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Abstract: Moisture content (MC) is one of the important indexes to evaluate maize seed quality. Its
accurate prediction is very challenging. In this study, the long-wave near-infrared hyperspectral
imaging (LW-NIR-HSI) system was used, and the embryo side (S1) and endosperm side (S2) spectra
of each maize seed were extracted, as well as the average spectrum (S3) of both being calculated. The
partial least square regression (PLSR) and least-squares support vector machine (LS-SVM) models
were established. The uninformative variable elimination (UVE) and successive projections algorithm
(SPA) were employed to reduce the complexity of the models. The results indicated that the S3-
UVE-SPA-PLSR and S3-UVE-SPA-LS-SVM models achieved the best prediction accuracy with an
RMSEP of 1.22% and 1.20%, respectively. Furthermore, the combination (S1+S2) of S1 and S2 was
also used to establish the prediction models to obtain a general model. The results indicated that
the S1+S2-UVE-SPA-LS-SVM model was more valuable with Rpre of 0.91 and RMSEP of 1.32% for
MC prediction. This model can decrease the influence of different input spectra (i.e., S1 or S2) on
prediction performance. The overall study indicated that LW-HSI technology combined with the
general model could realize the non-destructive and stable prediction of MC in maize seeds.

Keywords: general prediction model; hyperspectral imaging; maize seed; moisture content

1. Introduction

Maize is one of the most important crops with a wide range of planting areas. More-
over, maize is not only a critical food but is also used for feed, industrial alcohol, cooking
oil processing, and other fields [1–3]. Therefore, the demand for sustainable production of
high-quality maize seeds is rising in response to the rapidly growing population and vari-
ous uses of maize. The moisture content (MC) directly affects seed storage, transportation,
and sowing. According to the National Standards of China (GB 4404.1-2008), the MC of
maize seeds should be controlled below 13% in storage. The high MC will accelerate seed
respiration, generating a lot of water and heat, leading to mold and rotting [4]. In addition,
MC also affects seed vigor and yield [5].

Using Karl Fischer titration, an electronic moisture analyzer, or oven-drying are
traditional ways to detect the MC of grain. However, these ways are destructive and cannot
meet the need for fast detection. Moreover, the traditional ways can only be used for
sampling and cannot detect the MC of each maize seed. In addition, these ways are also
complicated, time-consuming, and may be unfriendly to the environment. Near-infrared
(NIR) is a non-destructive, fast, and pollution-free technique. It has been widely used to
assess the quality of seeds such as peanuts, soybeans, wheat, and maize [6–8]. However, the
NIR spectroscopic technique can only provide point information from the tested samples.
Unlike other ball-like seeds, the structure of the two sides of maize seeds is very different,
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that is, one side is composed of the endosperm, and the other is composed of the embryo
and endosperm. Therefore, the point information from NIR spectra does not represent
the information of the whole seed. Even if the prediction model is constructed via point
information, it is also difficult to ensure the consistency of the information collection area
in practice. This negatively affects the performance of the prediction model. In addition,
the NIR spectra acquisition device needs to be specially designed for different kinds of
samples, which is also a barrier to the development of this technology. In conclusion, NIR
technology is not the best solution to the problem of rapid quality detection of corn.

Hyperspectral imaging (HSI) has the advantages of both spectrum and image. Because
of this unique advantage, HSI has been extensively applied to the quality detection of
agricultural products [9–13], such as meat [14], vegetables [15], and fruit [16]. With increas-
ing attention on food security, more scholars have also applied this technology to seed
quality detection. For example, the HSI system was used to detect the hardness of maize
seeds with an R2 of 0.912 [17]. HIS, combined with the deep convolutional generative
adversarial network, was used to predict the oil content of a single maize kernel, and
the results indicated the potential of HSI in the oil detection of maize seeds [18]. The
short-wave HSI was employed to achieve the identification of aflatoxin B1 in maize seeds.
The results showed that the HSI could detect toxins in maize seeds [19]. HSI has been
proved to be able to non-destructively analyze the germination percentage, germination
energy, and simple vigor index of wheat seeds [20]. In addition, HSI was also used to
identify maize varieties [21,22], hybrid seeds [23], damage [24], and starch [25]. As for MC
detection in maize seeds, many scholars have carried out some research using HSI [26,27].
Their studies have indicated the feasibility of MC detection via HSI, and 1000–2500 nm was
the ideal wavelength for MC detection. However, these studies ignored the influence of the
structural differences in maize seeds on the predictive performance of models. In the actual
detection, the position of maize seed in the field of view is uncertain, that is, any side may
face the camera. Thus, only the hyperspectral image information from one side is acquired.
Therefore, it is very necessary to develop a general model to reduce the influence of image
acquisition location on model prediction accuracy.

