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Abstract: Conservation biological control of pests may be achieved using a variety of integrated
strategies based on crop diversification. We investigated whether the insertion of the intercropped
plants species (IPS) Inga edulis, Senna macranthera, and Varronia curassavica modified the abundance of
mites, their feeding behavior, and the dissimilarity of predator and herbivore mites over a gradient of
distance from the IPS on coffee. To accomplish this, we recorded the mite species on coffee plants
along transects of 16 m extending from the IPS, including on the IPS. A total of 8946 specimens
were sampled. Tenuipalpidae was the most abundant family on coffee, followed by Tydeidae, while
Eriophyidae was the most abundant on the IPS, followed by Phytoseiidae. The abundance and
richness of mites differed between their feeding behavior and distance. The dissimilarity of predators
and herbivores increased along a gradient of distance. Furthermore, the IPS harbored several mite
species and the diversity of predator and herbivore mites among the IPS was different. The findings
suggest that the intercropped plant species can attract and serve as a reservoir of predatory mites on
coffee crops, which could improve the biocontrol of pest mites on coffee.

Keywords: conservation biological control; agroecosystem diversification; ecosystem service; herbi-
vores; natural enemies; integrated pest management

1. Introduction

Brazil is the largest coffee producer and exporter in the world. The covered area is
1.75 million hectares, from which Minas Gerais has the largest cultivated area (1.22 million
hectares); the most cultivated coffee species in the country is Coffea arabica L. (Rubiaceae) [1].
Minas Gerais is the state with the largest crop area, corresponding to 71.7% of the occupied
area of this species nationwide [1]. Pests and diseases normally cause economic and quality
losses on coffee crops [2]. The most frequent strategy in controlling them is the use of
chemical inputs such as fungicides, insecticides, and acaricides [3,4]. However, the impact
of these pesticides does not only affect the target pest species but also beneficial organisms
that play important roles in this agroecosystem due to the ecological services they provide,
such as pollination and biocontrol [5–7]. In addition to the impact on biodiversity, the
continued use of pesticides also reduces the quality of human life, due to the loss of
ecosystem services, increase in food production costs, and health concerns [8–12].

Conservation biological control is defined as the enhancement of natural enemy
populations in the agroecosystem, which could be an alternative to conventional practices
to control pests in the crop [13–15]. This management can be performed with a variety of
integrated strategies using the local biodiversity [16,17]. One strategy is the introduction
of intercropped plants that are effective in attracting and favoring key natural enemies
without attracting pests in the main crop [18,19]. Among the characteristics used to select
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the intercropped plants is the presence of extrafloral nectar and pollen, which are important
sources of energy to attract natural enemies and pollinators (i.e., wasps, ants, mites, bees,
and chrysopids) [20–27]. Because of their beneficial properties, trees of the genus Inga and
Senna are intercropped with coffee by farmers in some Brazilian regions [28–30]. In addition
to providing shade and wood, and fixing nitrogen, these trees also possess extrafloral
nectaries that enhance pest control [22,23,31,32]. In addition, Varronia curassavica Jacq. is
an aromatic perennial shrub that provides pollen during the whole year [33]. Together in
the system, they can be a good strategy for conservative biological control by providing
alternative food to natural enemies [22,23,28,30,34].

Increasing plant diversity enhances coffee productivity and soil quality, attracts nat-
ural enemies, and increases predation and parasitism in this agroecosystem [22,23,35,36].
Some predatory mites, such as phytoseiids from the genus Amblyseius, Euseius, Neoseiulus,
Galendromus, and Iphiseiodes, prey on herbivore mites and also feed on some plant sources,
such as pollen and nectar [37–39]. In some studies, predatory mites have been associated
with nectar, pollen, and spontaneous plants that grow naturally intercropped with the main
crop [20,21,25,40–43]. However, little is known about the effect of intercropped plants with
nectaries and pollen on herbivores and predatory mites in coffee crops [25,34,44].

