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Abstract: Using traditional tea frost hazard risk assessment results as sample data, the four indicators
of minimum temperature, altitude, tea planting area, and tea yield were selected to consider the risk
of hazard-causing factors, the exposure of hazard-bearing bodies, and the vulnerability of hazard-
bearing bodies. The random forest algorithm was used to construct the frost hazard risk assessment
model of Hangzhou tea, and hazard risk assessment was carried out on tea with different cold
resistances in Hangzhou. The model’s accuracy reached 93% after training, and the interpretation
reached more than 0.937. According to the risk assessment results of tea with different cold resistance,
the high-risk areas of weak cold resistance tea were the most, followed by medium cold resistance
and the least strong cold resistance. Compared with the traditional method, the prediction result of
the random forest model has a deviation of only 1.57%. Using the random forest model to replace the
artificial setting of the weight factor in the traditional method has the advantages of simple operation,
high time efficiency, and high result accuracy. The prediction results have been verified by the existing
hazard data. The model conforms to the actual situation and has certain guiding for local agricultural
production and early warning of hazards.

Keywords: random forest; machine learning; GIS; tea frost hazard; hazard risk assessment; hazard
warning

1. Introduction

Frost is the main hazard affecting the quality of tea, especially in early spring, and
has the greatest impact on tea [1–3]. There are many hills and mountains in Hangzhou
City, Zhejiang Province, coupled with a monsoon climate, which makes the Hangzhou
area an excellent environment for tea production [4,5]. Tea is an economically important
crop in Hangzhou. According to the 2019 Statistical Yearbook of Hangzhou, tea production
in Hangzhou was 31,342 tons, the planting area was 35,255 hectares, and the total output
value accounted for 33% of the agricultural output value. However, a cold wave in April
2019 caused more than 4000 acres of tea damage in Hangzhou, which hindered the tea
picking process and caused serious losses to tea farmers. Therefore, it is important to
strengthen research concerning the frost hazard risk assessment of tea, formulate hazard
prevention and mitigation countermeasures, and reduce economic losses [6–13].

In recent years, machine learning has been applied to various fields. The earliest
machine learning appeared in the 1970s, but limited by the computer level at that time,
there were no particularly good applications, and development progress was slow. At the
beginning of the 21st century, machine learning began a period of vigorous development,
and random forest (RF) was produced during this period [14]. At present, many scholars
at home and abroad use machine learning algorithms, such as random forests, for hazard
risk assessment, mainly focused on hazards such as typhoons, rainstorms, floods, and
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landslides [15–18]. Domestic and foreign studies on hazard risk zoning using the random
forest algorithm and other machine learning methods were mainly applied in mountain
torrents, landslides, and floods after 2010 [19–22]. Lai Chengguang et al. [23] compared
decision trees, support vector machines, particle swarms, and artificial neural networks
and found that random forests have a good effect on multivariate prediction and can be
applied to many fields. Li Ting et al. [24] applied the random forest method to landslide
hazard zoning and analyzed the importance and influential factors. Wu Xiaojun et al. [25]
chose the random forest algorithm to establish a mountain torrent hazard risk assessment
model in Jiangxi Province, divide the risk levels, and draw a mountain torrent hazard risk
zoning map in Jiangxi Province. Chen Junfei et al. [26] compared the results of the support
vector machine and random forest algorithms in flood hazard risk assessment. They found
that the accuracy of flood hazard risk assessment based on random forest was higher than
that of the support vector machine model. Zhou Chao et al. [27] analyzed the risk of flash
flood hazards in Jiangxi Province by using three algorithms, k-nearest neighbor, random
forest, and AdaBoost, and found that the accuracy and Kappa coefficient of AdaBoostd
were slightly better than those of random forest, while the three performance indicators of
the k-nearest neighbor model were all lower than those of the former two algorithms.