Our hypothesis was (1) to establish linear and non-linear models for MC prediction;
(2) to select the feature wavelengths using variable selection algorithms; and (3) to develop
a general model that is not affected by the image acquisition location in the fast analysis of
single maize seed.

2. Materials and Methods
2.1. Samples Preparation

Three hundred maize seeds (Zhengdan 958 variety) with a MC range of 10~13% were
used. In order to improve the prediction ability of the model, the MC range of samples
should be expanded. We divided all of the samples into 5 groups, each containing 60 maize
seeds. Each group was wrapped with gauze and sprayed with water, and stored in a stable
environment (2 ◦C and 50% relative humidity). Each group was picked out every 12 h, then
left at ambient temperature for 8 h to reduce the effect of temperature on the prediction
results. Subsequently, all samples were used for hyperspectral image collection.

2.2. Hyperspectral Image Acquisition and Spectra Pretreatment

The LW-NIR hyperspectral imaging system was employed to collect the hyper-data in
reflectance mode. The structure of the collection system and the parameters are detailed in
the published article [27].

All samples in each group were placed on a rectangular piece of black cardboard. Due
to the differences in the composition and structure between the two sides, it was necessary
to investigate the effect of different types of spectra on the prediction model (Figure 1).
Thus, the images of the two sides of maize were both collected. Then, the original images
needed to be corrected using black and white reference images to improve data quality.
The white hyperspectral image could be obtained using a white Teflon board (Spectralon
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SRT-99-100, Labsphere Inc., North Sutton, NH, USA). The dark one could be acquired by
closing the light and covering the lens with a black cap. The corrected image (Rc) could be
obtained from the following Equation:

Rc =
Rraw − Rdark

Rwhite − Rdark
(1)

where the Rc is the corrected hyperspectral image; Rraw is original hyperspectral image;
and Rwhite and Rdark are the white and dark reference images, respectively.
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After the data collection, each maize seed’s spectrum could be obtained from the
corrected images. The raw spectra generally contained high-frequency random irrelevant
information, which could reduce the signal-to-noise ratio (SNR). Hence, the raw spectra
should be preprocessed before modeling. In this study, some common preprocessing meth-
ods, including Savitsky–Golay (SG) smoothing (window size: 17-point), standard normal
variable (SNV), multiple scatter correction (MSC), and first derivative (1Der) (window size:
7-point) were used to improve spectral quality.

2.3. Moisture Content Measurement

The moisture content value was collected using the gravimetric method after the
hyperspectral image collection. All samples were dried in an oven at 135 ◦C for 48 h. The
weights were measured via an analytical balance one by one before and after drying. In
order to ensure measurement accuracy, each seed was measured three times, and the mean
value was employed in this research. The formula for calculating MC is as follows:

MC =
wbe f ore − wa f ter

wbe f ore
× 100% (2)

where MC is the moisture content in each sample, and wbefore is the weight of each sample
before drying. wafter is the weight of each seed after drying. The MC values of 6 samples
were miscalculated and excluded. Therefore, the MC data from 294 maize seeds were used
for analysis.

2.4. Variable Selection Methods

Variable selection is helpful for building a simpler and more efficient model. In the
original data, there may have been many uninformative variables which would have
reduced the performance of models [28]. Uninformative variable elimination (UVE) was
used to eliminate the useless variables, and then the successive projections algorithm (SPA)
was employed to reduce the impact of redundant information on the prediction model.

UVE is a common approach to pick out the significant variable based on the regression
coefficient b of the partial least squares (PLS) model. Firstly, the spectral matrix Xn×m and
label Yn×1 of the calibration set were used to establish the PLS model, and the optimal
latent variable was judged via cross-validation. Then, the random noise matrix Rn×m was
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generated, and X and R were combined into a new matrix XRn×2m. The matrix XR was
used to establish the PLS model, and then the regression coefficient matrix Bn×2m was
obtained using the leave-one-out cross-validation method. Subsequently, the mean M and
standard deviation S of the column vectors of Bn×2m were calculated, and the stability
coefficient C1×2m could be obtained by the following Equation (3). The maximum absolute
value of Cmax was obtained in [m + 1, 2m], and the important variables were selected in
[1, m] when Cj > Cmax.

