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Abstract: Stereo matching is a depth perception method for plant phenotyping with high through-
put. In recent years, the accuracy and real-time performance of the stereo matching models have 
been greatly improved. While the training process relies on specialized large-scale datasets, in this 
research, we aim to address the issue in building stereo matching datasets. A semi-automatic 
method was proposed to acquire the ground truth, including camera calibration, image registration, 
and disparity image generation. On the basis of this method, spinach, tomato, pepper, and pumpkin 
were considered for experiment, and a dataset named PlantStereo was built for reconstruction. Tak-
ing data size, disparity accuracy, disparity density, and data type into consideration, PlantStereo 
outperforms other representative stereo matching datasets. Experimental results showed that, com-
pared with the disparity accuracy at pixel level, the disparity accuracy at sub-pixel level can remark-
ably improve the matching accuracy. More specifically, for PSMNet, the 𝐸𝑃𝐸 and 𝑏𝑎𝑑 − 3 error 
decreased 0.30 pixels and 2.13%, respectively. For GwcNet, the 𝐸𝑃𝐸 and 𝑏𝑎𝑑 − 3 error decreased 
0.08 pixels and 0.42%, respectively. In addition, the proposed workflow based on stereo matching 
can achieve competitive results compared with other depth perception methods, such as Time-of-
Flight (ToF) and structured light, when considering depth error (2.5 mm at 0.7 m), real-time perfor-
mance (50 fps at 1046 × 606), and cost. The proposed method can be adopted to build stereo match-
ing datasets, and the workflow can be used for depth perception in plant phenotyping. 
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1. Introduction 
High throughput plant phenotyping is critical to agricultural production, which can 

help in increasing food production and solving the global famine problem. Accurate, ro-
bust, and fast, depth perception and 3D reconstruction methods are key technologies in 
plant phenotyping [1,2]. The reconstructed 3D models can be used for plant monitoring 
and plant phenotypic parameters acquisition, such as height, length, and leaf area. These 
parameters are difficult to calculate through only 2D information. In recent years, with 
the rapid development of computer science and robotic vision, a large number of depth 
perception methods have been developed for plant phenotyping, such as structured light 
[3–5], ToF [6–9], binocular stereo matching [10–13], etc. Although structured light system 
can obtain depth images with high accuracy, it has the defects of high cost, being time-
consuming, and showing poor real-time performance. Compared with other methods, 
ToF has the defects of high cost, low depth accuracy, and low resolution for depth images. 

Based on disparity estimation between left and right view images and the principle 
of binocular vision, stereo matching is one of the most fundamental tasks in computer 
vision and has been studied for decades [14]. Compared with other depth perception 
methods, stereo matching can provide fast and dense depth estimation with relatively 
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low cost [15]. Therefore, stereo matching has been widely applied in many fields, includ-
ing plant phenotyping [2,16], remote sensing [17], autonomous driving [18,19], or other 
applications [20]. For example, Xiang et al. [12] set up a portable stereo vision system 
called PhenoStereo and proposed a pipeline consisting of Mask R-CNN and SGBM to 
measure the diameter of the sorghum. The results showed that the system operated at 14 
fps and with a mean absolute error of 1.44 mm. Malekabadi et al. [11] also set up a stereo 
vision system for tree reconstruction. In their study, traditional algorithms, including both 
local and global methods, were adopted for depth perception, such as ABLM and ABGM 
algorithms. The parameter of the algorithms, such as window size, was optimized on the 
Middlebury dataset. The matching accuracy was not good because the deep learning 
methods were not applied for training and testing on their application scenario. However, 
due to the difficulty in obtaining the ground truth (disparity image), the ground truth is 
missing in the previous studies mentioned above. The matching accuracy could not be 
evaluated in a direct manner, and phenotypic parameters or depth values could be used 
for only indirect evaluation. 

In recent years, convolutional neural network (CNN) [21–23] and deep learning 
methods [24,25] have greatly improved the performance of stereo matching, bringing in 
more accurate, faster, and more dense disparity estimation. While the commonly adopted 
methods based on supervised deep learning are data-thirsty [14], the end-to-end models 
based on deep learning could not be trained without the ground truth or the specialized 
datasets, and they require massive labeled disparity images to reach good performance 
[15]. Thus, it is essential to develop a method to obtain ground truth and build stereo 
matching datasets for specific scenes [16]. However, different from other tasks in com-
puter vision, such as image classification, object detection, and semantic/instance segmen-
tation, the labeled disparity images in stereo matching task are difficult to obtain in real 
scenes [10] due to the amount of human labor involved in setting up the scenes and anno-
tating ground truth information [26]. In order to solve the problems mentioned above, 
many stereo matching datasets related to autonomous driving [27–30] and depth percep-
tion in indoor [31–36] or outdoor environment [37–39] have been developed on the basis 
of various methods, such as simulation software [40,41], LiDAR [18], structured light sys-
tem [36], etc. However, there are few studies on building stereo matching datasets to-
wards other specialized scenes, such as plant phenotyping and agricultural production. 
For example, Liu et al. [16] built a stereo matching dataset for forest reconstruction, where 
the disparity image was obtained directly through a binocular camera. Although the deep 
learning models were trained in this scene, the ground truth has defects, such as lower 
disparity accuracy and density. 

As we can see, there are still many aspects that need to be improved for the repre-
sentative and published stereo matching datasets, such as data size (number of image 
pairs for training), data type (synthetic or real), disparity density (proportion of valid pix-
els in disparity images), and disparity accuracy (pixel level or sub-pixel level). On the one 
hand, data size is important for methods based on deep learning [26]; thus, a large-scale 
dataset is useful to avoid overfitting [40]. Moreover, as for data type, the model trained 
on large-scale synthetic stereo matching datasets [40,41] is difficult to generalize in real 
scenes. On the other hand, regarding the current public stereo datasets with disparity 
lower than 20% [18,28–30,38], it is difficult to meet the requirements of deep learning mod-
els. We also noticed that disparity accuracy and data quality of the ground truth is another 
important factor to influence the matching accuracy of the models based on deep learning. 
Before the appearance of deep learning methods, traditional stereo matching algorithms 
[42] served this task as a classification problem, and could only attain the matching accu-
racy at pixel level. The emergence of deep learning has brought a revolutionary change to 
the stereo matching task, which defines a loss function and converts the original classifi-
cation problem to a regression problem [21,43]. At present, the end-point error (𝐸𝑃𝐸) of 
deep learning models has been less than one pixel on the most popular benchmarks 
[24,25], such as Middlebury [36] and KITTI [29,30], while the most popular datasets [40,41] 
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still possess disparity accuracy of the ground truth at pixel level, which to some extent 
influences the development of models based on deep learning. 