Coffee plants house mites with different food habits, such as predators, mycophagous,
herbivores, and other species that do not have a well-known food source reported [4,45–48].
Some of the most common predatory mites found on these plants are from the families Phy-
toseiidae, Ascidae, Stigmaeidae, Cunaxidae, Cheyletidae, and Anystidae [4,45,47–52], with
phytoseiid mites being one of the most well-known and studied [37]. The most economically
important herbivore mite in this culture is Oligonychus ilicis (McGregor) (Tetranychidae). It
causes significant economic losses due to defoliation, premature leaf drop, and reduction
in plant photosynthesis [53,54]. The second most important pest is Brevipalus phoenicis (Gei-
jskes) (Tenuipalpidae). Although both mites occur throughout the year, dry periods are the
most favorable for their development [55]. Additionally, B. phoenicis can transmit the coffee
ringspot virus, which causes defoliation of the plants [55,56]. This last species comprises
several cryptic species [57,58] divided into a complex of eight species. Before this division,
B. phoenicis was the only species recorded on this crop. Subsequently, there are only records
of B. yothersi Baker and B. papayensis Baker as species belonging to the B. phoenicis species
complex and being able to transmit the coffee ringspot virus [4,47,48,51,52,58–60]. Addi-
tionally, Polyphagotarsonemus latus (Banks) (Tarsonemidae) is a pest on coffee that damages
the leaves, curling them downward [16,56,61–65]. This species is found in higher densities
in rainy seasons [55].

Our aim in this work was to evaluate if the distance from intercropped plants affects the
communities of mites present in coffee crops. For this, we used an established intercropped
coffee system and evaluated whether the insertion of the intercropped plants providing
nectar and pollen modifies (I) the abundance and richness of mites and their feeding
behavior, and (II) the dissimilarity of predator and herbivore mites over a gradient of
distance from these plants. We also evaluated whether (III) the selected intercropped plants
are able to harbor different communities of predator and herbivore mites, considering that
the intercropped plants can provide food resources for them [25,44]. We hypothesized that
coffee plants closer to the intercropped plants will have more predators, and consequently,
fewer pest mites. We also hypothesized that the mite community of these groups tends
to become more distinct in coffee plants as the distance from the intercropped plants
increases. Finally, we predict that different intercropped plant species may harbor different
mite communities, which could contribute to a conservation biological control strategy in
coffee systems.

2. Materials and Methods
2.1. Study Area

The experiment was carried out at the EPAMIG Experimental Farm Station, in
Patrocínio county (18◦59′52.0′′ S 46◦58′59.8′′ W), Minas Gerais, Brazil, in the Cerrado
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biome (Figure 1). The region is located at the mesoregion of Triângulo Mineiro and Alto
Paranaíba [66]. The sample area was characterized by a diversified system (1080 m2) with
3 replicated plots in 3 random locations in the planting at least 200 m from each other.
The diversified system is surrounded by two rows of three intercropped plant species
(IPS): two Inga edulis Mart. (Fabaceae) trees, one Senna macranthera (Dc. ex collad.) H.S.
Irwin and Barnaby (Fabaceae) tree, and six shrubs of Varronia curassavica (Cordiaceae) in
each row (Figure 1). The amount of each IPS was determined according to the size of the
plot and the plants. Inga edulis and S. macranthera have extrafloral nectaries that produce
nectar all day long and year-round, and V. curassavica produces flowers during the whole
year [31–33]. No pesticides were applied in the study plots. Fertilization was made with
chemical fertilizers and the spontaneous plant growth was controlled by a brush cutter.
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Figure 1. Map showing the spatial arrangement of the sampling plot, diversified coffee system
(1080 m2), at Patrocínio county, Minas Gerais, Brazil. Green triangles represent Inga edulis, yellow
circles represent Varronia curassavica, red squares represent Senna macranthera, and black squares
represent coffee plants. D1, D2, D3, and D4 represent the coffee plants sampled in their respective
distances from the IPS: D1 represents distance 1 from the IPS (4 m); D2 represents distance 2 from the
IPS (8 m); D3 represents distance 3 from the IPS (12 m); and D4 represents distance 4 from the IPS
(16 m). Figure adapted from [24].

