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Abstract: The residual value of a tractor affects the cost of ownership. As there is not much transac-
tional information available for used tractors, nor is there a history of new tractor prices, existing
studies struggle to forecast the residual value of agricultural tractors. This is made even more chal-
lenging by the emission-regulation-related tractor price increase, low inflation in recent decades, and
the complexity of the portfolio offerings from manufacturers. Using the new equivalent tractors,
grouped by families of similar characteristics, bypasses these challenges and enables us to obtain
larger data sets. These large data sets can be forecasted using transparent linear power regressions
that offer the lowest root mean squared error (RMSE = 1.5574) and the highest combined, adjusted
coefficient of determination (RSqAdj = 0.8457), outperforming all previously tested studies as well
as the ensemble, Gaussian process regression, kernel, linear regression, neural network, support
vector machine, and decision tree models. The accessibility of the public information required, as
well as its processing using mainstream software through a model that is simple to use, yet robust,
enables any stakeholder (manufacturers, sellers, financers, insurers, and, most of all, users) to reli-
ably determine the residual value of an agricultural tractor, empowering them to make fact-based,
cost-of-ownership-optimized decisions.

Keywords: agricultural tractors; previously owned; secondhand; residual value; depreciation; cost of
ownership; cost of operation

1. Introduction

The operating and ownership costs of machines often comprise more than half of the
total crop production costs. Minimizing the machinery portion of the production costs
requires a routine assessment of the benefits and costs associated with owning, leasing, or
renting machinery [1].

Most farm equipment is still acquired under a conventional purchase plan. The capital
may come from the purchaser’s own funds, a third-party lender, or a company financing
plan. However, an increasing number of major machinery items are being leased, via
operating lease (in which the user can tax-deduct the payments as the machine belongs to
the financer), via finance lease (in which the user owns the machine and is therefore entitled
to take depreciation deductions) or by using a rollover purchase (in which the operator
purchases a new or nearly new piece of equipment from a dealer with the expectation that
it will be exchanged for another model after one year or season) [2].

Whether a tractor was paid for upfront, used equipment was traded as a payment
in kind, or the machinery was traditionally financed, leased, or rented, the residual value
has a tremendous impact on the finance cost, as the financer will ensure that the loan’s
lien is below the residual value [3]. If the residual value is uncertain, the financer will
include a haircut [4] as a safety factor that renders the finance scheme more expensive to
the purchaser.
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1.1. Previous Studies

Out of all agricultural machinery, the tractor is a key element in farm/ranch mecha-
nization as most agricultural tasks rely on it, due to its capacity to pull (and push) and take
off power (mechanical, hydraulic, and/or electrical) [5]. Therefore, the investment a tractor
represents one of the most important investments in both number and value.

Peacock and Brake [6] demonstrated that standard accounting techniques do not
adequately reflect the economic deprecation of farm machines. European tax depreci-
ation methods vary tremendously between countries [7], and do not reflect economic
depreciation.

Therefore, the importance of a deep understanding of the depreciation rates of agricul-
tural tractors is paramount. Ample research has been conducted on the matter, including the
following studies: in the U.S.A., Bradford [8], Musser, Tew, and White [9], Reid and Perry,
Bayaner, and Nixon [8], Weersink and Staube [10], Cross and Perry [11,12], Unterschultz
and Mumey [13], Dumler, Burton, and Kastens [14,15], Wu and Perry [16], ASABE [17],
and Kay, Edwards, and Duffy [18]; in the UK, Williams [19], Cunningham, and Turner, [20],
Wilson and Davis [21], Wilson and Tolley [22], and Wilson [23]; in Canada, McNeill [24],
Hansen and Lee [25], Witte, Back, Sponagel, and Bahrs [26]; and in Spain, Fenollosa Ribera
and Guadalajara Olmeda [27] and Ruiz-Garcia and Sanchez-Guerrero [28].

The depreciation studies defy the challenge by executing regression analyses, which
accurately describe the problem as a function of multiple, independent variables. However,
different approaches were undertaken by the authors. For example, Wu and Perry [16],
ASABE [17], and Kay, Edwards, and Duffy [18] concurred that the independent variables
of age, working hours, and engine power have a significant influence on the depreciation;
Unterschultz and Mumey [13], Wilson and Tolley [22], Fenollosa Ribera and Guadalajara
Olmeda [27], Wilson [23], and Witte, Back, Sponagel, and Bahrs [26] used data that included
the tractor manufacturer; and Cross and Perry [11,12] included the care and condition of
the tractor as well as additional features or regional influences.