In this article, we aim to address the issue of stereo matching datasets mentioned 
above and provide a feasible depth perception method for plant phenotyping and recon-
struction. Overall, the main contributions of this paper are listed as follows: 
• A data sampling system was set up to build a dataset for stereo matching. The diffi-

culty in obtaining the ground truth can be solved on the basis of the semi-automatic 
pipeline we propose, including camera calibration, image registration, and disparity 
image generation. 

• A stereo matching dataset named PlantStereo was published for plant reconstruction 
and phenotyping. The PlantStereo dataset is promising and has potential compared 
with other representative stereo matching datasets when considering disparity accu-
racy, disparity density, and data type. 

• The depth perception workflow proposed in this study is competitive in aspects of 
depth perception error (2.5 mm at 0.7 m), real-time performance (50 fps at 1046 × 606), 
and cost, compared with depth cameras based on other methods. 
The remainder of this paper is organized as follows: Section 2 introduces the method 

to obtain the ground truth and the workflow for depth perception we propose in detail. 
Experimental results on PlantStereo are reported in Section 3. In Section 4, we provide a 
detailed discussion of our dataset and workflow, and compare them with other repre-
sentative studies. Finally, Section 5 concludes the paper. 

2. Materials and Methods 
2.1. System Set Up 

In this research, a binocular stereo camera ZED in version 2 (Stereolabs Inc., San Fran-
cisco, CA, USA) was used to capture image pairs in left and right view. These image pairs 
could be used to construct the dataset and served as the input of the stereo matching al-
gorithms. The ground truth of the dataset can be obtained directly through the depth im-
age acquired from the ZED camera and the relationship between the disparity and the 
depth. However, the ground truth obtained from this method had the defects of lower 
disparity accuracy and disparity density [16], due to the low accuracy in depth perception 
of the ZED camera. For this reason and in order to improve the research in [16], another 
depth camera, Mech-Mind Pro S Enhanced camera (Mech-Mind Robotics Technologies 
Ltd., Beijing, China) based on structured light was adopted to acquire the disparity image 
and build the PlantStereo dataset, which could obtain the depth image with higher accu-
racy and density. The parameters, such as Field of View (FoV), image resolution, working 
range, and depth accuracy, of the two cameras adopted in this research are listed in Table 
1 in detail. 

Table 1. Camera parameters adopted in this research. 

Camera Mech-Mind Pro S Enhanced Stereolabs ZED 2 
Principles and Techniques Structured light depth camera Passive stereo depth camera 

Focal Length (mm) 7.90 4.00 

FoV (°) 
40.61 × 26.99 at 0.5 m 
43.60 × 25.36 at 1.0 m 

110 × 70 

Resolution (pixel) 1920 × 1200 2208 × 1242 
Range (m) 0.5–1.0 0.2–20 

Depth Accuracy 0.1 mm at 0.6 m / 
Size (mm) 265 × 57 × 100 175 × 30 × 33 

Cost (USD) 8000 500 
Mass (g) 1600 124 
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During the experiment, the relative position of the two cameras needs to be fixed to 
determine the coordinates of the corresponding pixels in the two images. In addition, the 
objects must be within the FoV of the two cameras. For these reasons, we set up an image 
acquisition system, as shown in Figure 1. The two cameras were fixed through a custom-
ized fastenings at the height of 70 cm. The experimental objects were placed at the bottom 
of the platform with the length of 60 cm and width of 40 cm. The ZED camera was used 
to capture the original left and right view image pairs. According to other stereo matching 
benchmarks, such as ETH3D [37] and KITTI [38], the ground truth was generated from 
the depth image acquired from 3D scanner or LiDAR. We find that the depth accuracy is 
the key issue for the quality of the ground truth. Due to the fact that the Mech-Mind cam-
era can perform depth perception with higher accuracy (0.1 mm at 0.6 m), in our study, 
the Mech-Mind camera was, therefore, used to capture the original depth image and gen-
erate the disparity image. Through the method introduced in Sections 2.2.1–2.2.3, a depth 
image can be aligned to the left image and converted into a disparity image. This disparity 
image served as the ground truth to build the stereo matching dataset. 

 
Figure 1. Data sampling system set up in this research. The system consists mainly of two cameras: 
binocular stereo ZED camera to obtain left and right view images for input and Mech-Mind Pro S 
Enhanced depth camera based on structured light to obtain depth information and generate dispar-
ity images for ground truth. 

2.2. Methods 
Based on the sampling system we set up in the above sub-section, the core problem 

with obtaining the disparity image for ground truth was determining how to calculate the 
pixel coordinates on the left image from the depth image. In this subsection, we introduce 
the solution for this problem that we propose in detail. In general, our method consists 
mainly of three steps: camera calibration, image registration, and disparity image gener-
ation. The method can obtain disparity image as ground truth in a semi-automatic man-
ner. Next, we adopted various stereo matching methods to evaluate the PlantStereo da-
taset, including both traditional methods and methods based on deep learning. The 
ground truth obtained through the proposed method can be used to supervise the stereo 
matching methods based on deep learning. The schematic diagram of our workflow is 
shown in Figure 2. 



Agriculture 2023, 13, 330 5 of 18 
 

 

 
Figure 2. Schematic diagram of the workflow in this study. The proposed semi-automatic method 
was used to generate disparity images. These disparity images served as the ground truth of the 
dataset. Both traditional and deep learning methods were adopted for plant reconstruction. 