2.2. Data Collection

To evaluate the effect of intercropped plants on mite communities along a distance
gradient in coffee crops, we sampled coffee plants four, eight, twelve, and sixteen meters
from the intercropped plants (Figure 1). In each plant, we detached four leaves, beginning
with the third leaf pair from the distal end of the shoot; this was conducted for two shoots
on each plant. Two branches in the middle third of each bush facing both sides of the
coffee rows were sampled (adapted [67]). A total of four plants were sampled every four
meters, which corresponded to consecutive coffee rows from each IPS (Figure 1). A total of
192 leaves were sampled per plot totaling 576 leaves in this experiment. Because the mite
species repeated themselves at each time point, the fourth and fifth sampling followed the
same procedure but instead of four leaves per plant, just 25% of the material was sampled,
which means one leaf per plant. A total of 48 leaves/plot was sampled, totaling 144 leaves
(adapted from Ref. [45]). To sample the IPS, five leaves of each plant species were detached
randomly per row for a total of 10 leaves per plant species/plot, totaling 90 leaves. The
material was collected at five times points: June 2020 and September 2020 (dry season), and
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October 2020, November 2020, and February 2021 (rainy seasons). The samples were placed
separately in paper bags and kept at low temperatures with Gelo-X® inside a cooler box
until they arrived at the laboratory of Acarology at the Department of Entomology at the
Federal University of Viçosa, Minas Gerais (20◦45′37.0′′ S 42◦52′07.0′′ W). At the laboratory,
samples were kept in a refrigerator at approximately 10 ◦C for a period of up to 10 days.
The leaves were examined with a stereoscopic microscope and all mites were mounted on
glass slides in Hoyer’s medium for identification [68]. Morphological identification was
made on a microscope with phase contrast using a dichotomous key [58,69–76].

Different amounts of leaves were sampled at different time points because only 25%
of the leaves were sampled in the fourth and fifth sampling. So, to maintain a consistent
identification pattern, from the first to third sampling, 25% of each slide was identified
and in the fourth and fifth all the slides were identified. To accomplish this, the cover slide
was divided into four identical quadrants, each one corresponding to 25% of the slide.
The identified quadrant was raffled. If in the raffled quadrant there were no mites, the
identified was the anterior one.

Females, males, and immature mites were included to analyze abundance. To richness,
only females were included because it was not possible to identify or morphotype males.
When assessing Eriophyoidea mites, some individuals were mounted on microscope
slides with modified Berlese’s medium [77] for morphotyping, and some individuals
were preserved in 70% ethanol for posterior identification. To measure the abundance,
all Eriophyoidea from the first sample were counted. From the second up to the fifth
sample, we used the mean number of mites per leaf. Hence, all individuals of the same
morphospecies were counted in a 1 cm2 quadrant in the abaxial surface of each leaf in
the region near to petiole and midrib. So, the leaves were measured and the number of
specimens per leaf was estimated. Only for this superfamily were all specimens included
in richness.

All specimens were deposited in the mite reference collection of the Laboratory of
Acarology at the Department of Entomology at the Federal University of Viçosa, Minas
Gerais, Brazil.