Cj =

∣∣∣∣∣Mj

Sj

∣∣∣∣∣, j = 1, 2, 3, . . . , 2m (3)

UVE can effectively delete the uninformative variables in the spectra. However, this
algorithm cannot completely eliminate the influence of redundant information on the
model. In addition, the variable number selected by UVE is large, which is not suitable to
develop the fast multi spectral detection equipment. Therefore, UVE is often combined
with an SPA algorithm to further screen the critical variables.

SPA is often used in the spectral analysis field. It starts with one wavelength and incor-
porates a new one at each iteration until a specified number N of variables is reached [20].
Then, RMSECV of N subsets of variables is calculated using multiple linear regression
(MLR). The best variable number is determined based on the lowest RMSECV. The SPA
method can solve the collinearity problem in massive variables, and the selected vari-
ables are minimally redundant. Therefore, SPA and UVE algorithms can achieve perfect
complementarity in variable selection [29].

2.5. Model Establishment for Quantitative Analysis

Partial least square regression (PLS) is a common and classical machine learning
method in the field of spectral analysis [17,30]. Compared with principal component regres-
sion, X (spectra matrix) and Y (the properties of samples) are simultaneously considered
in the modeling process of PLS. X is transformed into linear latent variables (LVs). It can
replace the original information, achieving a reduction in the original data dimension.
Generally, fewer LVs could improve model performance and avoid overfitting. Ten-fold
cross-validation was carried out to select the best LVs, and the LVs with the smallest
RMSECV were selected to establish the PLS regression models.

The least-squares support vector machine (LS-SVM) can quickly resolve linear and
non-linear problems [31]. This method can add the error sum of squares to the objective
function of the standard support vector machine, and the risk minimization principle
can be used to solve the convex quadratic programming problem [32]. The non-linear
model was built by using LS-SVM and the radial basis function (RBF) was selected as
the kernel function. The regularization parameter (γ) and sig2 (σ2) were important for
prediction performance. Therefore, 10-fold cross-validation was employed to search for the
optimal parameter. The best parameters were selected when the root mean square error of
cross-validation reached the minimum.

2.6. The Performance Evaluation of Models

As for the quantitative analysis, the following parameters were adopted to evaluate the
performance of calibration models, including the correlation coefficient of calibration (Rcal)
and prediction (Rpre), the root mean square error of calibration (RMSEC), and prediction
(RMSEP) [33]. These parameters can be calculated as follows:

Rcal =

√
nc

∑
i=1

(
ypi − ymi

)2/

√
nc

∑
i=1

(
ypi − ymean

)2 (4)

Rpre =

√√√√ np

∑
i=1

(
ypi − ymi

)2/

√√√√ np

∑
i=1

(
ypi − ymean

)2 (5)
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RMSEC =

√
1
nc

nc

∑
i=1

(
ypi − ymi

)2 (6)

RMSEP =

√√√√ 1
np

np

∑
i=1

(
ypi − ymi

)2 (7)

where ypi and ymi represent the predicted and the measured values of the MC in sample
i, respectively. ymean is the mean value of MC of samples in the calibration or prediction
set. The nc and np are the numbers of samples in the calibration and prediction set,
respectively. In general, a good model has higher Rcal and Rpre values and lower RMSEC
and RMSEP values.

3. Results and Discussion
3.1. Spectra Analysis

The raw data were extracted from embryo (S1) and endosperm (S2) sides, and the
mean spectra (S3) were calculated based on S1 and S2. The raw and pretreatment spectra
are shown in Figure 2. Considering spectra from S1, S2, and S3 have similar curve change
characteristics, only S1 spectra were shown in Figure 1. As can be seen from Figure 2a, the
peaks exist at about 960, 1200, 1450, and 1950 nm. Specifically, this may be related to O-H
in water and carbohydrates in 960 nm [34]. The O-H stretching of the first overtone could
cause the fluctuation at 1450 nm [35]. According to previous research, the wavelengths at
1200 nm and 1950 nm were water-dependent in maize seeds [36]. In order to eliminate the
negative effects of random noise, dark current, and light scattering, the raw spectra were
pretreated by SG-MSC, SG-SNV, and SG-1Der, respectively. The raw and pretreated spectra
are shown in Figure 2a–d, respectively. It is evident that these preprocessing methods can
improve spectral quality with enhanced curve features. For comparison, both the raw and
pretreated spectra were used for modeling.