The number of European used tractor sales [29] is small compared to the European
passenger car industry [29]. Furthermore, the number of models and, even more so, the
substantial number of options, make the statistical sample even more atomized. The diffi-
culty is in accessing a large dataset, which is typically required for empirical studies [23]. In
order to address this challenge, some studies, such as Cross and Perry [11,12], Unterschultz
and Mumey [13], Dumler, Burton, and Kastens [14,15], Wu and Perry [16], ASABE [17];
Kay, Edwards, and Duffy [18], and Witte, Back, Sponagel, and Bahrs [28], were based on
auction prices; others, such as Fenollosa Ribera and Guadalajara Olmeda [27], were based
on transactional prices; and still others, such as Wilson and Tolley [22], Wilson [23], and
Ruiz-Garcia and Sanchez-Guerrero [28], used advertised prices (Table 1).

Table 1. Details of previous studies.

Reference Data Source Data Size Variables Function

Peacock, D. L., and Brake,
J. R. (1970). U.S.A. Sales - Age Linear

ASAE (1979). U.S.A. - Age Exponential

McNeill, R. C. (1979). Canada 32 Age and state Exponential

Leatham, D. J., and Baker,
T. G. (1981). U.S.A. 1454 tractors Age, power, motor type, traction, and

manufacturer Exponential

Reid, D. W., and Bradford,
G. L. (1983). U.S.A. 411

Age, power, motor type, manufacturer,
increasing usage, and
technological changes

Exponential

Perry, G. M., Bayaner, A.,
and Nixon, C. J. (1986). U.S.A. 1612 Age, power, manufacturer, usage, care,

and macroeconomic variables Box–Cox

Hansen, L., and Lee, H.
(1991). Canada - Age, year of manufacture, and

purchase year Linear
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Table 1. Cont.

Reference Data Source Data Size Variables Function

Cross, T. L., and Perry, G.
M. (1995). U.S.A. Auctions -

Age, usage, manufacturer, care, type of
auction, region, and

macroeconomic variables
Box–Cox

Unterschultz, J., and
Mumey, G. (1996).

U.S.A. and Canadian
Auctions 3202 Tractors Age, manufacturer Ratified by Hansen

and Lee model

Cross, T. L., and Perry, G.
M. (1996). U.S.A. Auctions

433 <60 kW
1946 60–112 kW

866 >112 kW

Age, usage, manufacturer, care, and
macroeconomic variables Box–Cox

Wu, J., and
Perry, G. M. (2004). U.S.A. Auctions

657 30–79 hp
1420 80–120 hp

781 121+ hp

Age, production year, manufacturer,
and other Box–Cox

Fenollosa Ribera, M. L.,
and Guadalajara Olmeda,

N. (2007).
E.S. Sales

7876 13–79 hp
3963 80–133 hp
731 134–263 hp
Dec’99-Dec’02

Age, power, brand, and others Ordinary Least
Squares (OLS)

Wilson, P., and
Tolley, C. (2004). U.K. Adverts 968 Age, hours, power, brand, and others Ordinary Least

Squares (OLS)

Wilson, P. (2010). U.K. Adverts 1223 Age, hours, power, brand, and others
Ordinary Least
Squares (OLS)

Box–Cox

ASABE. (2011 (R2020)). U.S.A. - Age, usage, and power Box–Cox

Kay, R. D., Edwards, W.
M., and Duffy, P. A. (2020). U.S.A. Auctions. - Based on ASABE standards, 2006 Box–Cox

Witte, F., Back, H.,
Sponagel, C., and
Bahrs, E. (2022)

German Adverts and
Auctions 2667 tractors Age, hours, power, and brand Exponential

Ruiz-Garcia, L., and
Sanchez-Guerrero, P. (2022). EUR Adverts 227 new

1003 used Age, hours, power, and brand Robust linear
(polynomic)

1.2. Current Issues

The portfolio offered by manufacturers has grown complex, to the point of offering,
with the same engine power, several wheelbases, multiple transmission options and user
interfaces, and different shipping and maximum permissible weights with. the same power.
These factors have a tremendous impact on selling price (Table 2).

Table 2. Manufacturer’s suggested retail price (MSRP) for 107 kW from one brand relative to the
most economical offering.

Model
Identifier B|Hb|006 * B|Gb|005 * B|Ga|005 * B|Eb|001 * B|Ea|001 *

Rated Power 107 kW
Wheelbase 2525 mm 2564 mm 2820 mm

Shipping Mass 5300 kg 6940 kg 7470 kg
Max Mass 9000 kg 10,250 kg 10,250 kg

Transmission
Partial

Powershift
Transmission

Partial
Powershift

Transmission

Continuous
Variable

Transmission

Partial
Powershift

Transmission
Continuous

Variable
Transmission

MSRP relative to the most economical offering

Classic
Interface 1.00

Advanced
Interface 1.05 1.13 1.11

Premium
Interface 1.14 1.17 1.28 1.16 1.34

Ultimate
Interface 1.22 1.33 1.21 1.39

* Brand, family, and model are anonymized to avoid any bias.
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As these features result in different productivity, efficiency, maintenance, and repair
requirements they enjoy (or suffer) different demands from the market. Consequently, they
have different residual values, despite sharing the same engine power. Thereof, a study
considering only the engine power might have challenges discerning the residual value
between such different tractors sharing the same power.