2.3. Statistical Analyses

We tested the effect of the distance gradient on the abundance of the herbivorous
and predatory mites using generalized linear mixed models (GLMMs) with a Poisson
error structure (and a log-link function) with the “lme4” v.3.1-147 package [78]. In the full
model for each response variable, we specified a fixed polynomial effect of the distance
gradient (i.e., including a quadratic term in the regression function) to account for potential
nonuniformity in response. Each model included a random intercept for “plot” (n = 3)
to account for the non-independence of the samples located within each plot. We used
the Gaussian distribution, and no overdispersion was found for the best-fitting models.
For the construction of the full model for the abundance of mites, we carried out a model
simplification process using the “AICcmodavg” package [79]. We determined the minimum
adequate model(s) by comparing akaike information criterion corrected (AICc) values and
AICc weights (AICcWt) for sub-models consisting of (1) a polynomial DG * behavior model,
(2) a polynomial DG + behavior model, (3) a linear DG * behavior model, (4) a linear DG
+ behavior model, or (5) a null intercept-only model. Models within 2 ∆AICc units of
the top model (i.e., the model with the lowest AICc and highest AICcWt values) were
considered to have equivalent explanatory power [80]. For the final model, we used the
approach of Nakagawa and Schielzeth [81] to estimate absolute model fit using marginal R2
GLMM (variance explained by just the fixed effects) and conditional R2 GLMM (variance
explained by both fixed and random effects). To evaluate the difference of abundance
among gradient distance and/or food behavior, we used the Analysis of Deviance e (Type
III) performed with package “car” version 3-1.0 [82] and Contrast Analysis with package
“lsmeans” version 2.30-0 [83].
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To investigate changes in the composition of mite communities along the distance
gradient, a species dissimilarity matrix based on the Bray–Curtis distance metric was
calculated among the plots [84]. From this, we calculated the average pairwise dissimilarity
of each sample to the centroid of the first distance of the coffee plant sampled using the
function “vegdist” in the “vegan” v.5-5 package [85]. This response measure, therefore,
reflects “dissimilarity to distance of IPS” in terms of species composition. We tested the
effect of the distance gradient on mite “dissimilarity to distance of IPS” using separate
linear models (LMs) with a gaussian error structure (and an identity link function). We
specified a fixed polynomial effect of the distance gradient and, as described above, we
carried out model simplification using AIC comparisons of polynomial, linear, and null
sub-models. Finally, we estimated the coefficient of determination of final models using
the “rsq” v.1.1 package [86].

We tested the variation in the composition of predators and herbivores among plants
with the permutational analysis of multivariate dispersions (PERMDISP) and the permuta-
tional multivariate analysis of variance (PERMANOVA) using the function betadisper and
adonis, respectively, both from the “vegan” package version 2.4-2 [87]. When we found
differences in composition among treatments, we performed a pairwise comparison using
the pairwise adonis function with a Bonferroni correction [88]. All analyses were performed
in R version 3.5.1 [89].

3. Results
3.1. Abundance and Richness of Mites

In total, we collected 8946 specimens belonging to 13 families and 37 species, divided
into 4 feeding behaviors: generalist, mycophagous, herbivores, and predators. Out of the
thirty-seven species found, three were generalists (Tydeidae), five were mycophagous
(Acaridae, Glycyphagidae, Tarsonemidae, and Winterschmidtiidae), twelve were her-
bivores (Eriophyidae, Diptilomiopidae, Tarsonemidae, Tenuipalpidae, and Tetranychi-
dae), and sixteen were predators (Iolinidae, Phytoseiidae, and Stigmaeidae). On coffee,
Tenuipalpidae was the most abundant family (n = 656) but only one species was reported,
followed by Tydeidae (n = 126) with three species and Tetranychidae (n = 96) with two
species found. On the IPS, Eriophyidae was the most abundant family recorded (n = 6252)
with four species, followed by Phytoseiidae (n = 282) with twelve species and Tenuipalpidae
(n = 257) with one species (Tables 1 and 2).

The best model that described the mite abundance was the polynomial with predictors
behavior + distance (R2(m) = 0.74, R2 (C) = 0.74, AICc = 542.01 and AICcWt = 0.89) (Table S1).
We found an abundance of mites differed among their feeding behavior (X2 = 68.637, df = 3,
p < 0.001) and along the gradient distance from intercropped plants (X2 = 104.825, df = 2,
p < 0.001, Figure 2). Regarding the difference in abundance among the feeding behavior
along the distance gradient, the abundance of herbivores was higher than the other feeding
behaviors (p < 0.0001). Additionally, no variation among predators, mycophagous, and
generalist mites were observed (p > 0.05).

3.2. Dissimilarity of Mites

The dissimilarity of species along the distance gradient for both herbivorous and
predatory mites presented the polynomial model as the most adjusted (see Table S1).
We found that the dissimilarity of herbivores and predators increased over the distance
gradient (F = 22.534, p < 0.0001, R2 = 0.63, Figure 3a and F = 44.464, p < 0.0001, R2 = 0.80,
Figure 3b, respectively).

