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Abstract: The need to improve the sustainability of intensive livestock farming has led to an increasing
adoption of Building Energy Simulation (BES) models for livestock houses. However, a consolidated
body of knowledge specifically dedicated to these models is lacking in literature. This gap represents a
significant obstacle to their widespread application and scalability in research and industry. The aim of
this work is to pave the way for scaling the adoption of BES models for livestock houses by providing a
comprehensive analysis of their application, development, and validation. For this aim, a systematic
review of 42 papers—selected from over 795 results from the initial database query—is carried out.
The findings underscored a growing body of research that involves BES models for different purposes.
However, a common approach in both model development and validation is still lacking. This issue
could hinder their scalability as a standard practice, especially in industry, also considering the limitations
of BES models highlighted in this work. This review could represent a solid background for future
research since provides an up-to-date framework on BES models for livestock houses and identifies
future research opportunities. Moreover, it contributes to increasing the reliability of BES models for
livestock houses by providing some recommendations for their validation.

Keywords: agricultural buildings; building energy performance; climate control; climate resilient
farming; energy efficiency; energy-smart agriculture; livestock housing management

1. Introduction
1.1. Background

Animal-derived food products play a significant role in ensuring food security. They ac-
count for approximately 25% of the total global protein intake and contribute approximately
18% to global calorie consumption [1]. A substantial share of those food products comes
from intensive livestock systems, which contribute to feeding at least 1.3 billion people [2].
In intensive systems, livestock is farmed in livestock houses that are designed and managed
to minimize costs and maximize production [3]. Climate control plays a central role in
the management of this type of livestock house due to its remarkable impact on different
domains of livestock production [4]. Previous works have pointed out how providing
adequate indoor climate conditions and avoiding heat stress affects animal productivity in
both quantitative [5,6] and qualitative terms [7,8].

Mechanical climate control systems are widely implemented in intensive livestock
houses, leading to considerable energy consumption that significantly contributes to the
overall energy use of the livestock facilities. Supplemental heating represents up to 96% of
the total thermal energy consumption (around 140 kWhthm−2a−1) in broiler houses, while
ventilation can account between 40% (up to 11 kWhel m−2a−1 [9]) and 70% [10] of the total
electrical energy consumption. In laying hen houses, ventilation can represent around half
of the total electrical energy consumption (20 kWhel m−2a−1). Similarly, ventilation and
localized heating in pig houses can amount to nearly 50% (37 kWhel m−2a−1) of the total
electrical energy consumption [9].
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The energy consumption due to climate control has a noteworthy influence from
various perspectives. From a financial point of view, it represents a running cost for
farmers. In contract broiler production, the cost of energy may be preponderant for
growers. Providing heating and electrical energy to the farm may represent a cost that
ranges between EUR 0.06 [10] and EUR 0.32 [11] per broiler, depending on the considered
context. In contract broiler production, thermal and electrical energy account for 25% and
12% of the total variable costs for the grower, respectively [11]. The energy consumption
due to climate control also has a negative impact from the environmental point of view.
Greenhouse Gas (GHG) emissions related to on-farm energy use account for up to 8% of the
total from the broiler supply chain, 4% from the egg supply chain, and 3% from the pork
supply chain [12]. Such high GHG emissions are due to the fact that electricity from the
grid and fossil fuels still represent the main energy sources adopted in livestock farms [13],
with further negative impacts on food security. The price of livestock commodities (e.g.,
meat and dairy), in fact, closely follows the oil price which is characterized by a high
volatility [14]. This results in higher production costs and increased business risks for the
farmers, leading to a subsequent rise in the price of the final products [15].

1.2. Building Energy Simulation (BES) Models for Livestock Houses

To reduce energy consumption due to climate control, improve indoor climate con-
ditions, and decrease the dependence of livestock systems on fossil fuels, new solutions
have been studied in recent years, with a focus on passive solutions [16,17] or the imple-
mentation of renewable energy technologies, such as geothermal [18] and aerothermal [19]
heat pumps, photovoltaic panels [20], and biogas-fed combined heat and power units
(CHPs) [21]. Evaluating the effectiveness and the potential of these solutions is a challeng-
ing task, typically accomplished via experiments or numerical simulations, which are often
performed using Building Energy Simulation (BES) models. BES models are physics-based
mathematical models that allow for the estimation of a building energy performance and
indoor climate conditions under a given set of boundary conditions and inputs [22]. The use
of BES models for analyses of livestock houses has considerably increased in recent years,
especially for performing preliminary analyses and system optimizations due to their cost
effectiveness, flexibility, and time efficiency. Moreover, BES models are also considered one
of the pillars for future energy performance certification schemes for livestock houses [23].

In contrast, BES models are well established in the building sector, where they have
been adopted for decades by researchers and practitioners to predict and analyze the energy
use and indoor environmental conditions of buildings for human occupancy [24]. The use
of BES models is considered crucial for the assessment of the environmental and energy-
related impacts of those buildings [25]. The crucial role of BES models in the building
sector has led to the development of a vast body of knowledge. Several studies, in fact,
are present in the literature providing comprehensive overviews of the state of the art and
insights on specific topics. For example, several works have focused on the development
and calibration of BES models [22,26,27], as well as on specific modeling topics, such as
the estimation of the infiltration rate [28], the modeling of the occupant behavior [29], and
thermal zoning [30].

1.3. Research Gap, Aim, and Contributions of This Work

BES models could play a crucial role even in assessing the environmental and energy-
related impacts of livestock houses. Although livestock houses share commonalities with
buildings for human occupancy, several specificities (e.g., higher ventilation air flow rates
and the use of evaporative cooling) make the energy modeling of livestock houses a separate
modeling activity [31], which are worth specific and thorough investigations. However, the
existing literature lacks a well-established and consolidated body of knowledge specifically
dedicated to BES models for livestock houses. This gap poses a significant obstacle to the
scalability of BES models, hindering a widespread application in the livestock sector. Only
via the establishment of a comprehensive body of knowledge a growing number of BES
models can be developed and validated robustly, using standardized and widely accepted
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methodologies. This paves the way for making BES models a standard practice in both
research and, more crucially, industry. The widespread use of BES models during livestock
house design and management stages, in fact, may positively impact several aspects, such
as energy efficiency.