The European Commission (EC) off-road diesel engine emission regulations [30–33]
have had a tremendous impact on the lifespan of tractor series (Figure 1).
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Figure 1. European off-road diesel engine emission regulations implementation by engine power.

The on-road diesel emission regulations have had an impact on the cost [34,35]. Despite
the fact that the last European emission regulation has been already implemented, it is quite
likely that new emission regulations will be implemented with their associated costs [36].
The off-road diesel engine emission regulations cost is even higher, as the fixed costs must
be distributed amongst a much smaller number of engines (Figure 2).
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1.3. Goal

The goal of this research is to develop a residual value calculation methodology that is
accessible to all stakeholders (owners, users, marketeers, financiers, and insurers) and that
finds a balance between simplicity of use and accurate results. This methodology will be
applied to standard, agricultural cabbed tractors with more than 75 kW of horsepower from
the main OEMs (Case IH, Claas, Fendt, John Deere, Massey Ferguson, and New Holland)
in the main markets of Western Europe [37].
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2. Materials and Methods
2.1. Dataset

Transactional European information does not exist in sufficient numbers to be properly
analyzed [23]. The number, type, and condition of the European-auctioned machines are not
aligned with standard market expectations. Therefore, this study considered agricultural
tractors with an engine power higher than 75 kW that were manufactured by Case IH,
Claas, Fendt, John Deere, Massey Ferguson, and New Holland and were advertised on
https://www.agriaffaires.com/ (accessed on 15 July 2022), https://www.mascus.com/
(accessed on 15 July 2022), and https://www.tractorpool.com/ (accessed on 15 July 2022) by
professional retailers (for which the machine is in good condition as the retailer is obliged to
provide a legal warranty on the product, and the price realization expectations are delimited
by the financial requirements related to their business sustainability) in Austria, Belgium,
Denmark, Estonia, Finland, France, Germany, Italy, Latvia, Lithuania, Netherlands, Norway,
Poland, Spain, Sweden, and the United Kingdom [37] by professional sellers. The listings
needed to feature the working hours, year of manufacture, and price (VAT excluded and
price converted into Euros). At least 300 working hours were required, as tractors with
less hours advertised from professionals come from demonstration programs or rental
programs; hence, there is an outside source of income in which the seller alters the price
realization expectations.

The tractor models were aligned with the OEM’s official nomenclature (as sellers tend
to include features in the product name with the intent of differentiating their offering), and
redundant advertisements were eliminated (as it is frequent that the sellers have business
systems interfaced with the different websites in order to achieve the largest possible
product awareness; thus, more than one website can feature the same offering).

The dataset obtained for this study was composed of 10,303 uniquely categorized,
advertised tractor observations (Table 3 and Figure 3)

Table 3. Dataset size grouped by country and power segment.

Country (<100 kW) (100–120 kW) (120–160 kW) (>160 kW) Total

Austria 77 28 19 32 156
Belgium 12 24 59 52 147
Denmark 105 92 126 183 506
Estonia 7 9 20 38 74
Finland 117 83 58 15 273
France 1097 773 992 444 3306

Germany 459 420 838 1132 2849
Italy 65 35 39 66 205

Latvia 7 6 7 22 42
Lithuania 34 24 25 85 168

Netherlands 117 68 105 54 344
Norway 93 39 37 4 173
Poland 134 114 115 138 501
Spain 60 43 48 22 173

Sweden 246 116 119 70 551
United

Kingdom 192 246 273 124 835

Total 2822 2120 2880 2481 10,303

https://www.agriaffaires.com/
https://www.mascus.com/
https://www.tractorpool.com/
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2.2. Data Systematization and Preprocessing

Calculating the residual value (RV) as:

RV =
Used tractor retail price (€)

Used tractor retail price when new (€)
(1)

presents quite a challenge. As mentioned above, the availability of used tractor transactional
information is scarce, and obtaining the tractor retail prices from all 16 countries in the
scope of this study since 1998 is quite an endeavor. Hence, a novel approach was taken by
means of the new equivalent tractor concept:

RV =
Used tractor retail price (€)
Equivalent new tractor (€)

(2)

2.2.1. New Equivalent Tractor

A tractor model belongs to a tractor series, with which it shares a wheelbase, mass,
and most characteristics, with the key differentiator being its power. As technology evolves,
the tractor series are replaced by newer series with enhancements that improve efficacy
and/or efficiency. The evolution is such that it is sometimes not possible to find a current
replacement model with the same features as a used one, as those features were rendered
obsolete (e.g., synchronized transmissions, two-wheel drive, unsuspended front axle,
open circuit hydraulic system, or an open operator station). The retail price of the new
series’ models includes any inflation changes as well as any cost derived from regulations
compliance and any additional features deemed necessary by the market (Table 4).

Obtaining the retail price of current models will be much easier for the subject matter
experts using the method described in this model, as the prices are available through some
manufacturer’s websites and/or through a dealer’s quote.
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Table 4. Model evolution example.