In the risk assessment of single-crop meteorological hazards, conventional risk as-
sessment methods were mostly used [28–32], and machine learning algorithms, such as
random forest, were rarely used. Therefore, based on the random forest algorithm, this
study established a risk assessment model for tea frost hazards in Hangzhou. This model
can effectively overcome the subjectivity of weight in traditional assessment methods and
can quickly obtain the required data in the model. The hazard risk assessment results of the
study area change over time in the later period. The relevant departments consistently up-
date the data to obtain new hazard risk assessment results, which provide a reliable method
and basis for the current tea frost hazard prediction. This study has important reference
meaning for early warning of tea frost hazards and provides ideas for related research.

2. Materials and Methods
2.1. Research Area

Hangzhou is located in the middle and lower reaches of the Yangtze River, with many
hills and suitable temperatures. It is an ideal place for a tea plantation, and they are famous
for Longjing tea, Jiukeng Maojian, Qiandao Yinzhen, etc. However, in March and April
every year, the Hangzhou area often encounters frost hazards, which bring huge economic
losses to local tea farmers. Although there is a relatively accurate weather forecast system,
most can only forecast one or two days in advance. Tea farmers can only rush to harvest
part of the yield, and there is still nothing to do about the losses caused by the final hazard.
Therefore, it is of great significance to carry out a risk assessment of frost hazards in various
regions of Hangzhou and determine the high-risk areas of tea frost hazards for the planning
of planting in the agricultural sector and the prevention of key hazards.

2.2. Data and Data Processing
2.2.1. Data Sources

The data used in this study mainly included meteorological station data, altitude
data, and statistical yearbook data. Considering the time consistency, this paper used the
observation data of 7 conventional meteorological observation stations and 80 automatic
meteorological observation stations (Figure 1) in Hangzhou. The observation time ran
from March 2000 to September 2019. The elevation data used DEM data with a resolution
of 100 m released by NASA in 2017; the tea-related data came from the 2019 Hangzhou
Statistical Yearbook released by the Hangzhou Statistics Bureau.
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2.2.2. Selection of Key Factors

According to risk hazard assessment theory, six kinds of data, including temperature
data, humidity data, wind speed data, elevation data, tea planting area, and yield data, were
selected as the main factors. The analytic hierarchy process was used to further determine
the key factors. According to the analytic hierarchy process (AHP), a judgment matrix was
first constructed to judge the relative importance of each standard to measure whether the
goal can be achieved and screen six kinds of data. ai, aj (i, j = 1,2...n) represent the elements
being compared. aij represents the relative importance value of ai to aj, which is given in
the following by Santy [33]. According to the literature, the number of factors for pairwise
comparison should not exceed 9; that is, each layer should not exceed 9 factors [34,35]. The
elements in the judgment matrix were compared with the scale, and the judgment matrix
was obtained to represent the measurement of the importance of each element. The scale of
the judgment matrix (Table 1) and the actual judgment matrix (Table 2) are shown in the
table below.

Table 1. Judgment matrix scale comparison table.

Scaling Meaning

1 Indicates that two factors have the same importance compared to
3 Indicates that when compared to two factors, one factor is slightly more important than the other
5 Indicates that when two factors are compared, one factor is significantly more important than the other
7 Indicates that when two factors are compared, one factor is strongly more important than the other
9 Indicates that when two factors are compared, one factor is extremely more important than the other

2, 4, 6, 8 The median of the above judgments
reciprocal Factors i and j compare and judge aij, then the comparison and judgment between factor j and i aji = 1/aij
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Table 2. The construction of judgment matrix results.

Humidity Wind Speed Tea Production Tea Area Altitude Low Temperature

Humidity 1 0.667 0.5 0.5 0.25 0.2
Wind speed 1.5 1 0.667 0.5 0.33 0.25

Tea production 2 1.5 1 0.667 0.5 0.33
Tea area 2 2 1.5 1 0.5 0.33
Altitude 4 3 2 2 1 0.5

Low temperature 5 4 3 3 2 1

Then, according to the judgment matrix, the eigenvector ω corresponding to the largest
eigenvalue λmax is obtained, and the equation is as follows:

P ω = λmax ω (1)

The obtained feature vector was normalized so that the sum of each element in the
vector was equal to 1, and the weight value of each evaluation factor was obtained, as
shown in Table 3. The calculation results of the AHP show that the largest characteristic
root is 6.045, the corresponding CI value is 0.009, and the RI value is 1.26, according to
the RI table, so CR = CI/RI = 0.007 < 0.1, it means that the judgment matrix of this study
satisfies the consistency test, and the calculated weights are consistent.