The objective of this work is to pave the way for scaling the adoption of BES models
for livestock houses in livestock sector by providing a comprehensive analysis of the
application, development, and validation of BES models. In addition, a discussion about
the limitations that should be overcome to scale their adoption among researchers and
practitioners. To achieve this objective, the research efforts made in recent years are
encapsulated via a systematic review. This review stands as a pioneer in the literature,
being the first—according to the author’s knowledge—to delve into the specific topic of BES
models for livestock houses. This paper provides valuable insights into the current state
of the art by examining several aspects of the development, validation, and application
of BES models for livestock houses. Furthermore, it discusses the main limitations of BES
models that should be overcome to enhance their scalability and highlight future research
directions.

This paper delivers the following scientific contributions:

• The presentation and thorough critical comparison of the BES models for livestock
houses developed in recent years. By doing so, a pioneering and comprehensive
overview of this specific area is provided.

• A critical examination of the validation procedures adopted in BES models for livestock
houses accompanied by insightful recommendations to enhance and harmonize the
validation process of future BES models. The final aim is to increase the reliability of
these models.

• A critical discussion about the limitations that should be overcome to make BES
models a standard practice, especially in industry.

The outcomes of this review consolidate the existing body of knowledge about BES
models for livestock houses and represent strong references for enhancing the quality of
current and future investigations in this field. Moreover, the results of this work could
contribute to establishing the use of BES models as a standard practice in the livestock sector
with positive impacts on energy efficiency, environmental impacts, and operational costs.

The paper is structured as follows. After this introductory section (Section 1), the
comprehensive methodology employed for this systematic review and the analyses of the
retrieved BES models is presented (Section 2). Then, the main results are presented, and
the identified BES models are analyzed and compared (Section 3). A critical discussion
(Section 4) examines the limitations of BES models that may hinder their scalability and
suggests some recommendations for BES validation. Moreover, a discussion about how
BES models can contribute to a more environmentally sustainable and resilient livestock
sector is provided. Finally, the concluding remarks are provided (Section 5).

2. Materials and Methods
2.1. Review Methodology

The selection process of the academic publications analyzed in this review relies on
the methodology adopted in similar works present in the literature [32,33]. The selec-
tion process consists of the following steps: (1) scope delimiting; (2) logic grid creation;
(3) definitions of the literature database, search rules, and screening criteria; (4) database
search; and (5) identification, pre-screening, and final screening. Each one of these steps is
described in the following subsections.

2.1.1. Scope Delimiting

The scope of this review is delimited by defining three inclusion conditions. To be
included, the retrieved papers must fulfill all of them, which are as follows:

A. The paper should be focused on livestock houses in intensive systems. Papers
focused on other livestock systems (e.g., extensive or backyard systems) as well as
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on other farm structures (e.g., biodigesters or milking parlors) are out of the scope of
this review.

B. The paper should be focused on climate control and/or energy aspects. Papers
focused on other topics, such as gaseous emissions and waste management, are out
of the scope of this work.

C. In the paper, a physics-based BES model for livestock houses should be adopted.

The last inclusion condition (C) excludes Computational Fluid Dynamics (CFD) and
Data-Driven (DD) models from the scope of this review. Even though CFD and DD models
are also adopted to analyze livestock houses, they are characterized by some distinctive
features that set them apart from BES models.

CFD is a computer-based technique aimed at characterizing, interpreting, and quanti-
fying fluid transport phenomena via a numerical solution of the conservation equations [34].
CFD models provide data for each point of the computational domain simultaneously [35].
Thus, they can accurately estimate the airflow behavior and temperature distributions
within the enclosure [36]. For this reason, CFD models are usually applied to livestock
houses to study ventilation, thermal distribution, heat transfer rates, gaseous emissions, and
the dispersion of odors and minor contaminants [34,35]. One of the main disadvantages of
CFD simulations is that running simulations can be time-consuming and require significant
computing resources [37], especially when turbulent flows are analyzed. Turbulence mod-
els, in fact, are usually too computationally expensive to allow routine simulations [35] and
to be included in optimization processes, where thousands of simulations are needed [34].
For this reason, analyses performed using CFD simulations are usually limited to hours or
days [37].

While CFD models are mainly focused on fluid flow analyses, BES models are mainly
focused on the simulation of the building thermal behavior and the performance of climate
control systems to primarily investigate energy aspects. However, their focus has also ex-
panded to include the analysis of the indoor thermal environment [36]. Usually, BES models
assume the indoor air to be well mixed, with a uniform distribution of air temperature,
velocity, humidity, and contaminant contents over the building [36]. This simplification
with respect to CFD models enables BES models with a short computing time [37], which
makes them suitable for routine simulations, optimization processes, and long period
analyses. General examples of applications of BES models are the optimization of building
design at the envelope and system level, as well as the assessment of the overall building
energy use, thermal load under design conditions, and possible overheating risk [38].

While physics-based BES models are based on physical equations (e.g., heat and
mass balance equations) to simulate the thermal behavior of the building, DD models use
mathematical methods (e.g., statical methods or artificial learning techniques) to deduce
the hidden relationship between inputs and outputs [39]. Thus, the development of DD
models requires less in-depth knowledge of the involved physical phenomena. In contrast,
adequate datasets are required. These features make DD models particularly well suited
for analyzing the system performance of existing buildings, enabling a more accurate
estimation of the future system performances under specific boundary conditions [38].
On the other hand, being based on physical equations, BES models can be developed even
when the investigated building/system is not real, making them especially suitable for
the design stage and the preliminary analyses of experimental solutions. Similarly, not
depending on data for their development, forward BES models can also be developed
when the investigated variables are difficult to acquire, for example, thermal loads.

Considering the distinctive features regarding the development and applications of
BES models highlighted earlier, the scope of this review is limited exclusively to them.
Such specific focus ensures a deeper comprehension of the analyzed BES models, apples-
to-apples comparisons between them, and detailed analyses of their potentialities and
limitations in the specific context of livestock houses.
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2.1.2. Logic Grid Creation

Once the scope limits were defined, a logic grid of keywords and alternative terms
was created and is reported in Table 1. First, the main keywords were selected. They are
“livestock”, “hous*”, “energ*”, and “model*”. The asterisk wildcard was used for the
truncation to include in the search significant variations of the same word, such as housing
and houses for “hous*”. For each keyword, alternative terms were identified to make the
search broader and more extensive. The identified alternative terms are reported in the
rows below each keyword in Table 1. As visible in the table, several alternative terms
were identified—especially for “livestock” and “hous*”—to minimize possible biases in the
keyword selection. Please note that the asterisk wildcard was used only for those terms
that were considered to have significant variations. Minor variations due to plural or
misspellings are directly considered by the search engine of scientific databases.

