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Abstract: Crop disease identification and monitoring is an important research topic in smart agricul-
ture. In particular, it is a prerequisite for disease detection and the mapping of infected areas. Wheat
fusarium head blight (FHB) is a serious threat to the quality and yield of wheat, so the rapid monitor-
ing of wheat FHB is important. This study proposed a method based on unmanned aerial vehicle
(UAV) low-altitude remote sensing and multispectral imaging technology combined with spectral
and textural analysis to monitor FHB. First, the multispectral imagery of the wheat population was
collected by UAV. Second, 10 vegetation indices (VIs)were extracted from multispectral imagery.
In addition, three types of textural indices (TIs), including the normalized difference texture index
(NDTI), difference texture index (DTI), and ratio texture index (RTI) were extracted for subsequent
analysis and modeling. Finally, VIs, TIs, and VIs and TIs integrated as the input features, combined
with k-nearest neighbor (KNN), the particle swarm optimization support vector machine (PSO-SVM),
and XGBoost were used to construct wheat FHB monitoring models. The results showed that the
XGBoost algorithm with the fusion of VIs and TIs as the input features has the highest performance
with the accuracy and F1 score of the test set being 93.63% and 92.93%, respectively. This study
provides a new approach and technology for the rapid and nondestructive monitoring of wheat FHB.

Keywords: unmanned aerial vehicle; multispectral imagery; fusarium head blight; texture indices;
machine learning

1. Introduction

Wheat is one of the three major grain crops in the world, and it is also the second-
largest grain crop in China [1]. It is also a staple food for about two-thirds of the world’s
population, which is of a great significance to ensure national food security [2,3]. Fusarium
head blight (FHB), also known as scab, is an economically destructive wheat disease mainly
caused by Fusarium graminearum, which mainly damages wheat ears [4]. The prevention
and control of FHB is extraordinarily important because FHB cannot only cause a serious
yield reduction but it can also lead to the deterioration of the wheat’s quality [5–7]. More
seriously, infected wheat will produce mycotoxins, especially deoxynivalenol (DON) and
zearalenone (ZEA), which are detrimental to humans and animals and can lead to acute
poisoning symptoms, the destruction of immunity, and even death [8]. Therefore, the
effective monitoring of FHB in time and space is particularly important in the investigation
of crop health and food security.

The traditional disease assessment and investigation is mainly based on a field visual
investigation, which is not only time-consuming and laborious but also has a certain
subjectivity and cannot ensure the authenticity and accuracy of the investigation data [9,10].
It is difficult to meet the current requirements for the rapid and accurate detection and
real-time monitoring of crop diseases in large-scale planting areas [11]. Remote sensing
technology has alleviated this problem to a certain extent, so more and more researchers
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are attempting to apply remote sensing technology to disease monitoring [12,13]. These
studies are based on the theory that disease infection will change the transpiration rate,
leaf color, chlorosis, and morphology of crops [13,14]. In particular, UAV remote sensing
technology has been widely developed in the field of agricultural monitoring because of its
high flexibility, low cost, fast image acquisition, and ability to carry multiple sensors [15].

Some studies have been conducted to use UAV images to retrieve the growth parame-
ters of different crops [16–19]. In recent years, multispectral imagery provides new concepts
and methods for crop disease monitoring. Compared with the traditional methods and
hyperspectral imagery, multispectral imagery has the advantages of relatively rich spectral
information, simple data processing, and a low computing cost in disease detection and it
has a certain potential in crop disease monitoring applications. In addition, it has a red-edge
(RE) band, which is located between the maximum red absorption and high reflectivity
in the near infrared (NIR) region. It is an important spectral feature of vegetation, where
the transformation from chlorophyll absorption to cell scattering takes place [3,20]. So far,
UAV multispectral images have been used to estimate the chlorophyll content, nitrogen
content, biomass, and leaf area index (LAI) [21–24]. In addition, they have been also used
by some scholars to monitor the diseases of different crops. Lei et al. [25] achieved the
severity monitoring of the yellow leaf disease of areca nut using VIs such as the normalized
difference vegetation index (NDVI) and normalized difference red-edge index (NDRE)
and using support vector machine (SVM) and decision trees algorithms. Zhao et al. [26]
used VIs to monitor rice sheath blight and the results showed that using multispectral
imagery was more accurate and sensitive (R2 = 0.624, RMSE = 0.801), which was better than
visible light imagery (R2 = 0.580, RMSE = 0.847). Rodriguez et al. [27] used five machine
learning algorithms, including random forest (RF) and a linear support vector classifier,
to monitor potato late blight based on UAV multispectral imagery. Ye et al. [28] used
artificial neural network (ANN), RF, and SVM classification algorithms to monitor banana
fusarium wilt using UAV multispectral imagery. These studies fully illustrate the potential
of using high-resolution UAV multispectral images in the agricultural field. Additionally,
the majority of studies on the disease monitoring of crops used the spectral information of
UAV images, but the inherent spatial information in the form of texture has not been fully
explored. Therefore, it would be promising to take full advantage of the textural feature for
the disease monitoring of crops.