Model Year Power Wheelbase Minimum Mass Transmission Options

Current Model 2022–2020 186 kW 2925 mm 11,400 kg Infinitely variable transmission,
23-speed full powershift

Predecessor-1 2020–2014 186 kW 2925 mm 10,470 kg Infinitely variable transmission,
23-speed full powershift

Predecessor-2 2014–2012 172 kW 2925 mm 10,285 kg Infinitely variable transmission,
23-speed full powershift

Predecessor-3 2012–2006 173 kW 2860 mm 7900 kg

Infinitely variable transmission,
19-speed full powershift,

20-speed partial powershift,
16-speed partial powershift,

Predecessor-4 2006–2003 141 kW 2860 mm 7772 kg
Infinitely variable transmission,

19-speed full powershift,
20-speed partial powershift

Predecessor-5 2003–1996 130 kW 2800 mm 6510 kg
Infinitely variable transmission,

19-speed full powershift,
20-speed partial powershift

Predecessor-6 1996–1992 127 kW 2800 mm 6495 kg 19-speed full powershift,
16-speed partial powershift

Predecessor-7 1992–1988 117 kW 2670 mm 6400 kg 15-speed full powershift,
16-speed partial powershift

Predecessor-8 1998–1983 117 kW 2670 mm 5790 kg 15-speed full powershift,
16-speed partial powershift

Predecessor-9 1982–1978 107 kW 2710 mm * 5300 kg 8-speed full powershift,
16-speed partial powershift

Predecessor-10 1978–1973 102 kW 2700 mm * 4415 kg
8-speed full powershift,

16-speed partial powershift,
8-speed partially synchro

Predecessor-11 1972–1971 95 kW 2700 mm * 4105 kg 8-speed full powershift,
8-speed partially synchro

* Two-wheel drive (2 WD).

2.2.2. Tractor Family

Manufacturers group their similar models in series. In some cases, these series are
quite large and can include several wheelbases, whereas other series are split into separated
series (e.g., Case IH’s Puma Series vs. New Holland’s T7 SWB, and T7 LWB or John Deere’s
6 R series, which features models ranging from 6500 kg to 9650 kg of shipping mass).
Others differentiate their series by the featured transmission (e.g., Case IH’s CVX, Claas’
CMATIC, Massey Ferguson’s Dyna-VT, and New Holland’s Auto Command series, which
features a continuous variable transmission vs. the stepped transmissions featured by
equivalent models; Massey Ferguson and New Holland go a step further and differentiate
between their models by featuring partial powershift transmissions such as the Dyna-4
and Dyna-6, Electro Command, and Dynamic Command). Other manufacturers use their
model nomenclature to differentiate the specifications level (e.g., John Deere’s premium R
series vs. the no so premium M series).

In addition, not all series have the same number of sales; thus, the adverts available
on the internet are also quite different, allowing for the series to split into different families
that share common features and specifications (Table 5).
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Table 5. Family model details.

Brand
Id *

Family
Id *

Number of
Models

Min Power
(kW)

Max Power
(kW)

Wheelbase
(mm)

Minimum
Mass
(kg)

Maximum
Mass
(kg)

A

A|Ba 5 184 279 3155 11,290 18,000
A|Bb 5 184 250 3155 11,290 18,000
A|Ca 3 184 221 2995 10,500 16,000
A|Ea 7 110 177 2884 6782 13,000
A|Eb 5 110 162 2884 6782 13,000
A|Ga 4 92 107 2679 5300 9500
A|Gb 5 85 107 2454 5190 9000
A|Ib 3 73 84 2420 4390 8000
A|Jb 7 43 84 2235 2880 6000

B

B|Ba 4 232 298 3150 12,840 18,000
B|Ca 7 142 195 2980 8300 14,000
B|Cb 7 142 195 2980 8300 14,000
B|Ea 4 110 129 2820 6570 12,000
B|Eb 4 110 129 2820 6570 12,000
B|Ga 3 103 116 2564 5800 11,000
B|Gb 3 103 116 2564 5800 11,000
B|Hb 6 63 99 2525 4700 8500

C

C|Aa 4 291 380 3300 14,000 18,000
C|Ba 5 202 291 3050 10,830 18,000
C|Ca 4 166 211 2950 9370 16,000
C|Da 6 106 176 2783 7735 14,000
C|Ga 4 91 120 2560 6050 10,500
C|Ha 4 74 97 2420 4810 8500

D

D|B0 7 180 294 3050 13,528 18,000
D|C0 6 154.5 228 2925 10,470 16,000
D|E0 3 129 158 2183 8300 13,450
D|E1 2 126 143 2800 7015 12,300
D|F0 3 99 114 2765 6400 11,750
D|F1 3 107 114 2765 6700 11,000
D|G0 3 81 96 2580 6000 9950
D|G1 3 96 103 2580 5800 10,450
D|H1 6 66 88 2400 5750 10,450
D|I0 4 66.6 91.9 2250 4300 8600
D|I1 4 55 85 2300 3600 6000