3.3. Communities of Herbivorous and Predatory Mites on the IPS

The composition of herbivorous mites on IPS was different (PERMDISP: F = 0.21,
p = 0.80; PERMANOVA: R2 = 0.22, p < 0.05, Figure 4a). Inga edulis was different from
S. macranthera (R2 = 0.32, p = 0.001) and V. curassavica (R2 = 0.32, p = 0.002), but V. curassavica
and S. macranthera were not different (R2 = 0.09, p = 0.36).
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Table 1. Richness and composition of mite species in the intercropped coffee systems between June
2020 and February 2021: Vc Varronia curassavica, Sm Senna macranthera, Ie Inga edulis, Ca1 Coffea arabica
row 1, Ca2 C. arabica row 2, Ca3 C. arabica row 3, and Ca4 C. arabica row 4.

Feeding
Behavior Mite Family Mite Species Plant Species

Vc Sm Ie Ca1 Ca2 Ca3 Ca4

Generalists Tydeidae Lorryia formosa Cooreman 1 1 48 1 1
Tydeidae Lorryia sp1 3 34 8 14 7 22 10
Tydeidae Lorryia sp2 5 1 1

Mycophagous Acaridae Tyrophagus putrescentiae
(Schrank) 26 27 84 7 10 12 16

Astigmatina * Astigmatina sp. 3

Glycyphagidae Lepidoglyphus destructor
(Schrank) 1 1

Tarsonemidae Daidalotarsonemus savanicus
Rezende, Lofego and Ochoa 4 1

Tarsonemidae Tarsonemus confusus Ewing 7 6 11 1 2
Winterschmidtiidae Winterschmidtiidae sp. 4 1

Herbivores Eriophyidae Aculus sp. 1200
Eriophyidae Eriophyidae sp1 4885
Eriophyidae Eriophyidae sp2 70
Eriophyidae Eriophyidae sp3 97

Diptilomiopidae Diptilomiopidae sp. 18

Tarsonemidae Polyphagotarsonemus latus
(Banks) 65

Tenuipalpidae Brevipalpus yothersi Baker 15 144 77 95 152 110 100

Tetranychidae Atrichoproctus uncinatus
Flechtmann 12 7 12

Tetranychidae Mononychellus planki
(McGregor) 3

Tetranychidae Oligonychus coffeae (Nietner) 7 4 12 4
Tetranychidae Oligonychus ilicis (McGregor) 1 1 1 4 2
Tetranychidae Tetranychus sp. 2

Predators Iolinidae Pseudopronematulus nadirae
Silva, Da-Costa and Ferla 41 61 1 5 7 10 4

Iolinidae Pausia sp. 5 7
Phytoseiidae Amblyseius aff. chiapensis 1 2
Phytoseiidae Amblyseius aff. impressus 1
Phytoseiidae Amblyseius sp. 1
Phytoseiidae Euseius alatus DeLeon 4

Phytoseiidae Euseius citrifolius (Denmark
and Muma) 5 6 7 4 2 2 1

Phytoseiidae Euseius concordis (Chant) 1 1 11 4 5 3 3
Phytoseiidae Euseius sibelius (De Leon) 1 6 1

Phytoseiidae Iphiseiodes zuluagai Denmark
and Muma 32 2 2

Phytoseiidae Galendromus annectens
(De Leon) 4 2

Phytoseiidae Neoseiulus tunus (De Leon) 6
Phytoseiidae Typhlodromalus aripo DeLeon 4 4 1

Phytoseiidae Typhlodromips mangleae
De Leon 1 4

Stigmaeidae Agistemus floridanus Gonzalez 38 13 78 1 1 1

Stigmaeidae Agistemus brasiliensis Matioli,
Ueckermann and Oliveira 2

* Cohort.
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Table 2. Abundances of mite species in the intercropped coffee systems between June 2020 and
February 2021: Vc Varronia curassavica, Sm Senna macranthera, Ie Inga edulis, Ca1 Coffea arabica row 1,
Ca2 C. arabica row 2, Ca3 C. arabica row 3, and Ca4 C. arabica row 4.