Textural analysis is an image processing technique that is widely used for classification
tasks [29,30]. The textural feature reflects the visual roughness of ground objects through
gray spatial change and its repeatability, which can fully reflect the image characteristics.
Different objects generally show different texture types, which can be used to describe and
identify ground objects. The overall representation of the same category of characteristics
seems similar, but the local detail is different [31]. It has a certain effect on the recognition of
crop diseases and the improvement of their accuracy [32]. In recent years, textural analysis
has also been used for the estimation of crop biomass and LAI [33–35]. Zheng et al. [30]
compared the performance of VIs, raw textural features, the NDTI, and combinations of
VIs and the NDTI for estimating the aboveground biomass of rice using UAV multispectral
data and found that integrating the NDTI with VIs significantly improved the accuracy
compared to using spectral information alone. Li et al. [35] combined color indices and
textural features for estimating rice LAI and exhibited the best estimation accuracy when the
VIs and textural features were combined as the inputs. Some scholars have also introduced
primitive textural features for disease identification and monitoring [13,36]. These studies
all showed the potential of combining spectral information with textural information.

However, most of the studies used only raw textural features, and the contribution
of textural features did not reach satisfactory results. In addition, few research scholars
have focused on the potential of TIs for disease monitoring. So, in this study, we proposed
a method that integrated VIs and TIs to monitor wheat FHB. UAV multispectral imagery
was used to monitor wheat FHB. The specific work of this study is as follows: (1) 10
commonly used VIs (VARI, CIgreen, CIrededge, DVI, DVIRE, EVI, NDRE, NDVI NPCI,
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and RVI) were extracted. In addition, three types of TIs, which are NDTI, DTI, and RTI,
were constructed to make the most use of the textural information of the imagery. (2) The
obtained features were screened to obtain the features sensitive to wheat FHB. (3) Nine
wheat FHB monitoring models were constructed with VIs, TIs, and integrated VIs and
TIs as the input features to explore the effects of different feature inputs on wheat FHB
monitoring. (4) The best FHB monitoring models were applied to map the distribution of
wheat diseases in the study area and evaluate the potential of using UAV multispectral
imagery to monitor wheat diseases.

2. Materials and Methods
2.1. Study Area

The experiment site was conducted on May 18, 2021 at the experimental farm (34◦08′23′′ N,
113◦47′57′′ E) on the Xuchang Campus of Henan Agricultural University, Xuchang City,
Henan Province. At this time, the wheat was growing in the wheat field and it was at the
grain filling stage. Xuchang is located in the central part of Henan Province. It has a typical
temperate and continental monsoon climate. The annual average temperature ranges from
14.3 ◦C to 14.6 ◦C and the annual average precipitation is between 671 mm and 736 mm.

Figure 1 demonstrates the study area. The terrain of the experimental farm was
relatively flat and the soil belonged to loam. In the previous season, maize was the main
grain crop. The study area consisted of 60 experimental plots; they were divided into 3 rows
for planting and each row contained 20 experimental plots. The length of each experimental
plot was about 1.5 m and the width was about 1 m. During the period from 2019 to 2020,
the experimental wheat varieties were sown in autumn. The management measures, such
as irrigation and fertilization, in the experimental plots were all the same. At the early
stage of wheat flowering in April 2021, professionals randomly selected some wheat plants
in each experimental plot and used a micropipette to inject the spore suspension made
of fusarium oxysporum into the florets in the middle and upper part of the wheat ear.
The inoculated wheat ears were marked with awn cutting and bagged for 1~7 days. The
incidence mainly depended on an artificial drip and mutual infection.
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2.2. Field Data Acquisition and Preprocessing
2.2.1. Remote Sensing Image Acquisition and Preprocessing