Table 3. Tea frost factor weight.

Factor Low Temperature Altitude Tea Area Tea Production Wind Speed Humidity

weights 0.367 0.234 0.138 0.115 0.081 0.065

According to the factor weight results, low-temperature data were selected as the
final hazard-causing factor, altitude data were selected for the vulnerability factors of
hazard-bearing bodies, and tea area and yield data were selected for the exposure of
hazard-bearing bodies.

2.2.3. Classification of Tea Leaves with Differences in Cold Resistance

According to the characteristics of the tea itself, the tea was divided into weak cold
resistance, medium cold resistance, and strong cold resistance [36], and the frost hazard
risks of tea with different cold resistances were calculated. According to previous studies
on frost hazards of tea leaves in Hangzhou [13,37–46], different hazard-causing factor
indicators were set for tea with different cold resistances. The specific indicators are shown
in the following table (Table 4). The risk of frost hazards for different cold-resistant tea
leaves was spatialized (Figure 2). The data used the WGS1984 projection coordinate system,
and the spatial resolution of the data was 100 × 100 m. According to the indicators of
different cold-resistant tea leaves in Table 4, statistical data from meteorological stations
were used to obtain the disaster-causing factors of tea leaves with different cold resistance;
the resulting data was interpolated and then normalized.

Table 4. Indicators of tea with different cold resistance in Hangzhou.

Types of Tea Indicator Period Indicator Data

weak cold resistance tea February–May Number of days with daily
minimum temperature ≤ 4 ◦C

medium cold resistance tea February–May Number of days with daily
minimum temperature ≤ 0 ◦C

strong cold resistance tea February–May Number of days with daily
minimum temperature ≤ −2 ◦C
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2.3. Methods
2.3.1. Traditional Meteorological Hazard Risk Assessment Model

Presently, research on natural hazard risk mainly focuses on three aspects: the forma-
tion mechanism of hazard risk, the method of hazard risk assessment, and the technology
of hazard risk assessment [47]. According to the latest risk expression proposed by the
IPCC Fifth Assessment Report:

Risk = Wh × H × We × E × Wv·V (2)

where Risk is the hazard risk index, H, E, and V represent the risk of hazard-causing
factors, the exposure of hazard-bearing bodies, and the vulnerability factors of hazard-
bearing bodies, respectively, and Wh, We, and Wv are the risk of hazard-causing factors,
the exposure of hazard-bearing bodies, and the vulnerability factors of hazard-bearing
body weights, respectively. In this paper, based on basic geographic, meteorological, and
socioeconomic data, a meteorological hazard risk assessment model based on evaluation
factors was established in accordance with the risk of hazards, exposure of hazard-affected
bodies, and vulnerability of hazard-affected bodies. Risk assessment research was carried
out, and GIS technology was used to draw the hazard risk zoning map of the research area.

Traditional meteorological hazard risk assessment mainly adopts the analytic hier-
archy process, which mainly relies on an expert scoring form to determine the different
importance of each element, which is highly subjective. When the elements change, expert
scoring needs to be performed again. In addition, after experts score, when each element
changes due to external conditions, its importance will also change accordingly. If this
method is to be used, it needs to be re-evaluated. In this study, the random forest algorithm
was used to replace the subjective and cumbersome weighting process in the traditional
method, which can quickly and conveniently evaluate meteorological hazards with less
deviation in the evaluation results.
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2.3.2. Random Forest Algorithm

The random forest algorithm is a machine learning algorithm based on statistics and
combination classification. It has strong nonlinear simulation ability and generalization.
Because fewer parameters are artificially set, the subjectivity of evaluating research ques-
tions can be reduced [48,49]. Its basic principle is a collection of bagging algorithms and
random subspace algorithms. The basic unit is a decision tree. Multiple decision trees are
combined to form a forest. Each decision tree is used to classify and predict votes to obtain
the final classification and evaluation results.