Table 1. Logic grid of keywords and alternative terms.

Livestock Hous * Energ * Model *

Animal Building Simulation Simulation
Poultry Room Therm * Assessment
Broiler Barn Dynamic

Hen Facilit *
Duck Farm *
Swine
Pig *

Farrow *
Cattle
Dairy
Cow

The asterisk wildcard is used for the truncation to include significant variations of the same word in the search.

2.1.3. Definitions of the Literature Database, Search Rules, and Screening Criteria

The literature database adopted for this research was Scopus®. The search was limited to
English research papers that were published in peer-reviewed scientific journals. This criterion
was set since these publications were considered of higher quality than grey literature, tertiary
literature, and conference papers. A 25-year time span was considered for the research. Thus,
only papers published between 1998 and 2023 were included in the research.

2.1.4. Database Search

The database search was performed in July 2023. The keywords and the alternative
terms were concatenated as follows. Each keyword and its alternative terms (the ones in the
same column as the keyword in Table 1) are concatenated using the Boolean operator OR.
The keywords “livestock” and “hous*” are concatenated using the operator PRE/n, where
n was set equal to one. This operator limits the search to those works in which the first term
(livestock) in the query precedes the second one by, at maximum, one term. This choice was
led by the need to focus the search specifically on livestock houses. Similarly, the keywords
“energy*” and “model*” were concatenated using the operator PRE/n. Here, n was set
equal to three. Also, in this case, the choice was led by the need to focus specifically on
energy models but include among the results those word combinations in which “energy*”
and “model*” appear separated by additional terms, such as in “energy simulation model”.
Finally, the keywords “house*” and “energy” are concatenated by the Boolean operator
AND. The search was extended to the title, abstract, and keywords of scientific papers.
The entire query introduced in the Scopus® database is reported in Appendix A.

2.1.5. Identification, Pre-Screening, and Final Screening

The database search identified 795 scientific papers, which were pre-screened to further
limit the search. To this aim, the manual filters of the database were used to exclude the
papers from subject areas that were considered out of the scope of this review, namely
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“Veterinary”, “Biochemistry, Genetics and Molecular Biology”, “Social science, Immunology
and microbiology”, “Medicine”, “Pharmacology, Toxicology and Pharmaceutics”, “Arts
and Humanities”, “Neuroscience”, and “Nursing”. After the pre-screening, 524 papers
were considered for the final screening, as schematized in Figure 1.
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The final screening was performed considering the scope of the work delimitations
presented in Section 2.1.1. Thus, a paper is included in this review only if fulfills the inclu-
sion conditions A, B, and C. This fulfillment is evaluated at three different and consecutive
levels: title, abstract, and paper main body. The number of papers excluded at each level
is reported in Figure 1. During the final screening, it stood out that some papers adopted
a specific BES model that was developed in a previous work. Since the publication year
of that work fell within the 25-year time span considered in this review, that work was
included. After the final screening, 42 papers were included in this review.

2.2. Analysis Methodology

The 42 papers are then critically analyzed, focusing on their application, development,
and validation.

The first part of the analysis regards model application (Section 3.1). The retrieved
research papers are analyzed to identify their main research focus, the investigated type of
livestock house, and the type of ventilation, whether mechanical or natural. This analysis is
performed to provide an overview of the possible applications of BES models. Additional
bibliographical details about the paper (publication year and journal title) are provided
to give a more detailed overview of the status of the literature regarding the considered
modeling activity. The second part of the analysis (Section 3.2) is focused on model
development and discerns the type of model, the type of analysis (dynamic or steady state),
and the simulation time step. This comparative approach offers a detailed overview of
the predominant approaches adopted in BES models for livestock houses. Additional
analyses extend to the key energy parameters estimated by the models, along with an
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assessment of model validation status. This analysis is performed because can provide
a valuable reference for researchers and practitioners interested in evaluating specific
energy parameters within a framework of reliable prior works. The last part of the analysis
(Section 3.3) examines the pivotal aspect of model validation. A thorough exploration
of validated BES models compares the diverse validation procedures. The comparison
criteria include validated parameters, duration of the validation period, granularity of the
data, goodness-of-fit indexes, and adoption of validation thresholds. This examination
is performed to provide insights into the robustness and reliability of the analyzed BES
models and valuable information for performing the model validation in future research.

2.3. Bias Risk and Limitations

This work has specific bias risks and limitations that have to be considered when
analyzing the outcomes. Some bias risks are identified in the database search that was
limited to a single database (Scopus®) and focused only on papers published in English
journals during the last 25 years. Proceedings papers, book chapters, and grey literature
(e.g., reports and working papers) are excluded from this review. Hence, relevant studies
may be missing from the present review. Nonetheless, this bias is considered to have
a minor impact on the results of this review. The major contributions on the analyzed
topic (BES models), in fact, are estimated to be published mostly in international journals,
and the considered time span is deemed suitable to encompass the latest advances in this
field. Future reviews could further investigate journals in other languages as well as other
literature sources by leveraging different databases.

A possible limitation of this review is its focus limited to BES models only, with
the exclusion of both CFD and DD models from its scope, as detailed in Section 2.1.1.
On one hand, this limitation of the scope of the work enables deeper and specific analyses
focused on BES models. On the other hand, the exclusion of CFD and DD models limits
the overall comprehension of numerical modeling adopted to investigate livestock houses
from the point of view of climate control and energy use. Future reviews may focus on the
simulation models that were excluded in this review. Specifically, the use of CFD models
for agricultural buildings—both greenhouses and livestock houses—was recently analyzed
by Bournet and Rojano [34]. A similar review may be performed for DD models, especially
considering the spreading use of artificial intelligence.

An additional limitation pertains to the scope of analyses conducted in this review.
While this review focuses on some specific aspects of BES models, it is important to note
that other relevant aspects may be neglected, presenting a potential limitation to the
work. However, being the first systematic review specifically focused on this topic, it
lays the foundation for further works that could systematically investigate other aspects,
contributing to a more exhaustive examination of this research field.