In this study, the UAV remote sensing platform used was Phantom 4 Multispectral
(P4M). There are several built-in sensors in the P4M which make it a dedicated and cus-
tomized UAV for the detection and identification of plants or crops. Multispectral cameras
were available in the P4M and included six CMOS sensors, one of which was used for RGB
visible light imaging, and the other five monochrome sensors were used for multispectral
imaging (blue (B), green (G), red (R), RE and NIR). The UAV had a takeoff weight of 1487 g,
a maximum ascending speed of 6 m/s, a maximum descending speed of 3 m/s, and a flight
time of approximately 27 min. To detect millisecond errors in the camera imaging time, the
TimeSync time synchronization system was adopted. The remote sensing images of the
study area in five bands were obtained on 18 May 2021. The UAV remote sensing operation
was carried out on a sunny day with a low wind speed. The flight time was between 9:00
a.m. and 11:00 a.m., the flight altitude was 20.3 m, the heading overlap and the lateral
overlap were 80%, and the ground resolution was 1 cm.

Using Pix4Dmapper, the original images captured by the UAV were spliced together.
First, with the flight POS data, the same-named points were found and then the real
positions and splicing parameters of the original images were calculated through a space–
time measurement to establish the point cloud model. Finally, according to the calibration
ground panel used before and after the flight, the pixel values were converted into the
surface reflectivity of each spectrum and the imagery is automatically calibrated and
generated into orthophoto imagery by optimizing the image content and using the block
adjustment technology [37].

2.2.2. Selection of Survey Sampling Points

In this study, canopy images of 60 experimental plots were taken with mobile camera
equipment as the auxiliary data for the selection of the sample points. At a height of
about 1.2 m vertically above the canopy, images were acquired in bright weather, and each
image was taken on a vivo iQOO Neo3 mobile phone, which has 48 million pixels in the
rear camera. The images were taken with a fixed shooting direction to ensure that the
canopy images of each plot corresponded to the corresponding plot of the multispectral
imagery. Some of the typical experimental plots with the corresponding plots of the UAV
multispectral imagery are shown in Figure 2. Three categories of sample points were
selected: healthy, diseased, and background. In the diseased plots, 470 FHB-infected
sampling points were selected, and in the healthy plots, 450 healthy sampling points were
selected. In addition, 415 background sampling points were selected. These three types of
sample points were used for subsequent model training and verification.

Agriculture 2023, 12, x FOR PEER REVIEW 5 of 18 
 

 

2.2.2. Selection of Survey Sampling Points 
In this study, canopy images of 60 experimental plots were taken with mobile camera 

equipment as the auxiliary data for the selection of the sample points. At a height of about 
1.2 m vertically above the canopy, images were acquired in bright weather, and each im-
age was taken on a vivo iQOO Neo3 mobile phone, which has 48 million pixels in the rear 
camera. The images were taken with a fixed shooting direction to ensure that the canopy 
images of each plot corresponded to the corresponding plot of the multispectral imagery. 
Some of the typical experimental plots with the corresponding plots of the UAV multi-
spectral imagery are shown in Figure 2. Three categories of sample points were selected: 
healthy, diseased, and background. In the diseased plots, 470 FHB-infected sampling 
points were selected, and in the healthy plots, 450 healthy sampling points were selected. 
In addition, 415 background sampling points were selected. These three types of sample 
points were used for subsequent model training and verification.  

 
Figure 2. Distribution of images of the canopy experimental plots with the plots corre-
sponding to the UAV multispectral imagery. 

2.3. Methods 
Our research process was conducted in two sections (Figure 3). The first section was 

a feature extraction to prepare the input features for the wheat FHB monitoring models 
and the second section was the construction and validation of the wheat FHB monitoring 
models; and the best feature combination and rapid wheat FHB monitoring method can 
be found through the study of these two sections. The two sections are described below. 

Considering that the soil may affect the performance of the models, this study con-
ducted a series of studies based on multispectral imagery after removing the soil area. 
First, the process of removing the soil area from the study area was as follows: the opti-
mized soil-adjusted vegetation index (OSAVI) was used to segment the soil area and 
wheat area in the multispectral imagery by setting the suitable threshold [38], and the final 
threshold range was determined through multiple adjustments to construct a binary mask 
image. This mask was used to remove the soil region. The OSAVI was calculated as fol-
lows: 

(NIR − R)/(NIR + R + 0.16) (1) 

Subsequently, we calculated 10 commonly used VIs and extracted three TIs (NDTI, 
DTI, and RTI). The correlation coefficient analysis was used to screen the sensitive classi-
fication features to explore the impact of VIs, TIs, and integrated VIs and TIs on the 
model’s accuracy. Then, three machine learning algorithms (KNN, PSO-SVM, and 
XGBoost) were used for training and classification. The overall recognition effect of each 
classification algorithm was analyzed and evaluated through the accuracy, precision, 

Figure 2. Distribution of images of the canopy experimental plots with the plots corresponding to
the UAV multispectral imagery.