The random forest uses the bagging algorithm to sample the dataset. The probability
of being drawn for each sample in the total training set D with a sample size of N is
(1 − 1/N)N. When the N area is infinite, the result is 0.368. This means that more than 1/3
of the data will not appear in the extracted dataset, and these data are called out-of-bag
(OOB). Using these out-of-bag data, the misclassification rate of the classification tree is
calculated to obtain the OOB error, and the average of the OOB errors of all decision
trees in the model can be used as the generalization error of the model to illustrate the
generalization ability of the model. The method of calculating the importance of risk
indicators is reducing the Gini index when the node is divided, and the sum of the Gini
coefficients of all nodes in the forest is averaged for all trees. The specific formula is as
follows (Formula (3)):

Pk =
∑n

i=1 ∑t
j=1 DGkij

∑m
k=1 ∑n

i=1 ∑t
j=1 DGkij

× 100% (3)

In the formula, m, n, and t are the total number of indicators, the number of classifica-
tion trees, and the number of nodes of a single tree, respectively; DGkij is the Gini index
reduction value of the k indicator in the j node of the tree; and Pk is the k indicator in all
indicators’ degrees of importance.

2.4. Overall Flow Chart

The flow chart of the technical approach in this paper is shown in Figure 3. It includes
data preparation, key feature selection, and random forest model building and validation.
Data preparation includes acquiring and processing meteorological, terrain, land use, and
tea-related data. The key feature selection is to select six kinds of data that may cause
disasters according to the principle of tea frost and obtain the most important feature data
through the AHP method. Model building and verification use the random forest algorithm
to divide, sample, verify, and test the data to obtain the evaluation model of this study,
and then input the data to be tested to obtain the tea disaster risk assessment results. The
evaluation results are compared, verified, and analyzed through the measured disasters in
the Disaster Statistical Yearbook.

2.5. Construction of the Tea Frost Assessment Model in Hangzhou
2.5.1. Sample Selection

The selection of samples is crucial to the evaluation accuracy of random forest, and
the quality determines the final accuracy and overall effect. Most of the records of hazards
by relevant departments and literature are for a certain type of hazard, but there are few
records for a single hazard or a single crop, and they are not detailed. Through data search,
there are only a dozen records and descriptions of frost hazard records on tea in Hangzhou,
which is not enough to support the input data requirements of the random forest model.
However, Lai Chengguang and others divided the Dongjiang River Basin into five flood
hazard levels. Points were taken evenly on them as samples. Therefore, based on previous
studies and expert opinions, this study uses the tea frost risk data in Hangzhou obtained
from traditional hazard risk theory (taking tea with weak cold resistance as an example)
(Figure 4) as a basis to extract sample point data.
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According to the hazard annual report data in the basic database of hazard prevention
and reduction in Hangzhou, the locations of the actual tea frost hazards are all in areas
with high-risk levels (Figure 4), which proves that it has high reliability and can be used as
a source for model sample selection. In Hangzhou water bodies and other areas outside
urban residential land, 1000 sample point data points were evenly selected, and the specific
spatial distribution is shown in Figure 5 below.
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2.5.2. Model Construction

Compared with other algorithms, the random forest algorithm has better performance,
can better handle multi-feature data, and does not need to perform feature selection. After
data processing and sample data selection, the Hangzhou tea frost hazard risk model was
constructed in the software, the sample data were read and divided first, and the data
samples were divided into a training set and a testing set. The ratio of the training set
to the test set was 4:1, the training set was used to generate the tea frost model, and the
testing set was used to test the final prediction results. Then, the grid search function
(RandomizedSearchCV) in the Sklearn library was used to obtain the optimal parameters.
If the accuracy requirements are met, the next calculation can be performed. If the accuracy
requirements are not met, resampling and parameter setting are needed. After obtaining
the optimal parameters, input the training data and validation data for model training and
construction. The evaluation parameters were obtained through model training, as shown
in the following table (Table 5). The interpretation degrees of the training set and the testing
set reached 0.991 and 0.959, respectively, indicating that the model interprets the data very
well. The OOB score of the generalization ability of the weak cold resistance model was
0.9699, indicating that the model had good accuracy, robustness, and generalization ability.
The OBB scores of the medium and strong cold-resistant tea models are 0.9495 and 0.9378,
respectively, and both have strong accuracy and generalization ability.