3. Results
3.1. BES Models for Livestock Houses: Applications

The analysis of the included papers makes it possible to identify five main categories
of applications of BES models for livestock houses, namely

• Model investigation;
• Energy assessment;
• Heat stress evaluation;
• Control strategy improvement;
• Renewable Energy Source (RES) integration.

Please note that additional and more specific categories of applications of BES mod-
els could be identified. However, the applications have been deliberately confined to
five categories to enhance comprehension and facilitate the comparison.

In Table 2, the 42 included papers are organized according to the previously identified
categories of application. From the table, it stands out that model investigation is a common
application of BES models. The aim of several works, in fact, is investigating how to develop
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a BES model for specific or generic livestock houses. This is more common in the oldest
works included in this review that aimed at establishing the first methodologies for the
energy simulation of livestock houses. Examples of this type of work are the ones of
Cooper et al. [40] and Liberati and Zappavigna [41]. Both aimed at developing a general
methodology for the energy simulation of generic livestock houses with mechanical or
natural ventilation. Other works focus on specific modeling aspects rather than general
modelling methodologies. For example, Lee et al. [42] focused on how to estimate the
evaporation rate from duck-house litter, while Shin et al. [43] specifically focused on how
to calibrate the modeled fan electrical energy consumption.

Another application of BES models is the energy assessment with different focuses.
For example, BES models are used to estimate the thermal loads of the livestock house,
as performed by Qi et al. [44], Nawalany and Sokołowski [45], and Izar-Tenorio et al. [46].
In other cases, energy assessments are performed for evaluating energy efficient solutions—
as performed by Kwak et al. [20] and Jackson et al. [16]—with a specific focus on the
envelope, as in Costantino et al. [17], Axaopoulos et al. [47], and Wang and Xue [48]. The
energy assessment performed by Si et al. [49] aimed at estimating the overall carbon and
water footprint of pig farms. In other cases, BES models are adopted for estimating the
indoor climate conditions to assess the heat stress of livestock in different contexts. For
example, Mikovits et al. [50] evaluated the pig heat stress in Central Europe between 1981
and 2017, while Schauberger et al. [51] extended this evaluation in a projection to 2030.
Gonçalves et al. [52] evaluated the possible heat stress risk considering different types of
roof tiles. Other works adopt BES models for improving different control strategies, as
performed by Shin et al. [53] through weather forecasting data, or by Lambert et al. [54]
with a focus on humidity control. Recently, energy simulation models have also been
adopted for analyzing the integration of RES technologies in livestock houses, as carried
out by Tyris et al. [19] and Manolakos et al. [55]—with heat pumps—and Tan et al. [21] and
Omar et al. [56], with biogas systems. It is worth mentioning that Kwak et al. [20] included
a photovoltaic system in their energy assessment.

Table 2 also reports the investigated type of livestock house and the adopted type of
ventilation, whether mechanical or natural. As visible from the table, the developed
models primarily simulate livestock houses for monogastric animals, mainly poultry
and pigs. Among the poultry-related BES models, the majority center on broiler houses.
Only two models (Wang et al. [57] and Zhao et al. [58]) focus on laying hen houses, and the
other two of them (Lee et al. [42,59]) focus on duck houses. In the case of pig houses, most
models simulate fattening pig houses, although there is also a notable presence of models
focused on piglet houses. Nguyen-Ky and Pentillä [60] and Menconi et al. [61] stand out as
the sole contributors focused on livestock houses for ruminants. The former focused on a
dairy barn, while the latter on a sheepfold. Lastly, three studies take a broader approach
by examining generic livestock houses. These include the works of Turnpenny et al. [62],
Liberati and Zappavigna [41], and Cooper et al. [40]. Developed for generic livestock
houses, the last two mentioned works are the only ones that encompass both mechanical
and natural ventilation, while almost the totality of the others is focused on mechanically
ventilated livestock houses. The sole exceptions are the works of Lee et al. [59], Gonçalves
et al. [52], Nguyen-Ky and Pentillä [60], Omar et al. [56], and Wang and Xue [48], which are
focused on naturally ventilated livestock houses. This preponderant focus on mechanically
ventilated livestock houses could be due to two reasons. On one hand, mechanically ven-
tilated livestock houses are characterized by higher energy consumption [9]. Thus, they
are the focus of more investigations aimed at improving their energy performance. On the
other hand, it is complex to perform detailed fluid analysis and estimate the natural venti-
lation flow rate using BES models. This aspect may limit their versatility and scalability, as
discussed later in the text.
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Table 2. Applications for the Building Energy Simulation models analyzed in the review. The type of simulated livestock house is reported with the type of
ventilation in brackets (M: Mechanical, N: Natural). The journal and the publication year are reported per each analyzed work.

Application Reference Livestock House
(Type of Ventilation) Journal Publication Year

Model
investigation

Lee et al. [59] Duck house (N) Biosystems Engineering 2022
Shin et al. [43] Piglet house (M) Biosystems Engineering 2022

Costantino et al. [31] Fattening pig house (M) Applied Energy 2022
Nguyen-Ky and Pentillä [60] Dairy barn (N) Applied Engineering in Agriculture 2021

Lee et al. [42] Duck house (M) Biosystems Engineering 2020
Costantino et al. [63] Broiler house (M) Energy and Buildings 2018
Hamilton et al. [64] Broiler house (M) Advances in Mechanical Engineering 2016

Liberati and Zappavigna [41] Generic house (N/M) Transactions of the ASABE 2007
Silva et al. [65] Broiler house (M) Revista Brasileira de Engenharia Agrícola e Ambiental 2007

Wagenberg et al. [66] Fattening pig house (M) Biosystems Engineering 2003
Schauberger et al. [67] Fattening pig house (M) International Journal of Biometeorology 2000

Cooper et al. [40] Generic house (N/M) Journal of Agricultural Engineering Research 1998

Energy
assessment

Si et al. [49] Fattening pig house (M) Science of the Total Environment 2023
Qi et al. [44] Nursery + fattening pig house (M) Agriculture 2023

Nawalany and Sokołowski [45] Broiler house (M) Energies 2022
Costantino et al. [17] 1 Broiler house (M) Journal of Cleaner Production 2021

Kwak et al. [20] 2 Piglet house (M) Energy Strategy Reviews 2021
Panagakis et al. [68] 1 Broiler house (M) CIGR Journal 2021
Costantino et al. [69] Broiler house (M) Biosystems Engineering 2020