Feeding Behavior Mite Family Plant Species

Vc Sm Ie Ca1 Ca2 Ca3 Ca4

Generalists Tydeidae 6 37 76 35 19 50 22
Mycophagous Acaridae 32 37 109 19 17 19 25

Astigmatina * 3
Glycyphagidae 1 1
Tarsonemidae 111 14 23 7 12 3 4

Winterschmidtiidae 4 1
Herbivores Eriophyidae 167 1200 4885

Diptilomiopidae 18
Tarsonemidae 108
Tenuipalpidae 15 158 84 130 208 171 147
Tetranychidae 19 14 18 16 14 27 39

Predators Iolinidae 85 134 2 8 12 20 11
Phytoseiidae 37 53 192 16 15 15 21
Stigmaeidae 48 20 129 1 1 1

* Cohort.
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The composition of predators on IPS was also different (PERMDISP: F = 0.18, p =
0.83; PERMANOVA: R2 = 0.33, p < 0.001, Figure 4b). Inga edulis was different from V.
curassavica (R2 = 0.32, p = 0.002) and S. macranthera (R2 = 0.32, p = 0.003), but V. curassavica
and S. macranthera were not different (R2 = 0.09, p = 0.37).

The predatory mite species found in all IPS were Pseudopronematulus nadirae Silva, Da-
Costa, and Ferla, Euseius citrifolius (Denmark and Muma), E. concordis (Chant), E. sibelius (De
Leon), Typhlodromalus aripo DeLeon, and Agistemus floridanus Gonzalez. In general, I. edulis
houses more predator species than the other IPS, with Amblyseius sp., E. alatus DeLeon,
Iphiseiodes zuluagai Denmark and Muma, Agistemus brasiliensis Matioli, Ueckermann, and
Oliveira occurring only on this plant species. Varronia curassavica has only one exclusive
species (Neoseiulus tunus (De Leon)) and S. macranthera did not have any exclusive species.
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Figure 4. Principal coordinate analysis (PCoA) plot based on the Bray–Curtis dissimilarity index
from samples of predatory and herbivorous mites composition between the IPS. Composition of
herbivores (a) and predators (b) from the IPS. Yellow circles represent Varronia curassavica (Vc), red
squares represent Senna macranthera (Sm), and green triangles represent Inga edulis (Ie).

Brevipalpus yothersi and Atrichoproctus uncinatus Flechtmann were the only herbivore
species common in all IPS. Eriophyidae sp1., O. ilicis and Tetranychus sp. are the species
exclusive to I. edulis. Eriophyidae sp2 and sp3, Diptilomiopidae sp., and P. latus were
the species that occur only on V. curassavica, and Aculus sp. and Mononychellus planki
(McGregor) were the only two species exclusive from S. macranthera. The number of
Eriophyidae on I. edulis was high (4885), despite having only one eriophyid species in
this plant, while V. curassavica and S. macranthera had different species in a much lower
number. It is important to notice that despite being a pest on coffee, P. latus only occurred
on V. curassavica with no records on coffee.

4. Discussion

The data presented here show that the intercropped plants are a reservoir of natural
enemies, as they harbor several species of predators. The abundance of mites differed
in their feeding behavior and distance with the dissimilarity of predators and herbivores
increasing along a gradient of distance.

Diversified coffee production systems attract predators, mostly wasps and para-
sitoids, increase biological control, improve soil quality, and decrease spontaneous
plants [22,23,25,35,36,44,90]. Studies with Inga spp. demonstrate the positive effects of
this plant intercropped with coffee, increasing natural control of coffee berry borers, coffee
leaf miners, and important coffee pests by attracting wasps and parasitoids due to the
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provision of nectar, and consequently enhancing the coffee yield [22,23]. So, in this work,
we observed that not just I. edulis, but also V. curassavica and S. macranthera house predators.
All predatory mites found on coffee were also found on the IPS (except for A. aff impressus
that has only one individual recorded), meaning that coffee plants are benefiting from
the IPS harboring predators that could control their pest mites. In addition to providing
additional food sources, such as pollen and nectar, the intercropped plants also can provide
shelter, a favorable microclimate, and a habitat where prey is present [91].