Agriculture 2023, 13, 293 5 of 16

2.3. Methods

Our research process was conducted in two sections (Figure 3). The first section was
a feature extraction to prepare the input features for the wheat FHB monitoring models
and the second section was the construction and validation of the wheat FHB monitoring
models; and the best feature combination and rapid wheat FHB monitoring method can be
found through the study of these two sections. The two sections are described below.
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Considering that the soil may affect the performance of the models, this study con-
ducted a series of studies based on multispectral imagery after removing the soil area. First,
the process of removing the soil area from the study area was as follows: the optimized
soil-adjusted vegetation index (OSAVI) was used to segment the soil area and wheat area
in the multispectral imagery by setting the suitable threshold [38], and the final threshold
range was determined through multiple adjustments to construct a binary mask image.
This mask was used to remove the soil region. The OSAVI was calculated as follows:

(NIR− R)/(NIR + R + 0.16) (1)

Subsequently, we calculated 10 commonly used VIs and extracted three TIs (NDTI, DTI,
and RTI). The correlation coefficient analysis was used to screen the sensitive classification
features to explore the impact of VIs, TIs, and integrated VIs and TIs on the model’s
accuracy. Then, three machine learning algorithms (KNN, PSO-SVM, and XGBoost) were
used for training and classification. The overall recognition effect of each classification
algorithm was analyzed and evaluated through the accuracy, precision, recall, and F1 score.
Finally, based on the UAV multispectral imagery, the optimal feature combination and
classification algorithm for the recognition of FHB in the farmland were obtained. The
pixel-level region recognition of FHB based on the best wheat FHB monitoring model was
realized. The overall research scheme is shown in Figure 3.

2.4. Feature Extraction
2.4.1. Extraction of VIs

The spectral information from UAVs is mainly used in the form of VIs [39]. VIs repre-
sent the mathematical transformation of reflectance of two or more bands to characterize
the canopy spectral characteristics of crops [39,40]. To obtain the desired classification
accuracy, a group of 10 VIs were calculated based on five spectral bands of UAV imagery
(Table 1). These varieties were selected because they may help to distinguish between
symptomatic and asymptomatic wheat. The formula and corresponding reference of the
selected VIs are given in Table 1. These VIs include the traditional VIs and the red-edge
VIs. The traditional VIs (NDVI, RVI, and DVI) are often used to monitor the growth status
of crops [41,42]. CIgreen, CIrededge, and NPCI are often used to estimate the chlorophyll
content of crops. The red-edge VIs include DVIRE and NDRE, which are similar to DVI
and NDVI, but the red band is replaced by the red-edge band. According to the literature
review, these VIs have been used to identify crop diseases [41]. In addition, VIs are simple
to calculate and their potential for disease monitoring has been discussed by many scholars.

Table 1. Formulas and sources of spectral VIs for monitoring wheat FHB.

VIs Name Calculation Formula Reference

Visible atmospherically resistant index (VARI) (G − R)/(G + R − B) [43]
Green chlorophyll index (CIgreen) NIR/G − 1 [44]

Red-edge chlorophyll index (CIrededge) NIR/RE − 1 [44]
Difference vegetation index (DVI) NIR − R [45]

Red-edge difference vegetation index (DVIRE) NIR − RE [46]
Enhanced vegetation index (EVI) 2.5(NIR − R)/(NIR + 6R − 7.5B + 1) [47]

Normalized difference red-edge index (NDRE) (NIR − RE)/(NIR + RE) [48]
Normalized difference vegetation index (NDVI) (NIR − R)/(NIR + R) [49]
Normalized pigment chlorophyll index (NPCI) (RE − B)/(RE + B) [46]

Ratio vegetation index (RVI) NIR/R [46]

2.4.2. Extraction of TIs

When wheat is infected with FHB, the ear of the wheat will turn yellow and dry and
certain brown spots will appear. With time, the brown spots will gradually expand and
eventually spread to the whole ear [3,13]. Wheat canopy infected by FHB and wheat canopy
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not infected by FHB have different textural characteristics. Therefore, using the textural
information reflected by the textural characteristics can effectively solve the problem
that characteristics are difficult to distinguish from spectral features and it can also can
effectively improve the classification accuracy.