2.2.1. Camera Calibration 
In order to calculate the pixel coordinates on the left image from the depth image, the 

relative extrinsic parameters between the two cameras, including the rotation matrix and 
translation matrix, need to be calculated first. Figure 3 shows the schematic diagram of 
our method. By considering the world coordinate system as the interchange coordinate 
system, we can calculate the relative rotation matrix 𝑹𝒎𝒆𝒄𝒉→𝒁𝑬𝑫 from the Mech-Mind cam-
era to the ZED camera through Equation (1), 𝑹𝒎𝒆𝒄𝒉→𝒁𝑬𝑫 = 𝑹𝒁𝑬𝑫(𝑹𝒎𝒆𝒄𝒉)ିଵ, (1) 

where 𝑹𝒎𝒆𝒄𝒉 and 𝑹𝒁𝑬𝑫 denote the rotation matrices of the Mech-Mind camera and the 
ZED camera relative to the world coordinate system, respectively. Similarly, we can also 
calculate the relative translation matrix 𝒕𝒎𝒆𝒄𝒉→𝒁𝑬𝑫  from the Mech-Mind camera to the 
ZED camera through Equation (2),             𝒕𝒎𝒆𝒄𝒉→𝒁𝑬𝑫 = 𝒕𝒁𝑬𝑫 − 𝑹𝒁𝑬𝑫(𝑹𝒎𝒆𝒄𝒉)ିଵ𝒕𝒎𝒆𝒄𝒉, (2) 

accordingly, in Equation (2), 𝒕𝒎𝒆𝒄𝒉  and 𝒕𝒁𝑬𝑫  represent the translation matrices of the 
Mech-Mind camera and the ZED camera relative to the world coordinate system, respec-
tively. All the extrinsic matrices mentioned above, including rotation matrices 𝑹𝒎𝒆𝒄𝒉 and 𝑹𝒁𝑬𝑫 and translation matrices 𝒕𝒎𝒆𝒄𝒉 and 𝒕𝒁𝑬𝑫, could be obtained through the monocular 
camera calibration method with checkerboard [44]. Therefore, the coordinate system 
transformation relationship denoted by the solid line in Figure 3 could be converted to the 
relationship denoted by the dashed line. 

2.2.2. Image Registration 
Disparity images could be generated by registering the depth image captured by the 

Mech-Mind camera on the left image captured by ZED camera. These disparity images 
could serve as ground truth in the dataset. In order to illustrate the image registration 
steps, we can take the ith pixel on the depth image captured by the Mech-Mind camera as 
an example. By going through the following three steps, illustrated in Equations (3), (5), 
and (6), the coordinate of the pixel in the pixel coordinate system of the Mech-Mind cam-
era could be transformed to the pixel coordinate system of the ZED camera. 

First, the i th pixel in the pixel coordinate system of the Mech-Mind camera 𝑰𝒎𝒆𝒄𝒉𝒊 =ൣ𝑢௠௘௖௛௜ , 𝑣௠௘௖௛௜ , 1൧் was transformed to the point in the camera coordinate system of the 
Mech-Mind camera 𝑷𝒎𝒆𝒄𝒉𝒊 = ൣ𝑥௠௘௖௛௜ , 𝑦௠௘௖௛௜ , 𝑧௠௘௖௛௜ ൧் through Equation (3), 
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𝑷𝒎𝒆𝒄𝒉𝒊 = 𝑧௠௘௖௛௜ (𝑲𝒎𝒆𝒄𝒉)ିଵ𝑰𝒎𝒆𝒄𝒉𝒊 , (3) 

where 𝑧௠௘௖௛௜  denotes the depth value of the ith pixel in depth image and is equal to the 
third term of the 𝑷𝒎𝒆𝒄𝒉𝒊 . 𝑲𝒎𝒆𝒄𝒉 denotes the intrinsic matrix of the Mech-Mind camera. 
Specifically, 𝑲𝒎𝒆𝒄𝒉 is a 3 × 3 matrix, which could be obtained through monocular camera 
calibration, 

𝑲𝒎𝒆𝒄𝒉 = ൥𝑓௫,௠௘௖௛ 0 𝑢଴,௠௘௖௛0 𝑓௬,௠௘௖௛ 𝑣଴,௠௘௖௛0 0 1 ൩, (4) 

Then, the point in the camera coordinate system of the Mech-Mind camera 𝑷𝒎𝒆𝒄𝒉𝒊  
was transformed to the point in the camera coordinate system of the ZED camera 𝑷𝒁𝑬𝑫𝒊 =ൣ𝑥௓ா஽௜ , 𝑦௓ா஽௜ , 𝑧௓ா஽௜ ൧் through Equation (5), 𝑷𝒁𝑬𝑫𝒊 = 𝑹𝒎𝒆𝒄𝒉→𝒁𝑬𝑫𝑷𝒎𝒆𝒄𝒉𝒊 + 𝒕𝒎𝒆𝒄𝒉→𝒁𝑬𝑫, (5) 

where 𝑹𝒎𝒆𝒄𝒉→𝒁𝑬𝑫 and 𝒕𝒎𝒆𝒄𝒉→𝒁𝑬𝑫 denote the relative rotation matrix and relative trans-
lation matrix, respectively, between the Mech-Mind camera and ZED camera obtained 
from Equations (1) and (2) in Section 2.2.1. 