Izar-Tenorio et al. [46] Broiler house (M) Journal of Cleaner Production 2020
Wang et al. [57] Laying hen house (M) Computers and Electronics in Agriculture 2020

Jackson et al. [16] Fattening pig house (M) Biosystems Engineering 2018
Jackson et al. [70] Fattening pig house (M) Energy and Buildings 2017

Axaopoulos et al. [47] 1 Fattening pig house (M) Transactions of the ASABE 2017
Wang and Xue [48] 1 Piglet house (N) Transactions of the ASABE 2016

Zhao et al. [58] Laying hen house (M) Biosystems Engineering 2013
Menconi et al. [61] 1 Sheepfold (M) Journal of Agricultural Engineering 2013

Park et al. [71] Fattening pig house (M) Computers and Electronics in Agriculture 2013

Heat stress
evaluation

Scherllin-Pirscher et al. [72] Fattening pig house (M) Atmosphere 2022
Cho et al. [73] Broiler house (M) Agriculture 2022

Schauberger et al. [51] Fattening pig house (M) Agronomy 2022
Gonçalves et al. [52] Broiler house (N) Revista Brasileira de Engenharia Agrícola e Ambiental 2022
Mikovits et al. [50] Fattening pig house (M) International Journal of Biometeorology 2019

Haeussermann et al. [74] Fattening pig house (M) Transactions of the ASABE 2007
Turnpenny et al. [62] Generic house (M) Global Change Biology 2001

Control strategy improvement
Shin et al. [53] Piglet house (M) Energy 2023

Lambert et al. [54] Fattening pig house (M) Canadian Biosystems Engineering 2001
Gates et al. [75] Broiler house (M) Computers and Electronics in Agriculture 2001

RES 3

integration

Tyris et al. [19] 4 Broiler house (M) Energies 2023
Tan et al. [21] 5 Broiler house (M) Energy 2022

Omar et al. [56] 5 Broiler house (N) Renewable Energy 2020
Manolakos et al. [55] 4 Broiler house (M) Computers and Electronics in Agriculture 2019

1 Focus on envelope solutions. 2 A photovoltaic system is considered. 3 RES: Renewable Energy Source. 4 Focus on a heat pump. 5 Focus on a biogas system.
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In Table 2, the journals where the analyzed works were published are reported. As vis-
ible from the table, most of the analyzed works were published in journals focused on
agricultural engineering, mainly “Biosystems Engineering”, “Computers and Electronics
in Agriculture”, and “Transaction of the ASABE”, which are the journals with the highest
numbers of publications. However, the publications in journals dealing with energy topics,
such as “Energy” and “Energy and Buildings”, confirm the multidisciplinary nature of this
modeling activity. In Table 2, the inclusion of publication years for each work serves to
offer insights into the evolution of the analyzed research area over the duration covered
by this review (1998–2023). To make this evolution clearer, the annual publication count
throughout the timeframe covered in this review is presented in the stacked bar chart of
Figure 2. The chart shows a notable surge in research involving BES models for livestock
houses since 2016. In the period from 1998 to 2015, only 12 works were published, while
the subsequent period, from 2016 onward, witnessed a remarkable increase, with an ad-
ditional 30 publications. Furthermore, in the most recent years, a pronounced upward
trajectory has become evident, with over half of the total works considered (22/42) having
been published since 2020. This upswing in research output could have been driven by
the increasing concern over the environmental impact of livestock systems. It is no mere
coincidence that this surge in the volume of published research occurred during the same
period when significant policy initiatives, such as the European Green Deal with its Farm
to Fork Strategy [76], were approved. This upward trend underscores the emerging and
increasingly prominent nature of this research area. The sub-bars of Figure 2 indicate
the publication count specifically referred to the five categories of applications of the BES
models identified within this review. The sub-bars highlight how, in the first part of the
considered timespan (1998–2007), the main applications were model investigation, control
strategy improvement, and heat stress evaluation. Pretty recently (from 2013), BES models
have started to be used for energy assessments and RES integration (from 2019).
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Figure 2. The annual publication count of the 42 journal papers included in this review throughout
the considered timeframe (1998–2023). The sub-bars indicate the publication count related to the
identified applications of the Building Energy Simulation models identified within the framework of
this review.

3.2. BES Models for Livestock Houses: Development

The BES models included in this review are critically analyzed and compared to
highlight their main differences. This critical comparison is summarized in Table 3, where
the main features of the analyzed BES models are presented and compared. Specifically, the
table shows the differences in terms of the type of model, the type of analysis (steady-state
or dynamic), simulation time step, and investigated energy parameters. Moreover, the table
indicates if the considered BES models estimate the indoor air relative humidity (φair_i)
and whether the model validation was performed.
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Table 3. Comparison of the main features of the analyzed Building Energy Simulation models. Model type indicates if a custom model was implemented, or a
ready-to-use tool was adopted for its implementation (the name of the tool is indicated in brackets). The type of analysis is distinguished between steady-state (SS)
or dynamic (D) analysis.

Reference Model Type Type of
Analysis

Simulation
Time Step Indoor Air Relative Humidity (φair_i) Estimation

Estimated Energy
Parameter 1

Model
Validation

Si et al. [49] Custom SS n.a. 2 ✓ EHEfan X
Tyris et al. [19] Custom D n.a. ✓ EHEC

3 X
Qi et al. [44] Custom SS 1 h ✓ ϕHEH ✓

Shin et al. [53] Tool (E+) D 1 h X Efan ✓
Scherllin-Pirscher et al. [72] Same of [67] SS 1 h ✓ - X

Cho et al. [73] Tool (E+) D 5 min ✓ - ✓
Nawalany and Sokołowski [45] Tool (WUFI) D 1 h X ϕH ✓

Tan et al. [21] Custom D 1 h X QHEfan X
Lee et al. [59] Tool (TRNSYS) D 5 min ✓ ϕHϕC ✓
Shin et al. [43] Tool (E+) D 1 h X Efan ✓

Costantino et al. [31] Custom D 1 h ✓ EHEfan ✓
Schauberger et al. [51] Same of [67] SS 1 h ✓ - X
Gonçalves et al. [52] Tool (E+) D 1 h ✓ - ✓
Costantino et al. [17] Same of [63] D 1 h ✓ EHEfan in [63]

Kwak et al. [20] Tool (E+) D 1 h ✓ EHEfan X
Nguyen-Ky and Pentillä [60] Tool (IDA ICE) D 1 h ✓ EH ✓