3.2. Abnormal Sample Elimination and Sample Division

The abnormal samples (i.e., outliers) can reduce the performance of models, so it is
necessary to eliminate the outliers before establishing the models. In this study, Monte
Carlo cross validation (MCCV) was applied to screen the abnormal samples and eliminate
them according to the screening results. Firstly, this method used the PLS algorithm to
determine the best principal component value. Then, 75% samples were selected based on
the Monte Carlo sampling principle to establish the PLS model, and the surplus data were
selected to be evaluated. In order to ensure all samples were used, the number of Monte
Carlo sampling was 2500. The prediction error of each sample was calculated, and then
the mean and standard deviation of prediction error of each sample were calculated. The
distribution of mean values and standard deviations of all samples based on S1 spectral
data are shown in Figure 3. The samples numbered 200, 207, 208, 214, and 247 generated a
large mean or standard deviation, so they were removed as outliers. Note that the same
outliers were also removed for S2 and S3 data analysis.

The cross-validation results of PLSR models based on S1 spectra are shown in Table 1.
This model was constructed by all samples (normal and outlier samples) and normal
samples, respectively. It is clear that the performance of the PLSR model for MC detection
was significantly improved after removing outliers. The Rcv of the model was increased
from 0.84 to 0.91, and RMSECV was reduced from 1.77% to 1.32%, indicating the rationality
of sample removal. Therefore, the remaining 289 samples were used for further analysis, in
which 216 maize seeds were the calibration set, and the rest of samples were the prediction
set to measure the performance of models. The histogram of MC values of the calibration
and prediction sets is shown in Figure 4. It is clear that the MC values of samples in the
calibration set cover those of samples in the prediction set, and the MC values of two sets
of samples were normally distributed. These characteristics indicate that the MC value of
this experiment is suitable for building a stable model.
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Table 1. The results of cross-validation of PLSR model based on S1 spectra.

No. of Samples R cv RMSECV/%

294 0.84 1.77
289 0.91 1.32
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3.3. Pretreatment Method Selection

In order to explore the different pretreatment spectra in modeling, the raw and SG-
MSC, SG-SNV, and SG-1Der spectra were separately employed as inputs to build linear
and non-linear models. The best pretreatment method was determined based on the cross-
validation results. Table 2 shows the result based on PLSR and LS-SVM models combined
with different preprocessing spectral data. As for the S1 spectra, the best pretreatment
method was SG-1Der. The RMSECV values of the corresponding PLSR and LS-SVM were
1.31% and 1.30%, respectively. In terms of the S2 spectra, the model established using the
SG-SNV spectra obtained better results with the RMSECV values of 1.11% and 1.01% for
the PLSR and LS-SVM models, respectively. When S3 spectra were used for modeling,
SG-MSC spectra obtained better results with the RMSECV values of 1.05% and 0.98% for
PLSR and LS-SVM, respectively. These results showed that different spectral data sets need
to match appropriate preprocessing methods to build more effective prediction models.
The prediction performance of the model established based on S3 spectral data was slightly
better than that of the corresponding PLSR or LS-SVM model established based on S1 and
S2 data sets. However, the full-spectrum model was not the best choice for the online MC
analysis of maize seeds.

3.4. The Prediction Results of Models Established Based on Feature Wavelengths

The feature wavelength (or variable) selection can reduce the interference and correlation
between variables, simplify the models, and improve the efficiency and performance of models.
UVE, SPA, and their combination (UVE-SPA) were used for wavelength selection, respectively.