Finally, the point in the camera coordinate system of the ZED camera 𝑷𝒁𝑬𝑫𝒊  was 
transformed to the pixel in the pixel coordinate system of the ZED camera 𝑰𝒁𝑬𝑫𝒊 =ൣ𝑢௓ா஽௜ , 𝑣௓ா஽௜ , 1൧் through Equation (6), 𝑰𝒁𝑬𝑫𝒊 = 𝑲𝒁𝑬𝑫𝑷𝒁𝑬𝑫𝒊௭ೋಶವ೔ , (6) 

where 𝑲𝒁𝑬𝑫 is the intrinsic matrix of the ZED camera. Specifically, 𝑲𝒁𝑬𝑫 is also a 3 × 3 
matrix, which could be obtained through monocular camera calibration, 

𝑲𝒁𝑬𝑫 = ൥𝑓௫,௓ா஽ 0 𝑢଴,௓ா஽0 𝑓௬,௓ா஽ 𝑣଴,௓ா஽0 0 1 ൩, (7) 

where 𝑧௓ா஽௜  indicates the depth value of the i th pixel, which is equal to the third term of 
the 𝑷𝒁𝑬𝑫𝒊  calculated from Equation (5). Through the above description, the coordinate of 
the ith pixel in the pixel coordinate system of the Mech-Mind camera 𝑰𝒎𝒆𝒄𝒉𝒊 =ൣ𝑢௠௘௖௛௜ , 𝑣௠௘௖௛௜ , 1൧் could be transformed to the pixel coordinate system of the ZED camera 𝑰𝒁𝑬𝑫𝒊 = ൣ𝑢௓ா஽௜ , 𝑣௓ா஽௜ , 1൧். In other words, the pixel in depth image could be mapped to the 
pixel in the left image [38]. 
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Figure 3. The schematic diagram of the method we proposed to calculate the pixel coordinates on 
left image from the depth image. 

2.2.3. Disparity Image Generation 
We can traverse all the pixels in the depth image. Thus, each pixel in the depth image 

captured by the Mech-Mind camera could be aligned to left image captured by ZED cam-
era through Equations (3), (5), and (6). After transforming the depth value to disparity 
value through Equation (8), a disparity image could be generated and served as ground 
truth. 𝑑௜ = ௕ೋಶವ௙ೋಶವ௭೘೐೎೓೔ , (8) 

where 𝑏௓ா஽ and 𝑓௓ா஽ are the baseline and the focal length of the ZED camera, respec-
tively. Both intrinsic parameters could be obtained through the camera calibration step in 
Section 2.2.1. 

2.2.4. Stereo Matching Methods 
In this study, we adopt both representative traditional and learning-based methods 

to test on the PlantStereo dataset, as illustrated in Figure 2. The disparity map obtained 
from the above proposed method could be used to evaluate the algorithms and supervise 
the stereo matching models based on deep learning. The two traditional algorithms, BM 
and SGM, were implemented using python and OpenCV. For BM, the block size was set 
to 15. For SGM, the matching block size was set to 3, and the penalty coefficients 𝑃ଵ and 𝑃ଶ were set to 216 and 864, respectively. In the process of left and right consistency check, 
we set the maximum difference to 1. The PSMNet and GwcNet were implemented using 
PyTorch framework. Both models were end-to-end trained with the Adam (𝛽ଵ = 0.9, 𝛽ଶ = 
0.999) optimizer. We performed color normalization (normalized each channel of the im-
age by subtracting their means and dividing their standard deviations) on the entire 
PlantStereo dataset for data preprocessing. The learning rate of the training process began 
at 0.001 for the first 200 epochs and at 0.0001 for the remaining 300 epochs. The batch size 
was fixed to 1 for the training process on one 24 GB NVIDIA RTX 3090 GPU. The processor 
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used in this study was an Intel Core i7-11700K, with a 3.60 GHz processor, 32 GB RAM, 
and 3 TB hard disk. Code and data relevant to this study can be found online at 
https://github.com/wangqingyu985/PlantStereo, accessed on 18 January 2023. 

Traditional methods. The first traditional method was Block Matching (BM). It trav-
ersed and computed the local similarity of the image blocks between left and right, and 
then selected the minimum cost as the predicted disparity. 

The Semi-Global Matching (SGM) [42] method performed cost aggregation along dif-
ferent paths on the basis of the energy function before the disparity selection step. In ad-
dition, it performed post-processing, such as left–right check and sub-pixel interpolation. 

Learning-based methods. The first learning-based method was Pyramid Stereo 
Matching Network (PSMNet) [22]. PSMNet is an end-to-end stereo matching network. 
The disparity image could be calculated from the input left and right image pair. First, the 
feature map of input was obtained through the weight-sharing 2D CNN structure. Next, 
a 4D cost volume was obtained through concatenation operation. Then, a stacked hour-
glass 3D CNN structure was adopted for cost aggregation. Finally, the softmin function 
was used to regress the predicted disparity image. 

Based on PSMNet, the Group-wise Correlation Stereo Network (GwcNet) [23] im-
proved the cost volume construction step with a group-wise correlation operation, which 
made it faster and more efficient. In addition, GwcNet optimized the stacked hourglass 
3D CNN structure in the cost aggregation step, which could regress the disparity image 
with higher accuracy. For both models based on deep learning mentioned above, the 
Smooth L1 loss function was adopted to calculate the difference between the predicted 
disparity image and the ground truth, and it was taken as the final loss function. 

2.2.5. Evaluation Metrics 
Matching accuracy. In order to evaluate the matching accuracy of the above algo-

rithms in a quantitative method, we adopted three evaluation metrics called 𝑏𝑎𝑑 − 𝛿 er-
ror, 𝐸𝑃𝐸, and Root Mean Square Error (𝑅𝑀𝑆𝐸) to calculate the matching error. These eval-
uation metrics are commonly adopted indexes in stereo matching tasks. 𝐵𝑎𝑑 − 𝛿 error 
refers to the proportion of pixels whose errors are greater than 𝛿 . The 𝑏𝑎𝑑 − 𝛿  error 
could be calculated through Equation (9): 𝑏𝑎𝑑 − 𝛿 = ∑ ൣหௗ෠(௫,௬)ିௗ∗(௫,௬)หவఋ൧(ೣ,೤) ே × 100％, (9) 

where 𝑑መ(𝑥, 𝑦) and 𝑑∗(𝑥, 𝑦) denote the disparity predicted by stereo matching algorithms 
and the disparity given by ground truth, respectively. 𝑥 and 𝑦 represent the coordinates 
of the pixel in the disparity image. Operator [∙] indicates the value, which becomes 1 if 
the condition is established. 𝑁 denotes the number of effective pixels in one disparity 
image, where an effective pixel must meet the requirement that 0 < 𝑑∗(𝑥, 𝑦) < 𝐷௠௔௫. An-
other indicator, 𝐸𝑃𝐸, represents the matching error, on average, among the effective pix-
els. This indicator can be calculated through Equation (10): 𝐸𝑃𝐸 = ∑ หௗ෠(௫,௬)ିௗ∗(௫,௬)ห(ೣ,೤) ே , (10) 

where all the terms have the same meaning as Equation (9). Similarly, the 𝑅𝑀𝑆𝐸 indicator 
can be calculated through Equation (11): 