Panagakis et al. [68] Tool (TRNSYS) D 1 h ✓ ϕHϕC X
Lee et al. [42] Tool (TRNSYS) D 5 min ✓ ϕHϕC ✓

Costantino et al. [69] Same of [63] D 1 h ✓ EHEfan in [63]
Omar et al. [56] Custom SS 1 h X QH ✓

Izar-Tenorio et al. [46] Adaptation of [64] SS 1 h X ϕHϕC X
Wang et al. [57] Tool (DeST) D 1 h ✓ ϕHϕC ✓

Manolakos et al. [55] Custom SS 1 h ✓ ϕHϕCEHEC ✓
Mikovits et al. [50] Same of [67] SS 1 h ✓ - X
Jackson et al. [16] Same of [70] D 1 h X - in [70]

Costantino et al. [63] Custom D 1 h ✓ EHEfan ✓
Jackson et al. [70] Tool (E+) D 1 h X - ✓

Axaopoulos et al. [47] Tool (TRNSYS) D 1 h X - X
Hamilton et al. [64] Custom SS 1 h ✓ ϕH ✓
Wang and Xue [48] Tool (E+) D 1 h X EH X

Zhao et al. [58] Custom SS 1 h X QH ✓
Menconi et al. [61] Tool (E+) D 1 h X QHQC X

Park et al. [71] Custom D n.a. ✓ EH X
Liberati and Zappavigna [41] Custom D 1 h ✓ - ✓

Silva et al. [65] Custom SS 2 h ✓ 4 - ✓
Haeussermann et al. [74] Custom D 3 s ✓ EHEfan ✓

Wagenberg et al. [66] Custom D 3 s ✓ EHEfan X
Lambert et al. [54] Custom SS 1 h ✓ EHEfan X

Turnpenny et al. [62] Adaptation of [40] SS 1 h ✓ Efan X
Gates et al. [75] Custom D 30 s X - X

Schauberger et al. [67] Custom SS 30 min ✓ - X
Cooper et al. [40] Custom SS 1 h ✓ - ✓

1 The investigated energy variables are the thermal load (ϕ), energy need (Q), and energy consumption (E) referred to Heating (subscript: H) and Cooling (subscript: C). The term Efan indicates the electrical
energy consumption of fans. 2 No data is available from the manuscript. 3 The energy consumption for dehumidification is also estimated. 4 The estimation concerns the indoor air-specific humidity.
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Table 3 points out significant differences between the analyzed BES models. Consider-
ing the total 42 analyzed works, a customized energy simulation model was developed in
27 of them. In the remaining 15 works, the BES model was implemented using a ready-
to-use simulation tool. Customized energy models rely on a set of customized equations
specified by the modeler to define the boundary conditions, solve thermal balance, and
simulate the system performance [31]. The development of a customized energy model is
an approach that is adopted for both steady-state and dynamic models, and it represents
the first solution, in chronological terms, adopted for the energy simulation of livestock
houses, as noticeable by comparing Tables 2 and 3. In contrast, the adoption of ready-to-use
simulation tools for the energy simulation of livestock houses is more recent, and it is
preferred to perform dynamic simulations. In this second approach, the simulation model
is implemented via physics-based software able to simulate the building and the HVAC
system, once the required inputs are introduced via the tool interface. In most cases, these
tools are adopted for analysis on an hourly or shorter time basis, as shown in the fourth
column of Table 3.

Amongst the customized dynamic models, different approaches are adopted. To sim-
ulate dynamically the thermal behavior of the analyzed livestock houses, some of the
analyzed works [21,31,63] adopt the simple hourly method presented in the ISO 13790
standard [77]. This method is based on the thermal–electrical analogy between the sim-
ulated building and an equivalent electrical network with 5 resistance and 1 capacitance
(5R1C), which represent the heat transfer resistances and the lumped fabric heat capac-
ity, respectively. By solving the thermal balance, the hourly heating/cooling loads and
the lumped indoor air temperature are estimated. Two approaches can be found in the
literature to solve the balance. The first one is based on a Crank–Nicholson scheme with
hourly time steps, as proposed by the ISO 13790 standard itself. The second approach
is based on a network analysis solved via a numerical method (Runge–Kutta algorithm)
in the time steps in which the indoor air temperature is in free-floating conditions [31].
The other customized and dynamic BES models indicated in Table 3 are developed with
different approaches. The simulation models of Tyris et al. [19], Park et al. [71], and Gates
et al. [75] were implemented in the Simulink® environment. The energy balances of Park
et al. [71] were based on two differential equations to calculate the air temperature of
the room and pit, respectively. A similar approach was adopted for the dynamic mass
balance equations for the estimation of the concentration of dust, water vapor, ammonia,
and carbon dioxide in both the room and the pit. Gates et al. [75] also used a differential
equation to describe the sensible energy balance of the enclosure. Its solution is obtained
using a numerical method (Runge–Kutta algorithm) to provide the indoor air temperature.
Liberati and Zappavigna [41] used two differential equations to define the dynamic sensible
and latent heat balances. The thermal behavior of each building element is modeled using
a one-dimensional Fourier equation solved via the finite difference method. It is worth
pointing out that the model considers the possibility that the floor surface can be either dry
or wet due to the presence of manure, urine, and water. Differential equations are used for
the dynamic energy and mass balances also in the works of Haeussermann et al. [74] and
Wagenberg et al. [66].