Among several texture algorithms, the commonly used GLCM [50,51] was selected
to explore the potential of textural information for wheat FHB monitoring. In this study,
40 textural features of 5 spectral bands were extracted from UAV multispectral imagery.
Based on the GLCM, eight textural features of each band, including the mean, variance, ho-
mogeneity, contrast, dissimilarity, entropy, second moment, and correlation, were obtained.
Since wheat is a row planting crop, usually, the row spacing of wheat planting is about
0.2–0.3 m. Considering the spatial resolution of UAV multispectral imagery was 0.01 m,
this study used a 3 × 3 window size for the extraction of the textural features. The details
of the textural features are shown in Table 2.

Table 2. Calculation formulas of textural features.

Textural Features Calculation Formula

Mean ∑
i

∑
j

P(i, j)i

Variance ∑
i

∑
j
(i−mean)2P(i, j)

Homogeneity ∑
i

∑
j

P(i, j) 1
1+(i−j)2

Contrast ∑
i

∑
j

P(i, j)(i− j)2

Dissimilarity ∑
i

∑
j

P(i, j)|i− j|

Entropy −∑
i

∑
j

P(i, j)log(P(i, j))

Second moment ∑
i

∑
j

P(i, j)2

Correlation ∑
i

∑
j

(i−mean)(j−mean)×P(i,j)2

variance

Where P(i, j) represents the image element value of the image at the point (i, j).

To improve the correlation between the textural features and wheat FHB, three TIs
(NDTI, DTI, and RTI) were constructed following the thought of NDVI, DVI, and RVI.
Combining eight textural features from five spectral bands (40 features in total), all possible
combinations of the two textural features were constructed to explore their ability to identify
wheat FHB. Finally, 1560 combinations were obtained for each TI and the best combination
form was selected to constitute that TI. The three TIs were defined as follows.

NDTI = (T1 − T2)/(T1 + T2) (2)

DTI = T1 − T2 (3)

RTI = T1/T2 (4)

where T1 and T2 represent the textural feature values in five random bands.

2.5. Training and Evaluation of Machine Learning Models

Based on the three inputs of VIs, TIs, and VIs and TIs integrated, a total of 1335 sampling
points were selected, including 450 sampling points in the healthy area, 470 sampling points
in the FHB-infected area, and 415 sampling points in the background area (considering the
soil removal, the image was still disturbed by other external objects as well as shadows, so
the background sampling points were retained). The training and test set were randomly
divided according to the ratio of 8:2, and the KNN, PSO-SVM, and XGBoost were used to
identify the infected FHB area.
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2.5.1. KNN Model

The KNN is a typical supervised learning method and is widely used in classification
tasks [52]. The basic principle is to calculate the distance between the sample to be classified
as x and all the samples in the training set based on the distance metric, and the k samples
with the smallest distance from the sample to be classified are taken as the k nearest
neighbor samples of x. Finally, the classification category of x is determined based on the
vote. The selection of the k value has a significant impact on the classification result of the
KNN algorithm. If the value of k is too small, the phenomenon of overfitting will easily
occur and the prediction error will be large, leading to a wrong prediction; if the value
of k is too large, the phenomenon of underfitting will occur. So, this study used five-fold
cross-validation to select the k value to ensure that a more appropriate k value was chosen.

2.5.2. PSO-SVM Model

Particle swarm optimization (PSO) was first proposed by Eberhart and Kennedy in
1995 [53], which simulated the clustering behavior of insects, birds, and fish for global
optimization. SVM is a machine learning algorithm for supervised classification, which has
certain advantages in solving small samples, and nonlinear and high-dimensional pattern
recognition [54,55]. It first searches for a maximum marginal hyperplane and maps the
low-dimensional data to the high-dimensional space through the kernel function [56], so as
to turn the linearly inseparable samples into linearly separable samples, and introduces the
model penalty factor to improve the generalization of the classification model. However,
this method has a large workload and a low efficiency [57,58]. In addition, radial basis
function (RBF) was used in this study, in which the kernel function parameter gamma and
penalty factor c have a great impact on the accuracy of the model [58]. Therefore, PSO was
used to find the appropriate gamma and c to reduce the model’s complexity and accelerate
the model’s convergence.