𝑅𝑀𝑆𝐸 = ට∑ ൫ௗ෠(௫,௬)ିௗ∗(௫,௬)൯మ(ೣ,೤) ே , (11) 

where all the terms have the same meaning as Equation (10). 
Reconstruction accuracy. In order to compare the reconstruction accuracy of the pro-

posed workflow with other cameras, the depth error ∆𝐷 could be calculated through 
Equation (12): 
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∆𝐷 = 𝑏௓ா஽𝑓௓ா஽ ቀଵௗത − ଵௗതାா௉ாቁ, (12) 

where 𝑏௓ா஽ and 𝑓௓ா஽ have the same meaning as Equation (8). 𝑑̅ is the average value of 
the disparity images. 𝐸𝑃𝐸 can be calculated through Equation (10). 

3. Results 
3.1. Overview of the PlantStereo Dataset 

During the experiment, four varieties of plants were used to build the PlantStereo 
dataset, including spinach, tomato, pepper, and pumpkin. On the basis of the pipeline 
consisting of the three steps introduced in Section 2, we collected 812 pairs of images in 
total, with left image, right image, and disparity image to build the PlantStereo dataset. 
The left and right image pair served as the input of the stereo matching algorithms, and 
the disparity image served as the ground truth. For further ablation study on disparity 
accuracy, we saved the ground truth with lower accuracy (pixel level) as 8-bit integer data 
in .png format. Accordingly, we saved the ground truth with higher accuracy (sub-pixel 
level) as 32-bit floating-point data in .tiff format. More details, such as the data size in the 
training set, validation set, and test set and resolution about the PlantStereo dataset, are 
illustrated in Table 2. The split ratio of train/validation/test dataset was determined ac-
cording to the regulation in deep learning and various popular stereo matching bench-
marks that were referenced in our study, such as Scene Flow [30] and KITTI [38]. In addi-
tion, several examples in the PlantStereo dataset are shown in Figure 4; the disparity im-
ages were visualized for better demonstration. The warmer the hue, the larger the dispar-
ity value, and the lower the depth value. 

Table 2. Basic information regarding the PlantStereo dataset. 

Subset Train Validation Test All Resolution 
Spinach 160 40 100 300 1046 × 606 
Tomato 80 20 50 150 1040 × 603 
Pepper 150 30 32 212 1024 × 571 

Pumpkin 80 20 50 150 1024 × 571 
All 470 110 232 812  

 
Figure 4. Some examples in PlantStereo dataset: left image (first row), right image (center row), and 
disparity image (bottom row); spinach (first column), tomato (second column), pepper (third col-
umn), and pumpkin (forth column). Note that the disparity images have been normalized and vis-
ualized for demonstration. Best viewed in color. 
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The image registration error between the left images and the disparity images in 
PlantStereo was also evaluated quantitatively. We calculated the reprojection error of the 
inner corners on checkerboard multiple times. The results showed that there is little dif-
ference among the six calculations, and the reprojection error was 2.60 pixels, on average. 
For further comparison, we also evaluated the disparity distribution in ground truth of 
the PlantStereo dataset and other representative stereo matching datasets, such as ETH3D 
[37], ApolloScape [27], New Tsukuba [31], Scene Flow [40], and Sintel [41]. The disparity 
histogram of all the above-mentioned datasets is shown in Figure 5. 

As is clearly seen, the disparity distribution histogram of PlantStereo dataset is bi-
modal, except for the invalid pixels. This condition could be explained that the ground 
and leaf surface occupy most of the pixels in the left view image. In addition, different 
from other datasets with disparity distribution in [0, 𝐷௠௔௫], PlantStereo’s disparity ranges 
from 200 to 260, and the minimum disparity 𝐷௠௜௡ is not 0. This is because the farthest 
distance in the image pair is ground, rather than the infinite distance in outdoor scenes, 
such as autonomous driving. Compared with other datasets, the larger maximum dispar-
ity 𝐷௠௔௫  also increases the searching range of the disparity for stereo matching algo-
rithms, which is a formidable challenge for the real-time performance. In addition, the 
larger maximum disparity can more truly reflect the matching accuracy of the models in 
difficult scenes with large disparity and close distance. 

 
Figure 5. Disparity distribution in ground truth of representative stereo matching datasets, includ-
ing ETH3D [37], ApolloScape [27], New Tsukuba [31], Scene Flow [40], Sintel [41], and PlantStereo 
(proposed in this study). 

3.2. Method Comparison 
In order to achieve better plant reconstruction results, we compared the stereo match-

ing algorithms introduced in Section 2 on the PlantStereo dataset in both qualitative and 
quantitative methods. The parameters of BM and SGM methods were optimized on the 
training set of PlantStereo. Then, the two algorithms were tested on the test set. For 
PSMNet and GwcNet based on deep learning, the models were trained on the training set 
and validation set and tested on the test set of PlantStereo. The results for each of the 
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methods on the test set and corresponding left image and ground truth are shown in Fig-
ure 6 for visualization and qualitative evaluation. 

 
Figure 6. The disparity results predicted on test set of the PlantStereo. There disparity images pre-
dicted by traditional algorithms have many invalid pixels at the occluded and depth discontinuous 
regions. Higher disparity accuracy and disparity density could be obtained from the methods based 
on deep learning. Note that the disparity images have been normalized and visualized for demon-
stration. Best viewed in color. 