Figure 5 shows the selection results of feature wavelengths based on UVE and UVE-
SPA. Figure 5a–e shows the results for different types of spectra. The spectra curve in
Figure 5a–e represents that the S1 spectra were pretreated by SG-1Der, the S2 spectra were
pretreated by SG-SNV, the S3 spectra were pretreated by SG-MSC, SG-MSC pretreated
S1+S2 spectra, and S1+S2 spectra were pretreated by SG-1Der, respectively. It can be
observed that, compared with full spectra, the number of wavelengths selected by UVE
has been significantly reduced by removing the uninformative variables. However, there is
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still some collinearity information in the selected wavelengths, which was not conducive
to the development of a fast and effective analysis model and system. Therefore, the
SPA algorithm was used to reduce the collinearity between wavelengths selected by UVE.
It can be seen from Figure 5 that the number of wavelengths was further reduced and
concentrated in the bands related to O-H, such as some wavelengths being at about 960,
1200, 1450, and 1950 nm. It is clear that the SPA algorithm plays a significant role in
eliminating those collinear variables.

Table 2. Prediction results of different models with 10-fold cross-validation based on different
preprocessing spectral data.

Spectra Types Modeling Methods Pretreatment Methods Rcv RMSECV/%

S1

PLSR

None 0.90 1.33
SG-MSC 0.90 1.36
SG-D1 0.91 1.31

SG-SNV 0.90 1.35

LS-SVM

None 0.89 1.30
SG-MSC 0.88 1.33
SG-D1 0.91 1.21

SG-SNV 0.91 1.31

S2

PLSR

None 0.92 1.16
SG-MSC 0.93 1.12
SG-D1 0.93 1.16

SG-SNV 0.93 1.11

LS-SVM

None 0.92 1.10
SG-MSC 0.92 1.05
SG-D1 0.92 1.12

SG-SNV 0.93 1.01

S3

PLSR

None 0.95 1.06
SG-MSC 0.94 1.05
SG-D1 0.93 1.07

SG-SNV 0.94 1.07

LS-SVM

None 0.93 1.07
SG-MSC 0.94 0.98
SG-D1 0.93 1.03

SG-SNV 0.93 1.05

Table 3 shows the results of MC prediction based on PLSR and LS-SVM models with
different inputs. It can be seen that the performance of models has no significant impact
after variable selection. As for S1 spectra, the wavelength number was reduced from 256
to 56 by using the UVE algorithm, which improved the modeling efficiency. By using
the combination method of UVE and SPA, the number of variables is reduced to eight,
accounting for only 3.1% of the total spectral variables. Comparing the constructed PLSR
and LS-SVM models, the LS-SVM models were better for prediction of the MC in maize
seeds, especially the LS-SVM model with only eight feature wavelengths. The Rpre and
RMSEP of the UVE-SPA-LS-SVM model were 0.91 and 1.31%, respectively. For S2 spectra,
the prediction performance of UVE-PLSR and UVE-LS-SVM models was similar, and the
number of wavelengths was reduced from 256 to 110 via the UVE algorithm. The Rpre
and RMSEP were 0.91 and 1.28% for the PLSR model, and 0.92 and 1.27% for the LS-SVM
model, respectively. Furthermore, only 14 feature wavelengths were selected via UVE-SPA.
Based on these 14 variables, the PLSR model has a decrease in accuracy of about 0.2% with
an RMSEP value of 1.48%, and the LS-SVM model has a decrease in accuracy of about 0.1%
with an RMSEP value of 1.38%. Considering the complexity and prediction accuracy of
the models, the UVE-SPA-LS-SVM model was finally identified as the best one in terms
of the S2 spectra. The corresponding Rpre and RMSEP were 0.91 and 1.38%, respectively.
For the S3 spectra, the feature wavelengths extracted by the combination of UVE and
SPA eliminated useless information and collinearity between bands. This combination
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method realized the maximum data compression and reduced the number of wavelengths
from 256 to 13. Compared with S1 and S2 spectral data, the prediction performance of the
UVE-SPA-PLSR and UVE-SPA-LS-SVM models established based on S3 spectra achieved
optimal prediction accuracy. For the former, the Rpre and RMSEP were 0.92 and 1.22%; for
the latter, the Rpre and RMSEP were 0.93 and 1.20%, respectively.
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Compared with the optimal UVE-SPA-LS-SVM models constructed by different types
of spectra, the optimal model established by the S1 spectra was superior to the S2 spectra.
The reason for this may be that S2 spectral data contain more information about endosperm
tissue, while S1 spectral data contain both endosperm and embryo information. The water
of maize seeds is stored more in the embryo region, so the S1 spectra are more directly
related to water. As a result, the corresponding PLSR and LS-SVM models obtained higher
accuracy in the prediction of MC in maize seeds. In addition, it should be noticed that the
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prediction performance of the models built on the S3 spectrum was better than that of the
S1 and S2 spectrum models. The reason for this may be that S3 spectral data fuse S1 and S2,
which characterizes more water-related information. In conclusion, the UVE-SPA-PLSR and
UVE-SPA-LS-SVM models built by S3 spectra achieved a better result for MC prediction.