E

E|Ba 5 176 250 3093 10,800 18,000
E|Ea 8 106 173 3000 5800 13,000
E|Eb 9 101 176 3000 5800 13,000
E|Ec 2 101 106 2880 5800 12,500
E|Ga 6 88 129 2870 5500 11,500
E|Gb 6 88 129 2670 5500 11,500
E|Gc 4 88 110 2670 5500 8800

E|Hb 3 82 97 2550 4800 8421
E|Hc 5 70 97 2550 4800 8421

F

F|Ba 5 184 279 3500 11,235 18,000
F|Bb 5 184 279 3500 11,235 18,000
F|Ca 3 184 221 2995 10,500 16,000
F|Ea 4 132 177 2884 8140 13,000
F|Eb 4 132 177 2884 8140 13,000
F|Fa 4 103 132 2789 6650 11,500
F|Fb 4 103 132 2789 6650 11,500
F|Ga 4 85 107 2684 6360 10,500
F|Gb 6 85 107 2684 6110 10,500
F|Ib 3 74 86 2380 5300 8000
F|Jb 5 55 84 2285 3700 6500

* Brand, family and model are anonymized to avoid any bias.
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The combination of the new equivalent tractor and the tractor family have been
paramount contributors to coalesce a dataset for this study, which is composed of
10,303 tractors.

2.3. Data Analysis

As previously stated, one of the goals of this study is to provide an easy-to-use method
for residual value stakeholders. With 1.1 billion users (one in eight people on the planet),
Microsoft Excel is one of the most ubiquitous software in both professional and domestic
environments. Hence, considering Microsoft Excel as the first option was clear.

Microsoft Excel offers functions that allow several models to make multiple variable
regressions, enabling the evaluation of the following regressions:

Linear (lin-lin) : RV = Coef A + Coe fB·Hours + Coe fC·Age (3)

Logarithmic (lin-log) : RV = Coef A + Coe fB·ln(Hours) + Coe fC·ln(Age) (4)

Power (log-log) : RV = Coef A·Coe f Hours
B ·Coe f Age

C (5)

Exponential (log-lin) : RV = Coef A·eCoe fB · Hours ·eCoe fC · Age (6)

In order to evaluate alternative regression options, several different models were
analyzed with Matlab, including parametric and non-parametric models (Table 6).

Table 6. Tested fitted regression models.

Model Type Subtype

Ensemble
Bagged Trees
Boosted Trees

Gaussian Process Regression (GPR)

Exponential GPR
Matern 5/2 GPR

Rational Quadratic GPR
Squared Exponential GPR

Kernel
Least Squares Regression Kernel

SVM Kernel

Linear Regression Linear
Robust Linear

Neural Network

Bi-layered Neural Network
Medium Neural Network
Narrow Neural Network

Tri-layered Neural Network
Wide Neural Network

Supported Vector Machine (SVM)

Coarse Gaussian SVM
Cubic SVM

Fine Gaussian SVM
Linear SVM

Medium Gaussian SVM
Quadratic SVM

Tree
Coarse Tree

Fine Tree
Medium Tree

The regression trees, support vector machines, ensembles of regression trees, Gaussian
process regressions, and neural networks were optimized by machine learning.

In the interest of examining the predictive accuracy of the fitted models, regressions
were made with 3, 5, 7, and 9 predicting variables and with a 3-, 5-, 7-, and 9-fold cross-over
validation. In addition, 5%, 10%, 15%, 20%, and 25% hold-out validation models were used
(in one instance, one regression was performed with a 5% training dataset) (Table 7).
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Table 7. Number of predicting variables and validations evaluated.

Predictor Variables

Validation

Cross-Over Hold-Out

3
Folds

5
Folds

7
Folds

9
Folds 5% 10% 10%

(T5%) 15% 20% 25%

3 +
5 +
7 + + + + + + + + + +
9 +

In regression analysis, the root mean squared error (RMSE) and adjusted R2 (RSqAdj)
metrics were used to evaluate the performance of the different models.

The root of the error was used to obtain an error with the same unit as the outcome
variable for easier interpretation purposes. The closer the point is to the regression, the
lower the metric value is and the higher the accuracy of the regression model is. When a
model is 100% perfect, this metric value will be equal to zero.

The adjusted R2 is a better evaluation metric than R2. The R2 is a statistical measure
that represents the proportion of variation in the dependent variable that is explained by
the regression model. The adjusted R2 considers the number of predictor variables used to
predict the dependent variable [38].

As the proposed power regression model is based on tractor families and uses two
predictors, the same Matlab regression models seen in Table 6 including regression trees,
support vector machines, ensembles of regression trees, Gaussian process regressions, and
neural networks optimized by machine learning) were analyzed for the tractor families
that obtained the best RMSE results with the proposed power regression model.