As mentioned before, ready-to-use simulation tools represent the alternative mainly to
customized models for performing dynamic analysis. Cross-referencing the publication year in
Table 2 and the model type in Table 3, it stands out that the use of ready-to-use simulation tools
for the development of BES models for livestock houses is quite a new approach in the literature.
The first application of these tools—in the framework of this review—was found in 2013, with
the work of Menconi et al. [61]. In the following years, a growing number of BES models
were developed via ready-to-use simulation tools, becoming a consolidated approach for the
energy simulation of livestock houses. This growth could be attributable to various factors,
mainly the increasing accessibility to computing capacity, the emergence, the enhancements of
the existing ones. Additionally, it has to be highlighted the maturation of a well-established
body of knowledge in the application of ready-to-use simulation tools to human-occupied
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buildings, which facilitated their adaptation to livestock houses. Table 3 shows that the most
frequently adopted ready-to-use simulation tools are EnergyPlus (E+) [78] and Transient System
Simulation Tool (TRNSYS) [79], which were employed in 12 out of the 15 works that adopt
ready-to-use simulation tools. Thus, E+ and TRNSYS can be considered the current standard
in ready-to-use tools for the energy simulation of livestock houses. This preference for these
two tools is also confirmed by a comparative evaluation performed by Kwak et al. [20]. Starting
from the results of a previous wider analysis on the capabilities of several ready-to-use building
simulation tools [80], Kwak et al. [20] ranked E+ as the best option (39 out 40 points), followed
by TRNSYS and Environmental Systems Performance—Research (ESP-r) [81] (both with 35 out
40 points). Besides E+ and TRNSYS, three other ready-to-use simulation tools were used in the
framework of the analyzed works, as visible in Table 3. Nawalany and Sokołowski [45] adopted
WUFI plus [82], Nguyen-Ky and Pentillä [60] adopted IDA Indoor Climate and Energy (IDA
ICE) [83], while Wang et al. [57] preferred to use Designer’s Simulation Toolkit (DeSt) [84].
The simulation time steps adopted in ready-to-use simulation tools are generally shorter than
in customized models, ranging between five minutes and one hour, as visible from the works
of Cho et al. [73] and Shin et al. [53], respectively.

Steady-state models are less complex than dynamic ones and usually adopt longer
simulation time steps. The steady-state models considered in the framework of this review,
in fact, adopt simulation time steps that go from 30 min [67] to two hours [65]. Usually,
steady-state models are based on static equations that describe the steady-state thermal
balance of the livestock house. The reduced complexity of steady-state models and their
longer simulation time steps require less computing capacity for running the simulations
compared to the dynamic models, which often rely on numerical methods to solve differ-
ential equations. Even though today, the availability of computing capacity has increased
remarkably compared to the past, some recent works are still based on steady-stated simu-
lation models. This happens mainly when the system dynamic is not a central point of the
analysis and/or there is a need to simplify the overall model. In some cases, in fact, the BES
models are only a part of broader models that encompass several system models. The first
case can be found, for example, in Si et al. [49] who estimate the energy consumption of a
pig farm using a steady-state energy balance for assessing the overall carbon and water
footprint of the farm. In this case, the dynamic effects of the system were not considered
due to the scope of the analysis. The second case can be found, for example, in Omar
et al. [56], who coupled a steady-state dynamic model of a broiler house to a model of
a biogas system, which was the main focus of the work. This analysis highlights that a
common and shared approach for the development of BES models of livestock houses
is still not present in scientific literature. This lack of standardization poses a significant
obstacle to their widespread adoption, particularly in industry.

All the analyzed models can estimate the indoor air temperature (θair_i), and many of
them embed a dynamic or steady-state moisture balance for the estimation of the indoor air
relative humidity (φair_i), as visible from Table 3. This feature is of the uttermost importance
in those works that specifically aim at evaluating the livestock thermal stress via indexes
that also include the effect of φair_i, as carried out by Cho et al. [73] or Schauberger et al. [51].
Some of the analyzed works enable the calculation of the thermal loads (ϕ) that can be
defined as the instantaneous amount of heat that has to be provided or removed to/from
the enclosure to maintain the air set point temperature. Heating (ϕH) and cooling (ϕC)
loads are crucial parameters required for sizing the HVAC system of the livestock house.
When ϕH and ϕC are integrated over time, they are theoretical energy needs (Q) for heating
(QH) or cooling (QC). Other outputs of some of the analyzed BES models are the energy
consumption (E) for heating (EH) or for fan operation (Efan) for indoor air quality control
and cooling. The main difference with the energy needs (Q) is that the performance of the
HVAC system has to be simulated for the estimation of E. For this purpose, the works
in which Efan is estimated adopt different solutions for simulating the fan performance.
For example, Shin et al. [43] adopted the part-load-factor model starting from the results
of the fan motor test, while Costantino et al. [31] modeled the fans using their specific
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fan performance based on manufacturer data. Some recent works simulated livestock
houses equipped with heat pumps. Manolakos et al. [55] simulated the heat pump to
estimate its electrical energy consumption for heating (EH) and mechanical cooling (EC).
Tyris et al. [19] adopted the same approach, and they included the energy consumption
due to dehumidification in their estimations.

Another element of interest that is highlighted in Table 3 is the validation status of the
models, meaning whether the models were validated or not. As visible from the last column
of the table, not all the BES models were validated. Specifically, the model validation was
performed in 21 works, and 3 works adopted a model that was validated in a previous
work. In the remaining 18 works, model validation was not performed. Even though the
presence of model validation may depend on the aim and scope of the work, the lack of
validation seems to be more common in the oldest works analyzed in this review. Probably,
the spread of low-cost, reliable sensors in recent years has facilitated the acquisition of real
datasets needed for experimental validation. The main aspects regarding model validation
are discussed in more detail in the following section.

3.3. BES Models for Livestock Houses: Validation

The adopted validation procedures are critically compared in Table 4, with a focus
on the duration of the validation periods, the validated parameters (θair_i, φair_i, EH, and
Efan), the adopted Goodness-of-Fit (GoF) indexes, and the considered validation thresholds.
All the validations performed in the works reported in Table 4 are performed against real
monitored data. The only exception is the work of Manolakos et al. [55] that proposes a
different approach by comparing the EH estimated by the model to the EH numerically
estimated by a previous energy audit [85].
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Table 4. Comparison between the validated Building Energy Simulation models. The considered validation parameters are the indoor air temperature (θair_i) and
relative humidity (φair_i), the energy consumption for heating (EH) and fan operation (Efan). In the validation parameter columns, the symbol “✓” means the
validation was performed for that parameter, “X” means the validation was omitted, “-” means the validation was not possible since the model does not estimate
that parameter, and “n.a.” means that data are not available from the manuscript.