Table 3. The results of MC prediction based on PLSR and LS-SVM models with different inputs.

Spectra
Types

Modeling
Methods

Variable Selection
Methods

No. of
Variables

Calibration Set Prediction Set

Rcal RMSEC/% Rpre RMSEP/%

S1

PLSR
None 256 0.92 1.18 0.89 1.38
UVE 56 0.92 1.26 0.90 1.38

UVE-SPA 8 0.92 1.21 0.89 1.39

LS-SVM
None 256 0.94 1.04 0.91 1.30
UVE 56 0.94 1.03 0.91 1.29

UVE-SPA 8 0.93 1.08 0.91 1.31

S2

PLSR
None 256 0.95 0.93 0.91 1.30
UVE 110 0.95 0.94 0.91 1.28

UVE-SPA 14 0.94 1.03 0.88 1.48

LS-SVM
None 256 0.98 0.67 0.92 1.32
UVE 110 0.97 0.72 0.92 1.27

UVE-SPA 14 0.97 0.73 0.91 1.38

S3

PLSR
None 256 0.95 0.94 0.93 1.18
UVE 108 0.95 0.95 0.93 1.20

UVE-SPA 13 0.95 0.97 0.92 1.22

LS-SVM
None 256 0.96 0.91 0.93 1.21
UVE 108 0.96 0.91 0.93 1.19

UVE-SPA 13 0.95 0.92 0.94 1.20

3.5. Discussion on Model Practicability

Although the models constructed by S1 and S2 spectra could achieve the MC predic-
tion, the models are not suitable for actual production. The reason for this may be that the
imaging location of a single maize seed is uncertain, and thus the required spectra cannot
be collected, reducing the prediction effect accuracy. In terms of S3, if the S3 spectra were
used to establish the model, the spectra of both sides of seeds would need to be collected at
the same time for fusion calculation, which would increase the difficulty, cost, and time of
detection. Moreover, it is not conducive to developing and promoting rapid non-destructive
testing equipment. Some research has investigated the stability of the moisture content
prediction model [27]. However, the optimal model selected according to stability may not
be the best for practical production. As for the application, the imaging location of maize
seed is random, which will lead to the randomness of the spectrum type. Moreover, some
research only explored the performance of linear models in MC detection [26]. However,
due to the influence of the collection environment, sample shape, and other factors, the
non-linear method is more suitable for the establishment of a prediction model. Therefore,
the development of a general and more accurate model is very necessary, which can reduce
the impact of imaging location on model performance.

In this section, the spectrum types of the new prediction set were not simple S1 and
S2, but the combination of S1 and S2 (S1+S2) for simulating the actual production. The
number of samples in the original prediction set was 73, so the number of samples in the
new prediction set was 146. The prediction results of the optimal models (i.e., S1-UVE-SPA-
LS-SVM and S2-UVE-SPA-LS-SVM models) for the new prediction set are shown in Table 4.
Note: the optimal model built on S3 optima will not be discussed, considering that the
results were meaningless because the spectra of both sides of seeds cannot be obtained at
the same time in practical application. Compared with the results in Table 3, the prediction
performance decreased significantly when S1-UVE-SPA-LS-SVM was applied for the new
prediction set. The Rpre and RMSEP were only 0.58 and 3.40%, respectively. The S2-UVE-
SPA-LS-SVM model was also ineffective for predicting the new prediction set with an Rpre
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of 0.79 and an RMSEP of 2.33%, respectively. However, it can be seen that the performance
of the S2-UVE-SPA-LS-SVM model was better than that of the S1-UVE-SPA-LS-SVM model
due to the use of more information, including embryo and endosperm. Through analysis,
it can be known that S1-UVE-SPA-LS-SVM and S2-UVE-SPA-LS-SVM models were not
suitable for practical application.