3. Results
3.1. Proposed Regression Models

The proposed power regression model (5) offered the best RMSE and R2 adjusted
results (Table 8 and Figure 4).
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Table 8. Tractor family power regression results.

Brand Identifier Family Identifier RMSE RSqAdj Observations

A

A|Ba 0.0031 0.9773 20
A|Bb 0.0154 0.9804 80
A|Ea 0.0279 0.9657 216
A|Eb 0.1039 0.9664 212
A|Gb 0.0068 0.9713 225
A|Ib 0.1989 0.9381 66

B

B|Cb 0.2647 0.9487 394
B|Eb 0.3786 0.9479 536
B|Gb 0.0856 0.8549 64
B|Hb 0.3879 0.9202 215

C

C|Ba 0.4028 0.9642 388
C|Ca 0.3890 0.9608 266
C|Da 0.8513 0.9713 502
C|Ga 0.1674 0.9497 160
C|Ha 0.0842 0.9446 36

D

D|B0 0.2124 0.9742 291
D|C0 0.1868 0.9753 613
D|E0 0.3358 0.9579 727
D|F0 0.7231 0.9594 907
D|F1 0.2544 0.8969 162
D|G0 0.7570 0.9311 466
D|G1 0.5214 0.8146 306
D|H1 0.6589 0.9061 93
D|I0 0.1239 0.9301 83
D|I1 0.2733 0.3018 51

E

E|Ba 0.2578 0.9763 88
E|Ea 0.0796 0.9629 262
E|Eb 0.1099 0.9697 338
E|Ga 0.0189 0.9626 36
E|Gb 0.6431 0.9258 495
E|Gc 0.0849 0.9783 36
E|Hb 0.3440 0.9543 73
E|Hc 0.1498 0.9250 86
E|Ib 0.0173 0.9492 55

F

F|Ba 0.1160 0.9738 113
F|Bb 0.0890 0.9502 53
F|Ea 0.0215 0.9522 70
F|Eb 0.1030 0.9785 299
F|Fa 0.0287 0.9434 66
F|Fb 0.0182 0.9695 386
F|Gb 0.0227 0.9505 410
F|Ib 0.0196 0.9561 247
F|Jb 0.0239 0.8509 28

3.2. Fitted Regression Models with Multiple Variables and Validations

Even if one of the goals of this study is to provide the best possible results with the
most accessible tools and methodology, it is indispensable to evaluate more advanced
models and tools. Therefore, as previously stated, multiple models were evaluated (Table 6)
using different variables and validation methods (Table 7).

Models with seven predictors showed better RMSE values when compared to 3,
5, and predictor-tested models. Models with hold-out validation demonstrated better
RMSE values than those with cross-out validation. The best overall model was the rational
quadratic Gaussian process regression with seven predicting variables, which was validated
with a 10% hold-out and an RMSE value of 0.046 (Table 9).
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Table 9. Fitted regression models with multiple variables and validation RMSE results.

Model Type Subtype Analysis Minimum
RMSE

RSq
Adj

Ensemble
Boosted Trees Seven predictors, hold-out 5% (H|7/0.05) 0.0783 0.8664

Bagged Trees Seven predictors, hold-out 5% (H|7/0.05) 0.0697 0.8940

Gaussian Process
Regression (GPR)

Exponential GPR Seven predictors, hold-out 10% (H|7/0.10) 0.0638 0.9096

Squared Exponential GPR Seven predictors, hold-out 10% (H|7/0.10) 0.0650 0.9060

Matern 5/2 GPR Seven predictors, hold-out 10% (H|7/0.10) 0.0648 0.9068

Rational Quadratic GPR Seven predictors, hold-out 10% (H|7/0.10) 0.0646 0.9074

Kernel
SVM Kernel Seven predictors, hold-out 10% (H|7/0.10) 0.1031 0.7639

Least Squares
Regression Kernel Seven predictors, hold-out 10% (H|7/0.10) 0.1108 0.7274

Linear regression

Linear Seven predictors, hold-out 5% (H|7/0.05) 0.0769 0.8710

Robust Linear Seven predictors, hold-out 5% (H|7/0.05) 0.0772 0.8702

Interactions Linear Five predictors, cross-over 5-fold (C|5/5) 0.0839 0.8545

Neural Network

Narrow Neural Network Seven predictors, hold-out 15% (H|7/0.10) 0.0716 0.8936

Medium Neural Network Seven predictors, hold-out 10% (H|7/0.10) 0.0741 0.8779

Wide Neural Network Five predictors, cross-over 5-fold (C|5/5) 0.0816 0.8626

Bi-layered Neural Network Seven predictors, hold-out 10% (H|7/0.10) 0.0702 0.8906

Tri-layered
Neural Network Seven predictors, hold-out 10% (H|7/0.10) 0.0715 0.8864

Stepwise Linear
Regression Stepwise Linear Five predictors, cross-over 5-fold (C|5/5) 0.0839 0.8545