2.5.3. XGBoost Model

XGBoost [59] is a novel gradient tree boosting method introduced by Chen and
Guestrin in 2016. It is an improvement of the gradient boosting algorithm for enhancing
the speed and performance of decision trees using gradients [60]. The thought of XGBoost
is to adopt a group of classification and regression trees as weak learners and subsequently
improve the performance of the trees by creating a cluster of trees that minimizes the
regular objective function.

The objective function consists of two parts: training loss and regularization. The
representation of the objective function is shown in the following equation.

obj(θ) = TL(θ) + R(θ) (5)

TL represents the training loss and R represents the regularization term. TL is used to
measure the predictive power of the model. Regularization has the advantage of retaining
the complexity of the model within the desired range, eliminating problems such as over-
stacking or over-fitting of data, and XGBoost can optimize the results by simply adding the
predictions from all trees formed from the dataset.

2.5.4. Model Performance Evaluation Metrics

In this study, the accuracy, precision, recall, and F1 score will be used to evaluate the
performance of the model. The calculation formulas are as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision =
TP

TP + FP
(7)
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Recall =
TP

TP + FN
(8)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)

where true positive (TP) and true negative (TN) represent the number of correctly classified
positive samples and the number of correctly classified negative samples; false positive
(FP) and false negative (FN) represent the number of misclassified positive samples and
the number of misclassified negative samples.

3. Results
3.1. Correlation between Different Modeling Features and Wheat FHB

Correlation analysis is also widely used in studies of pest and disease monitoring [42].
So, in the study, the correlation between the different modeling features and wheat FHB was
analyzed. In this study, Spearman correlation was adopted to measure the ability of VIs and
TIs to identify wheat FHB. Spearman correlation differs from Pearson correlation in that it
allows the variables to be categories and has a stronger robustness [61,62]. From Table 3,
it can be seen that the correlation coefficient R between VIs and wheat FHB was between
−0.580 and −0.882 and the vegetation index with the highest correlation coefficient was
EVI; the correlation coefficient R between TIs and wheat FHB was between −0.866 and
−0.893 and the textural index with the highest correlation coefficient was DTI. Compared
with VIs, only DTI was higher than EVI, which had the highest correlation coefficient. The
P value between the different features and wheat FHB was less than 0.01, indicating that the
extraction of VIs and TIs based on UAV multispectral imagery were significantly different
from wheat FHB. VIs and TIs can be used as input features for constructing wheat FHB
monitoring models.

Table 3. Correlation analysis result between different modeling feature and wheat FHB.

Feature R P Value

VARI −0.580 **
CIgreen −0.757 **

CIrededge −0.747 **
DVI −0.879 **

DVIRE −0.872 **
EVI −0.882 **

NDRE −0.757 **
NDVI −0.861 **
NPCI −0.805 **
RVI −0.807 **

NDTI −0.866 **
DTI −0.893 **
RTI −0.869 **

** indicates that the correlation is highly significant at the 0.01 levels.

3.2. Model Analysis and Evaluation

In this study, KNN, PSO-SVM, and XGBoost were used for the modeling. We selected
the three VIs (EVI, DVI, and DVIRE) with the highest correlation coefficients as the input
features for VIs, combined NDTI, DTI, and RTI as the input features for TIs (these three
TIs are made up of their respective best combinations), and integrated these VIs and TIs
as the input features to construct wheat FHB monitoring models, respectively. A total
of 267 sampling points were used for the test set, including 106 healthy sampling points,
82 sampling points infected with FHB, and 79 background sampling points. In KKN, a
five-fold cross-validation was adopted to find the appropriate K value, and in PSO-SVM,
the PSO algorithm was utilized to optimize the parameters gamma and c of the model,
finding the best gamma and c in each different combination of features. ln XGBoost, the
parameters of the model were determined through several tuning attempts.
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The accuracy, precision, recall, and F1 score were used to evaluate the effect of the
monitoring results of the three models and the final parameter setting of the monitoring
models are shown in Table 4. From Table 4, the accuracy of the training set and the test
set showed that there was no overfitting or underfitting of the models. It can be seen that
when VIs were used as the input, the accuracy of the models reached 84.64%–85.02% and
the F1 score reached 82.75%–83.09%. When TIs were used as the input, the accuracy of the
models reached 91.76%–92.51% and the F1 score reached 90.84%–91.68%. When VIs and
TIs were used as the inputs, the accuracy of the models reached 92.13%–93.63% and the F1
score reached 91.29%–92.93%. It can be seen that the models using only VIs as the input
performed the worst, lower than the other two forms of feature combinations. This result
indicated that TIs outperformed VIs under a single type of feature input, probably because
TIs were richer in showing the textural information of FHB-infected wheat, which was
different from the healthy wheat canopy. Under both types of feature inputs, the combined
use of the spectral and textural information of the imagery enhanced the performance of
the models compared with using only VIs or TIs as the inputs, with XGBoost showing the
highest performance and outperforming the other two models with an accuracy of 93.63%.
It was shown that the performance of wheat FHB monitoring could be improved by taking
full advantage of different features and suitable model.