As we can see from Figure 6, the disparity images predicted by deep learning has 
much higher accuracy and fewer invalid and error matching pixels, compared with the 
disparity images predicted by traditional methods. Due to the limitations of the traditional 
methods, the algorithms cannot give an accurate disparity prediction at the depth discon-
tinuous regions, which were caused mainly by occlusions. Different from traditional 
methods, deep learning methods regress the disparity value for every pixel through cost 
volume. Therefore, there were no invalid pixels in the predicted disparity image. By com-
paring the results of the two traditional methods, it can be found that there were fewer 
invalid pixels in the disparity images predicted by SGM due to the cost aggregation step 
and post-processing step. These steps could give a disparity prediction on some pixels in 
the texture-less region. The difference between the disparity images predicted by PSMNet 
and GwcNet is slight and not obvious through the qualitative analysis. 

Next, the four methods were tested quantitatively on PlantStereo for real-time perfor-
mance and matching accuracy evaluation. As for computation volume and inference time, 
we calculated the model parameters (# param.) and Giga FLOating Point operations 
(GFLOPs) for both models based on deep learning (PSMNet and GwcNet). The results are 
listed in Table 3. We also tested the inference time for a single pair of images and found 
that BM and GwcNet consumed 0.02 s, on average. On the other hand, PSMNet consumed 
1.05 s, on average. Thus, it was difficult for PSMNet to satisfy the requirements for depth 
perception in real-time. The difference of the inference time between the BM and SGM 
methods was caused by the cost aggregation step in SGM. The difference of the inference 
time between PSMNet and GwcNet was caused by the improvement of cost volume con-
struction and cost aggregation steps in GwcNet. The cost volume was more efficient and 
had fewer channels in GwcNet. 

Table 3. Computation volume and inference time comparison. 

Method # Param. (M) GFLOPs Inference Time (s) 
BM / / 0.02 

SGM / / 0.19 
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PSMNet 5.36 29.22 1.05 
GwcNet 6.43 26.13 0.02 

As for matching accuracy, the evaluation metrics introduced in Section 2.2.5 were 
adopted for evaluation. We set 𝛿 of the 𝑏𝑎𝑑 − 𝛿 error to 1, 3, and 5 pixels [29], using 
these in addition to 𝐸𝑃𝐸 and 𝑅𝑀𝑆𝐸 to evaluate the four methods. The results are shown 
in Table 4. The matching accuracy of traditional methods is much lower than the methods 
based on deep learning due to the large number of occluded regions. As for traditional 
methods, SGM can perform much better than BM, especially in texture-less regions, such 
as plant surface and ground due to the cost aggregation and disparity refinement steps. 
As for learning-based methods, GwcNet can perform better than PSMNet due to the im-
provement in cost volume construction and cost aggregation steps. The group-wise cor-
relation method is more representative of the differences of pixels between left and right 
images. The 𝑏𝑎𝑑 − 3 error for GwcNet was 2.9%, and the 𝐸𝑃𝐸 for GwcNet was 0.84; this 
is lower than 1 pixel, which means the matching accuracy attained sub-pixel level on the 
PlantStereo dataset. In the following research, GwcNet was selected as the best model ac-
cording to the results. 

Table 4. Matching accuracy comparison among different methods on validation set of the 
PlantStereo dataset. 

Method 𝑩𝒂𝒅 − 𝟏 (%) 𝑩𝒂𝒅 − 𝟑 (%) 𝑩𝒂𝒅 − 𝟓 (%) 𝑬𝑷𝑬 𝑹𝑴𝑺𝑬 
BM 85.83 50.12 49.57 102.79 147.90 

SGM 71.55 37.08 36.21 71.48 122.30 
PSMNet 29.81 4.88 3.17 1.21 3.20 
GwcNet 18.11 2.9 1.77 0.84 2.56 

3.3. Ablation Study on Disparity Accuracy 
We also performed an ablation study on the disparity accuracy of the ground truth. 

The models based on deep learning were trained with ground truth in different accura-
cies, as mentioned in Section 3.2. The results were compared and are shown in Table 5, 
where ↓ represents a decrease in the matching error due to the use of the ground truth 
with accuracy at the sub-pixel level, and → represents no difference by improving the 
disparity accuracy of the ground truth. 

Table 5. Ablation study on disparity accuracy of ground truth. 

Method Subset 𝑩𝒂𝒅 − 𝟏 (%) 𝑩𝒂𝒅 − 𝟑 (%) 𝑩𝒂𝒅 − 𝟓 (%) 𝑬𝑷𝑬 𝑹𝑴𝑺𝑬 

PSMNet 

Spinach ↓ 13.50 ↓ 5.37 ↓ 3.32 ↓ 0.43 ↓ 0.43 
Tomato ↓ 3.41 ↓ 1.13 ↓ 1.19 ↓ 0.16 ↓ 0.22 
Pepper ↓ 7.63 ↓ 0.98 ↓ 0.72 ↓ 0.23 ↓ 0.68 

Pumpkin ↓ 8.66 ↓ 1.02 ↓ 0.70 ↓ 0.28 ↓ 0.75 

GwcNet 

Spinach ↓ 0.08 ↓ 0.10 ↓ 0.07 → ↓ 0.01 
Tomato ↓ 3.16 ↓ 0.66 ↓ 0.31 ↓ 0.15 ↓ 0.28 
Pepper ↓ 1.79 ↓ 0.86 ↓ 0.95 ↓ 0.06 ↓ 0.22 