The composition of herbivorous and predatory mites was different in I. edulis and
similar in V. curassavica and S. macranthera. Inga plants harbored many more predators than
other IPS, did not harbor P. latus, and only harbored a few O. ilicis (n = 1), two herbivore
pests of economic impact on coffee crops. Senna macranthera did not house any of these
pest species but also harbored some predators. This is an important finding because these
plants have the potential of harboring different natural enemies and do not attract coffee
pest mites. Thus, due to the differences in natural enemies’ species in each IPS, the use
of the three plants together in coffee crop systems stimulated the diversity of predators.
The natural enemies found in this work belong to the families Stigmaeidae, Iolinidae, and
Phytoseiidae, with the latter having the greatest number of species. Most of the species
found here are known to feed and reproduce on a wide range of prey and Phytoseiidae,
for example, also feed on pollen and nectar that can constitute an important part of their
diet [37,38,92–96]. Phytoseiidae is an important predatory family that is extensively studied
and used for the biological control of pests [97]. Species of the genus Amblyseius, Neoseiulus,
Galendromus, and Typhlodromalus have records of feeding on pollen, but also on Eriophyidae,
Tarsonemidae, Tetranychidae, Tydeoidea, and other herbivore families [37,38]. Additionally,
species of the genus Euseius and Iphiseiodes are pollen feeders and are also generalists that
prey on a range of mites, and B. phoenicis is one of them [38,98–100]. Additionally, I. zuluagai
can feed on sugary substances and it is able to be reared on a range of alternative food
sources [100,101]. At the time of the studies cited above, B. phoenicis was not divided into a
species complex yet [58], and all the species of this complex were called B. phoenicis. So, we
cannot be certain which species of these complexes were recorded in those studies.

The feeding habits of Tydeoidea are diverse [102], and Iolinidae are associated with sev-
eral herbivorous species, preying on Eriophyidae, Tenuipalpidae, and Tetranychidae [92,94–96].
Other mites that feed on Eriophyoidea are Stigmaeidae, which can also feed on Tetranychi-
dae [93,103]. In this work, there were a great amount of Eriophyidae and other herbivorous
species belonging to Diptilomiopidae, Tenuipalpidae, Tarsonemidae, and Tetranychidae.
Thus, the larger number of herbivores in the system is mainly due to the high number of
eriophyids found on the IPS (Tables 1 and 2). Additionally, referring to mycophagous mites,
there are some species that belong to the family Acaridae, Glycyphagidae, Winterschmidti-
idae, and Tarsonemidae, which in coffee may be associated with the presence of domatia,
influencing the distribution and abundance of the group [104]. Knowing that the pests on
coffee vary in quantity during the year, the mites on the IPS and also those on coffee plants
can probably be preyed on and serve as alternative food by the predators recorded here,
mainly when the pests on coffee are in a low population [45,55,105]. Furthermore, the IPS
stimulates the diversity of natural enemies of other insect pests in this crop [22,23,106].

Thus, these results suggest that the IPS attracts predatory and herbivorous mites that
are not pests on coffee. These herbivores could be alternative prey to increase the population
of predators on these plants that could later migrate to coffee plants and control their pest
mites. Once this happens, it could enhance the conservation of biological control in the
area. Understanding the dynamics of predators and prey in this system would facilitate
management practices and favor the establishment of sustainable pest mite control on
coffee crops.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/agriculture13020285/s1, Table S1: Comparison of the likelihood
of model fit for null, linear, and polynomial models of the response variable to the distance gradient
(DG) and behavior. AICc: akaike information criterion corrected; ∆AICc: difference in AICc between
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the model and the model with the smallest AICc; AICcWt: model weight according to ∆AICc. Values
in bold represent the best models.
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