Table 4. Evaluation metrics of wheat FHB monitoring models.

Features Models
Training Set Test Set

Parameters Accuracy/% Accuracy/% Precision/% Recall/% F1 Score/%

VIs
KNN K = 5 81.93 84.64 84.46 83.19 82.75

PSO-SVM Gamma = 0.14,
c = 9.31 82.11 84.64 84.63 83.20 82.77

XGBoost Estimators = 10, max
depth = 3 83.05 85.02 85.36 83.63 83.09

TIs
KNN K = 9 89.79 91.76 91.3 90.81 90.84

PSO-SVM Gamma = 0.15,
c = 3.70 90.63 92.13 91.80 91.22 91.25

XGBoost Estimators = 10, max
depth = 3 91.10 92.51 92.00 91.65 91.68

VIs+TIs
KNN K = 7 90.07 92.51 92.14 91.64 91.68

PSO-SVM Gamma = 1.64,
c = 7.53 91.85 92.13 91.52 91.25 91.29

XGBoost Estimators = 10, max
depth = 3 93.16 93.63 93.19 92.90 92.93

3.3. Analysis of Monitoring Effect

Figure 4 shows the confusion matrix of the three models with different inputs. From
the confusion matrix, it could be seen that the misclassified sampling points of the models
were basically concentrated between the sampling points infected with FHB and the
background, and the healthy sampling points were better classified, probably because the
healthy sampling points are more different from the sampling points infected with FHB
and the background sampling points, while the sampling points of FHB will gradually
show the symptoms of whitening and drying on the wheat canopy due to the infection by
FHB, thus causing a loss of pigment and being easily confused with the background area.

When only VIs were used as the input, the misclassification between FHB-infected
sampling points and the background sampling points was more serious, indicating that
the spectral information of the images alone could not monitor wheat FHB well. The
misclassification was improved to some extent when only TIs were adopted as the input,
probably because the textural information of the canopy of wheat infected with FHB was
different from that of the background sample points, and the TIs improved the phenomenon
that the spectral features were difficult to distinguish detailed information. The integration
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of VIs and TIs as the input further improved the misclassification of the samples and
enhanced the performance of the models, among which the XGBoost achieved satisfactory
results with only 17 misclassified samples, the least misclassified samples, and the model
also has the advantage of being fast, so it is well suited for the monitoring of wheat FHB.
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In this study, different feature inputs as well as KNN, PSO-SVM, and XGBoost were
used for the monitoring of wheat FHB, and it was clear from the analysis that XGBoost
with VIs and TIs as the inputs achieved the best performance, so this model was used for
spatial distribution mapping of wheat FHB (Figure 5). The trained XGBoost was used to
perform a pixel-level classification of the UAV multispectral imagery. From Figure 5, we
can see that the overall FHB incidence in the study area was heavy, probably because wheat
FHB is a climatic disease, mainly affected by temperature and humidity, and the images of
the study area were acquired during the wheat grain filling stage, which was the peak of
the wheat FHB outbreak, making the incidence more serious. In addition, we could see that
some background areas and areas infected with FHB were confused with each other, which
may be related to the gradual drying of FHB after its incidence. Despite this phenomenon,
XGBoost achieved satisfactory results and could be used to achieve the monitoring of wheat
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FHB. This study provides a new approach for the rapid and nondestructive monitoring of
wheat FHB.
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4. Discussion