Table 4. Comparison of different models for building a general model.

Models Spectra Types No. of Variables Rpre RMSEP/%

S1-UVE-SPA-LS-SVM

S1+S2

8 0.58 3.40
S2-UVE-SPA-LS-SVM 14 0.79 2.33

S1+S2-PLSR 256 0.91 1.34
S1+S2-LS-SVM 256 0.92 1.30

S1+S2-UVE-PLSR 125 0.91 1.35
S1+S2-UVE-LS-SVM 66 0.92 1.30

S1+S2-UVE-SPA-PLSR 16 0.90 1.37
S1+S2-UVE-SPA-LS-SVM 22 0.91 1.32

Thinking in another way, the combination of S1 and S2 (S1+S2) was used as a new
calibration set. The number of samples in the calibration set increased from 216 to 432. All
spectra of S1 and S2 were used to establish models. Thus, the prediction models constructed
in this way can cope with different imaging locations of maize seeds. The MC prediction
results obtained by PLSR and LS-SVM models built on spectral data included in the new
calibration set are also shown in Table 4. It can be seen that the model established by the new
calibration set could obtain good predictive ability and good adaptability. The Rpre of S1+S2-
PLSR and S1+S2-LS-SVM were 0.91 and 0.92, respectively. The RMSEP values of the two
models were 1.34% and 1.30%, respectively. At the same time, the UVE and SPA algorithms
still played a significant role in dimension reduction for the new calibration set (S1+S2).
It can be seen that UVE compressed the number of wavelengths to 125 and 66 for the
two kinds of models. However, compared with the full-spectrum model, the performance
of S1+S2-UVE-PLSR and S1+S2-UVE-LS-SVM was not decreased. The RMSEP values of
the two kinds of models were 1.35% and 1.30%, respectively. After UVE, SPA further
compressed variables, and the number of wavelengths involved in modeling was reduced
to 16 and 22. Although the variable number was greatly compressed, the performance of
the two kinds of models was still good. Considering the model’s universality, simplicity,
and prediction accuracy, the S1+S2-UVE-SPA-LS-SVM was regarded as the best model with
an Rpre and RMSEP of 0.91 and 1.32%, respectively. This model can effectively avoid the
effect of imaging position on prediction accuracy and stability, so that it can be applied in
actual production.

This study proved the feasibility of hyperspectral equipment in MC detection. How-
ever, the development of rapid detection equipment based on hyperspectral imaging still
faces many problems. The first is the high cost of equipment development, leading to a
decline in profits. Secondly, the current research only focuses on a few quality indicators,
which cannot meet the market demand for the simultaneous detection of multiple indica-
tors. Therefore, in subsequent research, the application cost of this technology should be
reduced first, and then the research focus should be placed on the simultaneous detection
of multiple qualities, such as protein and vitality, etc.

4. Conclusions

This study successfully demonstrated the feasibility of using an LW-NIR-HSI technique
to detect MC in single maize seeds. The study demonstrated that the models established
based on different input spectra (i.e., S1, S2, and S3) can effectively predict the seeds’ MC
represented by the corresponding spectral data. The fused spectral data of S3 were superior
to that of S1 and S2. By comparing the models based on three types of spectral data, it was
found that the non-linear LS-SVM model was slightly better than the linear PLS-DA model
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with the same input, but both types of models could effectively evaluate the MC of single
corn seeds. The study also indicated that variable selection could simplify the models
by removing uninformative and redundant variables. The combination of UVE and SPA
proved to be a powerful variable selection tool that could extract a few feature variables
for MC prediction. Moreover, the models built on these feature variables did not reduce
the prediction performance of MC. Considering the model practicability, the combination
of S1 and S2 (S1+S2) was used to establish the prediction models. The results exhibited
that the S1+S2-UVE-SPA-LS-SVM was the best model with an Rpre and RMSEP of 0.91
and 1.32%. This model only used 22 feature wavelengths to achieve MC prediction. This
method decreases the influence of input spectra types and can randomly collect images
from any side of maize seeds. Thus, the development cost of detection equipment could be
significantly reduced. In addition, the rapid detection of the MC of maize seeds can reduce
losses caused by excessive moisture content, such as fungal infection.
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