Pumpkin ↓ 0.88 ↓ 0.04 ↓ 0.25 ↓ 0.11 ↓ 0.29 

The results indicated that the performance on the test set improved with the increase 
in disparity accuracy from pixel level to sub-pixel level, except for the 𝐸𝑃𝐸 for GwcNet 
on the spinach subset. The 𝐸𝑃𝐸 of the PSMNet model decreased 0.3 pixels, from 1.31 pix-
els to 1.01 pixels, on average. Similarly, for GwcNet model, the 𝐸𝑃𝐸 also decreased 0.08 
pixels, from 0.91 pixels to 0.83 pixels, on average. As for another important evaluation 
metric, the 𝑏𝑎𝑑 − 3 error of the PSMNet model decreased 2.13%, from 6.07% to 3.94%; 
the 𝑏𝑎𝑑 − 3 error for GwcNet model also decreased 0.42%, from 3.51% to 3.09%. For less 
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important evaluation metrics, such as 𝑏𝑎𝑑 − 1 error, 𝑏𝑎𝑑 − 5 error, and 𝑅𝑀𝑆𝐸, experi-
ment results showed that they all decreased: 8.30%, 1.48%, and 0.52, respectively, on the 
PSMNet model. These evaluation metrics also decreased: 1.48%, 0.40%, and 0.20, respec-
tively, on the GwcNet model. The improvement of the matching accuracy is more signif-
icant on the PSMNet model than on the GwcNet model. This indicates that the improve-
ment on disparity accuracy of the ground truth could bring more improvement in match-
ing accuracy to the model with lower performance. It is worth noting that the ground 
truth with higher disparity accuracy improved the matching accuracy without increasing 
the parameters or inference time of the model based on deep learning. This indicated that, 
to some extent, PlantStereo can solve the problem of imbalance between data quality and 
learning-based models. 

4. Discussion 
In this study, a semi-automatic method to build the stereo matching dataset was pro-

posed, and the feasibility of the 3D reconstruction workflow was verified through the ex-
periments on various types of plants. In this section, we provide a detailed comparison 
between our study and other representative studies. First, we compare the proposed 
PlantStereo dataset with other popular stereo matching datasets in both qualitative and 
quantitative methods. Furthermore, the depth perception workflow based on stereo 
matching is also compared with other depth perception methods, such as ToF and struc-
tured light. 

4.1. Comparison with Other Stereo Matching Datasets 
In Figure 7, we provided an example of the left images and the corresponding dis-

parity images from representative stereo matching datasets. The ground truth of these 
representative datasets were obtained through various methods introduced in Section 1, 
including simulation software (Scene Flow dataset [40]), structured light (Middlebury 
2006 dataset [35]), LiDAR (KITTI 2015 dataset [30]), stereo matching algorithms (City-
scapes dataset [19]), and manual annotation (Middlebury 2001 dataset [26]). The 
PlantStereo dataset proposed in this study is illustrated in the last column of Figure 7. As 
we can see from Figure 7, due to the shortcomings of the ground truth obtaining methods, 
there are many invalid pixels in the disparity images of the KITTI 2015 dataset and the 
Cityscapes dataset. In other words, the disparity density of these two datasets is low, 
which may influence the training of the network. In PlantStereo, only a minority of the 
pixels are invalid in the disparity images at the depth discontinuous regions. The disparity 
density of the PlantStereo dataset is much higher than the datasets which obtain ground 
truth from LiDAR or existing stereo matching algorithms. 

 
Figure 7. Representative stereo matching datasets constructed by the methods mentioned above: 
simulation software (Scene Flow [40]), structured light (Middlebury 2006 [35]), LiDAR (KITTI 2015 
[30]), stereo matching algorithms (Cityscapes [19]), annotation (Middlebury 2001 [26]), and depth 
camera (PlantStereo). The first row represents the left images of the corresponding dataset, and the 
second row represents the corresponding disparity images, which have been normalized and visu-
alized for demonstration. Best viewed in color. 
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In addition, we compared the PlantStereo dataset with other public stereo matching 
datasets using a quantitative method. The important factors of a stereo matching dataset 
were taken into consideration, including scene, data size, disparity accuracy, disparity 
density, and data type. The results are listed in Table 6. 

Table 6. Quantitative comparison between the PlantStereo dataset and other popular published ste-
reo matching datasets. 

Dataset Tools Scene Data Size Disparity Accuracy Disparity Density Data Type 
Middlebury [26,33–36] Structured light Indoor 95 Sub-pixel ≈94% Real 

KITTI [29,30] LiDAR Driving 789 Pixel ≈19% Real 
Scene Flow [40] Software Animation 39049 Pixel 100% Synthetic 

HR-VS [43] Software Driving 780 Sub-pixel 100% Synthetic 
ETH3D [37] Scanner In/out door 47 Pixel ≈69% Real 

DrivingStereo [18] LiDAR Driving 182188 Pixel ≈4% Real 
InStereo2K [32] Structured light Indoor 2060 Pixel ≈87% Real 
Argoverse [28] LiDAR Driving 6624 Pixel ≈0.86% Real 

Sintel [41] Software Animation 1064 Pixel 100% Synthetic 
CATS [38] LiDAR In/out door 1372 Pixel ≈8% Real 

Ladicky [39] Annotation Driving 70 Pixel ≈60% Real 
Cityscapes [19] SGM Driving 3475 Pixel ≈38% Real 

PlantStereo Depth camera Plant 812 Sub-pixel ≈88% Real 

As we can see from Table 6, there have been many stereo matching datasets applied 
to indoor or outdoor reconstruction [36–38], autonomous driving [18,30], or animation 
[31,41]. PlantStereo is the first specialized dataset in plant reconstruction and phenotyping 
based on stereo matching. In terms of data size, PlantStereo exceeds the datasets [26,33–
37,39] in early years and is appropriate to be used to train or fine-tune the stereo matching 
models based on deep learning. In terms of the disparity accuracy of the ground truth, 
only three datasets—Middlebury 2014 [36], HR-VS [43], and PlantStereo—achieved sub-
pixel accuracy. The Middlebury 2014 dataset [36] has a small data size, which makes it 
difficult to train the network. The HR-VS dataset [43] was a synthetic dataset, which may 
affect the generalization ability of the models. At present, the deep learning models have 
attained sub-pixel matching accuracy on popular benchmarks; datasets that provide 
ground truth and disparity images with pixel-level accuracy have difficulty in meeting 
the requirements of learning-based models. On the other hand, the experimental results 
in Section 3.3 also confirmed this point of view. In terms of disparity density, PlantStereo 
reached 88% and is close to 90%, which is much better than the datasets [18,28–30,38] built 
from LiDAR, 3D scanner [37], or existing stereo matching algorithms [19]. This result is 
lower than the synthetic datasets generated by simulation software [31,40,41,43]. In terms 
of data type, PlantStereo is a dataset built in a real scenario, which can improve the gener-
alization performance of deep learning models, compared with datasets constructed in 
simulation software [31,40,41,43]. In general, PlantStereo dataset is promising and has po-
tential when considering all conditions mentioned above, such as data size, disparity ac-
curacy, disparity density, and data type. 

