural network model. We used Softmax as the classifier to obtain the classifi-
cation results and fault diagnosis accuracy. The specific flowchart is shown in Figure 12. 

 
Figure 12. Flowchart of fault diagnosis for shift hydraulic system. 

In Figure 12, the fault signal is the oil pressure signal during the shifting process col-
lected by the clutch branch oil pressure sensor. We transformed the oil pressure signal 
data to generate a two-dimensional gray image and adjusted the two-dimensional image 
using a size of 20 × 20 as the input training sample. After training the established convo-
lutional neural network model, we inputted the test samples to obtain the sample classi-
fication and its fault recognition rate via the Softmax classifier. The diagnosis results are 
shown in Figure 13. 
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Figure 13. Fault diagnosis effect diagram of shift hydraulic system. 

It can be seen from Figure 13, compared with the shallow optimized BP neural net-
work model, that the hydraulic system fault diagnosis model based on the convolutional 
neural network can make the average diagnosis accuracy rate of each failure mode reach 
97.5% with few iterations. This not only shows that it is feasible to use the pressure data 
of the hydraulic system as the only input parameter to identify the fault mode of the 
HMCVT shift hydraulic system, but also it is proved that the convolutional neural net-
work as a deep learning algorithm is significantly better than the shallow optimized BP 
neural algorithm in the application effect of fault diagnosis of the shift hydraulic system. 

6. Conclusions 
Aiming at the problems existing in the BP neural network and convolutional neural 

network, the BP neural network optimization model and convolutional neural network 
model were established, respectively. They were applied to the fault diagnosis of the shift-
ing hydraulic system of hydraulic continuously variable transmission. The results show 
the following: 

(1) Various types of faults have greater separability after nonlinear transformation by 
the BP network, the overall similarity is low and the model fault classification effect is 
good. 

(2) The optimized BP neural network model is better than the unoptimized BP neural 
network model for fault recognition. Its average diagnostic accuracy rate reached 92.5%. 

(3) The BAS-BP neural network model has the strongest ability to identify the fault 
of the oil channel blockage fault T4, which is conducive to further analysis to determine 
and eliminate the fault. 

(4) The experiment shows that the pressure data has the greatest influence on the 
recognition of the fault mode of the shift hydraulic system. It is feasible to use the pressure 
data of the hydraulic system as the only input parameter to identify the fault mode of the 
HMCVT shift hydraulic system. 

(5) The convolutional neural network under the same test conditions is significantly 
better than the shallow optimized BP neural network in the application of the fault diag-
nosis of the shift hydraulic system, and its fault diagnosis accuracy can reach 97.5%. 
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For the follow-up research, there is still room for further improvement. In the opti-
mization of the BP network, a better algorithm model can be proposed. In the selection of 
data sets, more complex and fault data can be collected, and the comprehensive verifica-
tion can be carried out through the simulation and experimental data sets to improve the 
reliability of the algorithm. In the data feature extraction, more optimized feature extrac-
tion can be carried out to improve the accuracy of fault diagnosis. 
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