Table 5. Model training result evaluation.

Evaluation Standard Training Set Testing Set

R2 0.991 0.9597
MSE 0.00005 0.0048

Absolute difference 0.0048 0.0101
Explainability 0.991 0.9597

Finally, all the index data used for frost hazard risk are input into the trained random
forest model. The predicted risk assessment results are input to obtain the regional map
of tea frost risk assessment in Hangzhou. During the calculation process regarding the
random forest model, the importance of each index was calculated according to the average
Gini reduction value of all nodes, and the importance of each index to the formation of
frost hazard risk was calculated. The specific data are shown in Figure 6 below.
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From the perspective of different types of cold-resistant tea, the most important
indicator of weak cold-resistant tea is altitude. The most important indicator of medium
and strong cold-resistant tea is the hazard-causing factor composed of low-temperature
data. Due to the weak cold resistance and temperature drop rate of tea with weak cold
resistance, altitude is the main factor for the risk of frost hazards, while tea with medium
cold resistance and strong cold resistance have strong cold resistance. To overcome the
influence of altitude, the main influencing factor is the hazard data composed of the lowest
temperature. Overall, hazard-causing factors and altitude data are the most important
contributing indicators. The sum of the two is close to 70%, indicating that it contributes
the most to the risk assessment results. The influence of altitude and hazard-causing factors
should be considered when planting tea trees.

3. Results
3.1. Results of Frost Hazard Based on Random Forest Tea Leaves

A total of 51,772 pieces of data from the four indicators of tea frost in Hangzhou that
were screened out were input into the training model to obtain the current frost hazard risk
prediction value of tea with different cold resistance. The results were classified according
to the natural breakpoint method, and the current tea frost hazard risk prediction and
assessment map was obtained (Figure 7).

It can be seen from the resulting map (Figure 6) that the overall high-risk areas of
tea frost hazard in Hangzhou are mainly distributed in Lin’an District, Jiande City, and
the Fuyang District, and the higher-risk areas are distributed in Chun’an County, Lin’an
District, and Tonglu County. The low-risk areas are mainly distributed in the plain areas
of Linping District, Qiantang District, and Shangcheng District, and the remaining areas
are medium-risk areas. The risks to tea with different cold resistance are also different,
and the high-risk areas of tea with weak cold resistance and medium cold resistance are
mainly concentrated in mountainous areas with higher altitudes, while the risk of strong
cold-resistant tea is lower in mountainous areas with higher altitudes, and the ability to
resist risks is stronger. Table 6 shows that the high-risk area of frost hazard is highest for tea
with weak cold resistance, reaching 10%, followed by tea with medium cold resistance, and
tea with strong cold resistance is the lowest. Overall, weak cold resistance and medium
cold resistance teas accounted for the largest proportion of medium risk and high risk,
while strong cold resistance teas accounted for the largest proportion of medium risk and
low risk.
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Table 6. The proportion of frost disaster results in teas with different cold resistance.

Weak Cold
Resistance

Medium Cold
Resistance

Weak Cold
Resistance

low risk 11% 12% 14%
slightly low risk 3% 22% 26%

medium risk 48% 41% 37%
slightly risk 28% 20% 22%

high risk 10% 5% 2%

3.2. Analysis of Tea Frost Hazard Results in Hangzhou

Figure 5 shows the altitude of Hangzhou City. The north and west of Lin’an District
are high-altitude mountainous areas easily affected by frost hazards. The value of hazard-
causing factors is also high, so the risk level of this area is also high risk. The high-risk
areas in the north of Jiande City and the northwest of Fuyang District are mainly due to the
high value of the hazard-causing factors. Through the analysis of the importance of factors,
it can be seen that the hazard-causing factors have the largest proportion of importance
and play a decisive role in the high risks of these areas. The high-risk areas and higher-risk
areas in Chun’an County are mainly distributed in areas with higher altitudes. The second
reason is the planting area of tea. The tea planting area of Chun’an County in 2019 was
12,404 hectares, far exceeding the second planting area of Yuhang District of 4264 hectares.
However, due to the low terrain, many plains, and densely populated areas in the eastern
part of Hangzhou City, most of the plain areas are mostly artificial land and residential
land. Most tea plantations are in mountainous and hilly areas. Factors, such as area and tea
production, have minor values, so in the final risk assessment, most are in the low-risk area.