4.2. Comparison with Other Depth Cameras Based on Different Depth Perception Methods 
The depth perception error and the frame rate are the two most important indicators 

for a depth camera or a depth perception workflow, which to some extent, can reflect the 
performance from two different perspectives. For this purpose, we compared the pro-
posed workflow on the basis of passive stereo matching with other popular depth percep-
tion methods, such as active stereo matching, ToF, and structured light. We chose three 
commercial depth cameras, namely RealSense D435 (Intel Corporation, Santa Clara, CA, 
USA), Azure Kinect (Microsoft Corporation, Redmond, WA, USA), and Mech-Mind Pro 
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S Enhanced for comparison. These are representative cameras for the three depth percep-
tion methods mentioned above. The depth error and the frame rate of RealSense D435 
[45], Azure Kinect, and Mech-Mind Pro S Enhanced cameras are the calculated results 
from officially reported data. The depth error of our passive stereo-based workflow is 
calculated through Equation (12) in Section 2.2.4. Here, 𝑑̅ = 224.76 is the average value of 
disparity for PlantStereo dataset. We chose the GwcNet, which has 𝐸𝑃𝐸 = 0.84 pixels on 
the validation set of PlantStereo for computation, as listed in Table 4. The frame rate of our 
workflow is calculated from the results of GwcNet, as listed in Table 3. The results for 
depth perception error and the frame rate or time per frame of each cameras are listed in 
Table 7 in detail. 

Table 7. Comparison between our proposed workflow based on passive stereo and other repre-
sentative commercial depth cameras based on other depth perception methods, including RealSense 
D435 [45] based on active stereo, Azure Kinect based on ToF, and Mech-Mind Pro S Enhanced based 
on structured light. 

Camera Principle Error Frame Rate (fps) or Time per Frame (s) 

RealSense D435 [45] Active Stereo 14 mm at 0.7 m 
30 fps at 1280 × 800 
90 fps at 848 × 480 

Azure Kinect  ToF 11.7 mm at 0.7 m 30 fps at 640 × 576 with 0.5–3.86 m 
30 fps at 320 × 288 with 0.5–5.46 m 

Mech-Mind Pro S Enhanced Structured Light 0.1 mm at 0.7 m 3–5 s per frame at 1920 × 1200 
Our Workflow Passive Stereo 2.5 mm at 0.7 m 50 fps at 1046 × 606 

As we can see from Table 7, the proposed workflow based on passive stereo can 
achieve competitive results when considering depth perception error (2.5 mm at 0.7 m) 
compared with RealSense D435 camera (14 mm at 0.7 m) based on active stereo and Azure 
Kinect camera (11.7 mm at 0.7 m) based on ToF. On the other hand, when considering 
real-time performance, our workflow (50 fps at 1046 × 606) can perform much better com-
pared with depth cameras based on structured light, such as Mech-Mind Pro S Enhanced 
(3–5 s per frame at 1046 × 606). Although the Azure Kinect camera based on ToF can obtain 
depth images at 30 fps, the resolution of the depth images is low (640 × 576 with 0.5–3.86 
m or 320 × 288 with 0.5–5.46 m), due to the shortcomings of the ToF depth perception 
principle. The real-time performance of our workflow is as good as the RealSense D435 
camera based on active stereo. It is also worth noting that the cost of the proposed work-
flow based on passive stereo matching is much lower than that of the systems based on 
structured light and ToF, especially the Mech-Mind Pro S Enhanced camera based on 
structured light. Generally speaking, the workflow proposed in this paper could obtain 
competitive results when taking all factors into consideration, including depth perception 
error, real-time performance, and cost. Thus, this workflow has potential to be applied to 
scenes with appropriate depth perception distance, such as plant reconstruction and plant 
phenotyping. 

5. Conclusions 
In this research, we proposed a semi-automatic method to build dataset for stereo 

matching and plant reconstruction. There are difficulties in obtaining the ground truth to 
train the deep learning models. Therefore, it is difficult for the accuracy of depth percep-
tion and plant phenotyping to meet the requirements. The problems mentioned above can 
be solved on the basis of the method we proposed. The technical routing of this method 
consists of three steps, including camera calibration, image registration, and disparity im-
age generation. On the basis of this pipeline, a new stereo matching benchmark special-
ized in plant reconstruction, named PlantStereo was built. The proposed method can ob-
tain ground truth with high quality (high disparity accuracy and disparity density). In the 
experiment, both traditional and deep learning methods were adopted to test on the 
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PlantStereo dataset. The methods based on deep learning (PSMNet and GwcNet) outper-
formed traditional methods (BM and SGM) with better matching accuracy and less invalid 
pixels failed to match. The best results were 𝑏𝑎𝑑 − 3 error = 2.9% and 𝐸𝑃𝐸 = 0.84 pixels 
obtained from GwcNet. We also demonstrated that the ground truth with higher disparity 
accuracy (sub-pixel level compared with pixel level) can remarkably improve the match-
ing accuracy of models based on deep learning. The dataset and workflow in this study 
were also compared with other similar studies. On the one hand, compared with other 
representative stereo matching datasets, PlantStereo is the first dataset for plant recon-
struction in a real scenario, with higher disparity accuracy (sub-pixel level) and disparity 
density (88%). On the other hand, compared with other representative commercial depth 
cameras based on structured light or ToF, the workflow based on passive stereo matching 
proposed in this paper could obtain competitive results. This conclusion is based on three 
important factors: depth perception error (2.5 mm at 0.7 m), real-time performance (50 fps 
at 1046 × 606), and cost. To sum up, this paper provided a potential and feasible solution 
for plant reconstruction and phenotyping with higher accuracy, better real-time perfor-
mance, and lower cost. 
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