Support Vector
Machines (SVM)

Linear SVM Seven predictors, hold-out 5% (H|7/0.05) 0.0775 0.8690

Quadratic SVM Seven predictors, hold-out 10% (H|7/0.10) 0.0662 0.9025

Cubic SVM Seven predictors, hold-out 10% (H|7/0.10) 0.0684 0.8959

Fine Gaussian SVM Three predictors, cross-over 5-fold (C|5/5) 0.0978 0.8028

Medium Gaussian SVM Seven predictors, hold-out 10% (H|7/0.10) 0.0650 0.9060

Coarse Gaussian SVM Seven predictors, hold-out 10% (H|7/0.10) 0.0721 0.8844

Tree

Fine Tree Seven predictors, hold-out 5% (H|7/0.05) 0.0845 0.8444

Medium Tree Seven predictors, hold-out 5% (H|7/0.05) 0.0812 0.8564

Coarse Tree Seven predictors, hold-out 5% (H|7/0.05) 0.0821 0.8530

This model would rank thirteenth when compared with the tractor families with the
best RMSEs of the proposed power model (Table 8).

The exponential Gaussian process regression (GPR) demonstrated more consistent
RMSE results across all the tested variables and validations (Figure 5).
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3.3. Fitted Regression Models of Tractor Families

As the proposed methodology on power regression models is based on two predicting
variables of tractor families, it was essential to test more advanced software using more
advanced models.

Hence, the tractor families that rendered the best power regression model RMSE value
results (Figure 4) were tested using the same fitted models and a 10% hold-out validation
to provide data sets (Table 6).

The optimized Gaussian process regressions of the two predictors, validated with
a 10% hold-out of the considered tractor families, provided very satisfactory RMSE and
RSqAdj results (Table 10).

Table 10. RMSE values of the results of two predictors, grouped by families evaluated.

Tractor Family Model Type Preset RMSE RSqAdj Observations

A|Bb Optimized Gaussian Process Regression 0.0546 0.9012 78
A|Ea Optimized Gaussian Process Regression 0.0697 0.8157 215
A|Gb Optimized Gaussian Process Regression 0.0735 0.8191 224
E|Ea Exponential GPR 0.0700 0.8334 259
E|Ib Interactions Linear 0.0780 0.3124 52
F|Ea Linear 0.0764 0.7246 66
F|Fa Optimized Gaussian Process Regression 0.0639 0.6549 64
F|Fb Exponential GPR 0.0628 0.8868 378
F|Gb Optimized Gaussian Process Regression 0.0880 0.7505 409
F|Ib Optimized Gaussian Process Regression 0.0803 0.8025 244

Across most family groups, the best overall model was the optimized Gaussian process
regression (OGPR) model (Figure 6).

The results of the proposed power regression model of two predictors, grouped by
families tested, were better than the most accurate regression performed by Matlab, even if
Matlab was optimized by machine learning (Table 11 and Figure 7).
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Table 11. Regression results for tractor families using two predictors.

Tractor
Family

Power Linear
Regression

Optimized Gaussian
Process Regression (GPR) Observations

RMSE RSqAdj RMSE RSqAdj

A|Bb 0.0154 0.9804 0.0546 0.9012 80
F|Fb 0.0182 0.9695 0.0629 0.8863 386
F|Fa 0.0287 0.9434 0.0639 0.6549 66
A|Ea 0.0279 0.9657 0.0697 0.8157 216
E|Ea 0.0796 0.9629 0.0700 0.8333 262
A|Gb 0.0068 0.9713 0.0735 0.8191 225
F|Ea 0.0215 0.9522 0.0764 0.7246 70
E|Ib 0.0173 0.9492 0.0796 0.2832 55
F|Ib 0.0196 0.9561 0.0803 0.8025 247
F|Gb 0.0227 0.9505 0.0880 0.7505 410
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The proposed power regression model seems to follow the different tractor family
residual-value behaviors quite precisely. The fact that the second-best tested model was
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exponential regression, as was found by Witte, Back, Sponagel, and Bahrs [26], proves that
these models exhibit better performance than more complex models such as optimized
Gaussian regressions (OGPR).

4. Discussion

The robustness of the proposed power regression model was compared to the follow-
ing models:

1. Models referenced by previous studies, which offered sufficient detail to process the
dataset (Table 1);

2. Fitted regression models of the complete data set with multiple variables and valida-
tions (Tables 6 and 7);

3. Fitted regression models of tractor families with the same predictors used in the
proposed power linear regression (Figure 4).

4.1. Models Referenced by Previous Studies

The complete data set was processed using data from previous studies whenever it
was possible (when enough details were provided) (Table 12 and Figure 8).

Table 12. Results of previous studies.