Many previous studies, which have used multispectral images from UAVs for plant
or crop pests and diseases, have been conducted. Some research scholars have used
multispectral images from UAVs to try to monitor citrus huanglongbing (citrus greening)
by extracting VIs that were sensitive to the disease, combined with models such as KNN and
SVM [63,64]. Other research scholars have used multispectral images for monitoring other
diseases such as wheat yellow rust [65], potato late blight [27], and Flavescence dorée [66].
These studies well demonstrated the potential of low-altitude multispectral images for
the rapid monitoring of crop diseases. The traditional remote sensing monitoring of pests
and diseases, especially based on UAV images [67–69], mostly uses some VIs as the input
features. This method only considered the changes in the host conditions and neglects
the local detailed textural information of remote sensing images [70,71]. Textural features
in UAV remote sensing images can describe the spatial distribution of the brightness of
adjacent pixels and unique textural information and are increasingly used in the monitoring
of pests and diseases.

Therefore, this study used spectral information and textural information extracted
from UAV multispectral imagery to try to monitor wheat FHB. First, to reduce the influence
of soil on the monitoring results, OSAVI was used to construct a mask file and set an
appropriate threshold to remove the soil areas from the image. Second, we analyzed the
correlation of 10 commonly used VIs and three TIs on wheat FHB, and through correlation
analysis, we selected three VIs that were significantly correlated with FHB as the input
features for the models, which were EVI, DVIRE, and DVI. These VIs were all associated
with either NIR or RE, which may be related to the stress state of the crops or plants.
After being stressed by pests and diseases, crops will show differential absorption and
reflection characteristics in different bands, causing changes in the crops’ pigments, water,
morphology, and structure [72]. Wheat FHB mainly infects wheat ears, making wheat ears
yellow and dry, thus causing the loss of chlorophyll [73], and this symptom can be well
reflected by the red-edge band [74,75].

Considering that FHB-infected wheat canopies may present different structures and
textures from healthy wheat canopies as well as the background, to further enhance the
description of wheat FHB by the textural features, three TIs (NDTI, DTI, and RTI) were
constructed instead of the original textural features as the input features for the models.
It was found that the TIs were significantly correlated with wheat FHB, probably because
the constructed TIs were combinations of different textural features and better-utilized
textural information to describe wheat FHB, where the correlation coefficient between DTI
and wheat FHB reached -0.893, which was better than VIs, indicating that TIs could also
be used as the input features for the wheat FHB monitoring models, and the performance
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may be better than VIs. Finally, based on the multispectral imagery after the removal of
the soil, we used three VIs, three TIs, and integrated VIs and TIs as the input features and
selected KNN, PSO-SVM, and XGBoost to construct the wheat FHB monitoring models.
Through our analysis, we found that XGBoost, which integrated VIs and TIs as the inputs,
could better achieve wheat FHB monitoring with an accuracy of 93.63% and an F1 score as
high as 92.93%. The reason may be that XGBoost has the advantage of transforming weak
learners into strong learners, and its regularization parameters can ensure the accuracy
while avoiding the problem of over fitting. In addition, the model is faster, so the model
can be applied to the monitoring of wheat FHB.

In this study, multispectral imaging technology combined with machine learning has
achieved great results in wheat FHB monitoring, but there are still some problems that
need to be improved. Wheat FHB is one of the most harmful diseases. The infection of
wheat FHB will bring irreparable harm to the wheat’s quality. Therefore, the early detection
of FHB in wheat is particularly important. The research field of this study is relatively
single, and further research is needed in more fields to verify the spatial and generalization
capabilities of the models used. In addition, we should also consider using the images
of multiple stages and key growth periods to further explore the disease characteristics
of wheat FHB so as to achieve the goal of an early detection and control. At present,
deep learning technology also has a very broad application prospect in plant or crop pest
detection, thus the potential of deep learning technology in disease monitoring needs to be
further explored.

5. Conclusions

This research proposed a wheat FHB monitoring method combining VIs, TIs, and
an XGBoost model. First, based on the multispectral imagery obtained by UAV, OASVI
was used to reduce the interference of the soil area. Second, we made full use of the VIs
and TIs of UAV multispectral imagery and explored the ability of KNN, PSO-SVM, and
XGBoost to monitor wheat FHB under different feature combinations. Lastly, combined
with the accuracy evaluation index of the models, the XGBoost model with VIs and TIs as
the inputs had the best performance, with an accuracy of 93.63% and an F1 score of 92.93%.
The results showed that the fusion of VIs and TIs could improve the accuracy of the model,
and XGBoost could quickly and accurately monitor wheat FHB. This research provides
technical support and reference for the rapid and nondestructive monitoring of wheat FHB.
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