By randomly selecting 800 comparison points, the frost hazard risk value and the
corresponding values of altitude and hazard-causing factors were extracted for analysis
(Figure 8). The first is the correlation between the hazard-causing factor and the risk value
of the frost hazard. The correlation coefficient between the two is the highest, reaching 0.65,
which aligns with the main principle of the tea frost hazard. To protect tea from the tea frost
hazard, the most important thing is to pay attention to the cooling of the cold wave and
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the altitude. The correlation coefficient between the two reaches 0.5187, which has a high
correlation, indicating that the final frost hazard risk result has a strong correlation with
the altitude factor. It is also consistent with the fact that altitude is more important when
building the model. Therefore, farmers need to avoid high-altitude areas when actually
planting tea and choose areas with suitable altitudes for planting.
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3.3. Verification of Tea Frost Hazard Results in Hangzhou

According to the location and affected area of the tea frost hazard in the Hangzhou
Disaster Prevention and Mitigation Basic Database, a spatial display was carried out on the
frost risk zoning of tea in Hangzhou (taking tea with weak cold resistance as an example)
(Figure 9). The change from grey to red indicates an increase in the severity of the hazard,
and the size of the area indicates the affected area. To facilitate the comparison of the tea
frost hazard risk results, the hazard data were set to 30% transparency. By extracting the
data of actual hazard occurrence points and comparing the results of the traditional method
and the random forest model method, the deviation between the two methods was only
1.57%. The overall risk distribution of the two methods is consistent, only slightly different
in mountainous areas, which further verifies the reliability of the random forest model.
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It can be seen from Figure 9 that the most serious events of tea frost hazards are
mainly in Qingliangfeng Township of Lin’an District, Yaoshan Township of Chun’an
County, Fuchun Street of Fuyang District, Qiantan Township and Sandu Township of
Jiande Township, while the high-risk and slightly high-risk areas are consistent with the
locations where tea frost hazards actually occurred. Individual frost hazards with fewer
hazards are in the medium-risk area, indicating that the assessment of the evaluation results
is highly reliable and scientific. The hazard risk distribution of the result map is also in line
with the actual observation data. It has a high degree of interpretation, indicating that the
trained random forest model meets expectations for tea frost prediction, which can provide
a basis and support for relevant departments and personnel.

4. Discussion and Conclusions

This study is mainly based on the hazard risk assessment results based on the hazard
risk theory proposed by the IPCC, from which data samples were selected, and the random
forest algorithm in machine learning was used as the main tool to construct a comprehensive
analysis of the tea frost hazard in Hangzhou. Based on the risk assessment model, the
following conclusions were obtained:

1. The hazard assessment model constructed using random forest does not need to set
index weights and classification standards in advance. It is easy to operate, has a small
amount of code, and is easy to modify and maintain later. Only the input data must be
updated, and the optimal parameters must be adjusted to obtain the prediction results
closest to the current situation, reducing user burden and time. Relevant departments
can quickly obtain future disaster assessment results and then formulate targeted
disaster prevention and mitigation policies to reduce losses caused by disasters;

2. The accuracy and interpretation of the model reached 94%, which is a high standard.
The prediction results also align with the actual situation of hazard statistics. The
deviation from the traditional results is only 1.57%, which can be used as an important
basis for relevant departments to respond to hazards;

3. The importance of each element to the final result can be analyzed from the factor
importance obtained by the model, which can make more accurate judgments on
analysis and evaluation and more accurate preparations for hazard prevention;

4. The method steps of this study can be extended to more crops and hazards and
provide a reference for related research. Therefore, relevant departments can respond
to different disasters faster and better.

Finally, there are several improvements and shortcomings in this study:

1. More elemental data can be used to improve the accuracy and scientificity of the results;
2. There are few hazard records for crops. If there are enough relevant records available

in the future, the results will be more accurate.
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