Author RMSE RSqAdj Observations

Cross, T. L., and Perry, G. M. (1995). 12.4901 0.7573 9630
Unterschultz, J., and Mumey, G. (1996). 11.7518 0.4234 5417

Cross, T. L., and Perry, G. M. (1996). 1.0615 0.4634 9630
Wu, J., and Perry, G. M. (2004). 6.8064 0.7389 9630

Fenollosa, M. L., and Guadalajara, N. (2007). 7.2109 0.5272 6768
Wilson, P., and Tolley, C. (2004). 18.2890 0.7628 9630

Wilson, P. (2010). OLS 9.9710 0.7736 9630
Wilson, P. (2010). Box–Cox 42.7132 0.7326 9630

ASABE. (2011 (R2020)). 21.8687 0.7435 9630
Kay, R., Edwards, W., and Duffy, P. (2020). 14.2284 0.6508 8157

Witte, F., Back, H., Sponagel, C., and Bahrs, E. (2022) 10.6769 0.5314 8823
Ruiz-Garcia and Sanchez-Guerrero (2022) 9.3372 0.8149 10,253
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The proposed power regression model (RMSE = 1.5574|RSqAdj = 0.8457) demon-
strated more predictive robustness Table 1. shows how previous studies used, in addition
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to years of age and hours of usage, brand and power in order to predict the residual value
behavior. However, Table 2 shows that power is not enough to differentiate residual value
behavior, as even similar tractor families from the same brand with the same power can
feature different sizes, masses, transmissions, and user interfaces. The proposed model
takes these factors into consideration, drilling down to model levels and grouping them in
tractor families to lay a better foundation for more robust results.

4.2. General

The proposed power regression model provided the best RMSE and RSqAdj of all the
tested models (Figure 9).
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Compared to the previous studies referenced, the proposed power regression model
provides better RMSE and RSqAdj values as it considers not only the brand and very
similar power and tractor size (wheelbase and mass) but also very similar specification
levels (e.g., transmissions and user interfaces), relating these factors to an equivalent new
model that provides a precise price reference, including inflation and production costs.
These variations yield a better foundation for more robust results.

Compared to more advanced fitting models that require specific software, the pro-
posed power regression model provides better RMSE and RSqAdj values and a simpler
methodology that is applicable using a more mainstream software.

The model is fed from public and freely available data. Its ease of use by means of
widely known software, united with its transparency, provides infinite analysis options
that can be easily visualized (Figure 10).
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The charts created based on the power linear regression model (Figure 10) clearly
depict that the more powerful A|Bb tractor family (Table 5) loses value faster than the
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smaller A|Gb tractor family; both are from the same brand. It also shows how the similar
tractor families, A|Ea and E|Ea, and F|Ea, from a different family, which feature similar
powers, wheelbases, masses, and stepless transmissions, hold their residual value differ-
ently. Additionally, Figure 10 depicts how two very similar tractor families from the same
brand, F|Fb and F|Gb, which have a very similar power, wheelbase, mass, and stepped
transmission, hold residual value differently.

The methodology and model can be used to compare how the residual value of tractors
behaves in tractors with the same power but diverse power densities (kW/kg), transmission
options (e.g., continuously variable transmissions, full powershift, and partial powershift
transmissions), and user interfaces (from classic to highly advanced).

The methodology can be applied to other types of agricultural machinery, such as
combines and self-propelled forage harvesters, as well as to European auction results with
similar positive results.

5. Conclusions

This equivalent, new, tractor-based and family-grouped methodology, leading to a
power regression curve, solves the issues that affect traditional residual value studies,
based on auctions and advertisements, which try to bypass the lack of large transactional
datasets. This is true even if the traditional residual value studies take into consideration
more predictors (brand, power, economic factors, etc.) than the main drivers (years of age
and hours of use) by means of more advanced models (linear, exponential, ordinary least
squares, Box–Cox, and robust linear), as can be observed in this study. Simultaneously, the
new methodology provides a robust RMSE = 1.5574 and RSqAdj = 0.8457, values which are
unsurpassed by all the previous studies and models tested.

The proposed power regression model considers each tractor model on its own. There-
fore, there are no interferences from other tractor models with same power but a totally
different specification level, wheelbase, and weight.

The proposed power regression model considers the price increase due to emission
regulations as well as specification evolution, comparing the used tractor retail price relative
to the equivalent new tractor retail price.

The proposed power regression model compensates for the small statistical population
by grouping the models in family groups instead of tractor series in cases for which a small
statistical population is found, or by subdividing the tractor series when there are sufficient
statistical data points and significant differences within tractor series that feature a large
number of models.

Despite the simplicity of the proposed power regression model, it was not surpassed
by more advanced models (including machine learning optimization) performed by more
specialized software.

The proposed power regression model requires a simple internet search for used
equipment websites and just two inquiries to sellers (one for the new, equivalent tractor
retail price and another inquiry for the used tractor retail price). In other words, it is
easy to obtain information that is later transparently processed using a universally known
software.

It would be of great interest to identify a way to increase the size of the dataset by
including auction results as a source of transactional information if a correlation between
retail and wholesale prices is found.
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