Validation Parameters (Sample Size)

Reference θair_i φair_i EH Efan Validation Period GoF Indexes 1 Thresholds

Qi et al. [44] ✓(n.a.) ✓(n.a.) X - 14 days MAE, MaxAE, MaxRE, MPE X
Shin et al. [53] ✓(504) - - ✓(504) 21 days CVRMSE, NMBE [86]
Cho et al. [73] ✓(2016) ✓(2016) - - 7 days MAPE, NMBE, R2, RSME [87–89]

Nawalany and Sokołowski [45] ✓(8760) - - - 365 days GOF, R2 Custom
Lee et al. [59] ✓(2016) ✓(2016) - - 7 days MAPE, R2, RSME X
Shin et al. [43] ✓(504) - - ✓(21) 21 days CVRMSE, NMBE, R2 [86]

Costantino et al. [31] ✓(744) ✓(744) X ✓(744) 37 days CVRMSE, NMBE, RMSE [86,90,91]
Gonçalves et al. [52] ✓(48) ✓(48) - - 2 days CV, r, R2 X

Nguyen-Ky and Pentillä [60] ✓(4416) ✓(2928) ✓ 3 (2) - 184/122/197 days 2 CVRMSE, MAPE, NMBE [86,88,92] Custom
Lee et al. [42] ✓(2016) ✓(2016) - - 7 days MAPE, R2, RMSE X

Omar et al. [56] ✓(144) - - - 6 days R2 X
Wang et al. [57] ✓(168) ✓(168) - - 7 days ANOVA, LSD, R2 X

Manolakos et al. [55] X X ✓ 4 (1) X 365 days MPE X
Costantino et al. [63] ✓(1200) ✓(1200) ✓(1) ✓(1) 50 days CVRMSE, MPE, NMBE, RMSE [86]

Jackson et al. [70] ✓(240) - - - 10 days X X
Hamilton et al. [64] ✓(840) ✓(840) - - 35 days RMSE X

Zhao et al. [58] X - ✓(1) - 152 days MPE Custom
Liberati and Zappavigna [41] ✓(48) ✓(48) - - 48 h R2 X

Silva et al. [65] ✓(34) ✓ 5 (34) - - 68 h SE Custom
Haeussermann et al. [74] ✓(17,280) ✓(17,280) X X 180 days IQR, Max, Min, x, σ Custom

Cooper et al. [40] ✓(168) X - - 7 days MAE, σ 6 X

1 The Goodness-of-Fit (GoF) indexes are detailed in Appendix B. 2 Respectively, for θair_i, φair_i, and EH. 3 Validation performed considering EH in the total energy consumption of the
livestock house. 4 Validation performed via the comparison with energy consumption estimated via a previously performed energy audit [85]. 5 Validation performed on the indoor air
specific humidity. 6 The standard deviation (σ) is calculated amongst the errors.
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The first four columns of Table 4 show which parameters were validated in each model.
Please note that the adopted symbols convey specific meanings:

• “✓” signifies the validation was performed for that parameter;
• “X” denotes the validation was omitted for that parameter;
• “-” indicates the validation was not possible for that parameter because it cannot be

estimated by the simulation model.

As visible from the table, almost all the considered models validate the estimation of
θair_i, with the only exceptions of Manolakos et al. [55] and Zhao et al. [58]. In Manolakos
et al. [55], the validation of θair_i was omitted because energy audit results were used instead
of monitored data. Thus, no monitored θair_i values were available for the validation.
In Zhao et al. [58], the omission of θair_i could be attributable to the aim of the work, which
is mainly focused on the energy requirements and related costs of various laying systems.
In both cases [55,58], the validation of the estimated EH was performed. The models’
estimation of φair_i was validated in many works, while very few of them validated the
energy parameters. Most of the models previously presented in Table 3, in fact, estimate
thermal loads (ϕ) and theoretical energy needs (Q) that cannot be measured, being purely
theoretical parameters.

Table 4 also highlights the number of data (sample size) that were adopted for the
validation and for calculating the GoF indexes together with the duration of the validation
period. As visible from the table, the duration of the validation period is remarkably
different amongst the analyzed works and ranges between 48 h [41] and one year [45,55].
The sample size used for the validation of the indoor climate conditions (θair_i and φair_i)
is usually higher than the ones used for the validation of energy parameters (EH and
Efan). This is because θair_i and φair_i are often validated by adopting the same time
step of the BES model. In contrast, EH and Efan are usually validated considering the
whole energy consumption over the entire validation period. For this reason, for example,
Shin et al. [43] validated θair_i using 504 samples (hourly values), while Efan was validated
using 21 samples that represent the daily energy consumption over the same number of
days. The same approach was adopted by Costantino et al. [63], who validated θair_i and
φair_i on an hourly basis (1200 samples), while EH and Efan were validated over the entire
period (1 sample each). In contrast, Shin et al. [53] and Costantino et al. [31] adopted a
different approach since they used the same number of samples for both indoor climate
conditions and Efan. This approach could be considered more accurate since it considers
the dynamics of the system.

The last two columns of Table 4 show the calculated GoF indexes and the thresholds
that were adopted to consider the model as validated. As visible, several different GoF
indexes are adopted for the validation of the simulation models. The definitions and
the formulations of the reported GoF indexes are presented in Appendix B. Three main
approaches regarding GoF indexes and their thresholds can be identified amongst the
analyzed works. In the first approach, GoF indexes are calculated and then compared to
established thresholds. Usually, in this approach, the Root Mean Square Error (RMSE),
the Coefficient of Variations of the RMSE (CVRMSE), and the Normalized Mean Bias
Error (NMBE) are adopted and then compared with the thresholds defined by specific
guidelines and protocols on building energy simulation. The main reference documents in
this sense are provided by ASHRAE (Guideline 14 [86] and Fundamentals Handbook [87]),
the International Performance Measurements and Verification Protocol (IPMVP) [89,91,92],
and the Federal Energy Management Program (FEMP) [88,90]. This approach was used,
for instance, by Cho et al. [73], Costantino et al. [31], and Nguyen-Ky and Pentillä [60]. In
other cases, the thresholds are defined in the work itself, without referring to the previously
mentioned documents. This second approach is adopted, for example, by Nawalany and
Sokołowski [45] and Silva et al. [65]. Nawalany and Sokołowski [45] set the thresholds
for the coefficient of determination (R2) and the Goodness of Fit (GOF) at values higher
than 75% and 80%, respectively. Silva et al. [65] considered the model validated since the
standard error between measured and simulated values is lower than the one calculated
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between the two sensors inside the livestock house. A similar approach was adopted by
Haeussermann et al. [74], who considered the BES model reliable because the standard
deviations (σ) of the differences between simulated and measured values were within the
accuracy of the adopted sensors. The last approach relies on calculating GoF indexes to
provide an extent of the error, but without considering any established threshold. This
last approach was adopted, for example, by Qi et al. [44] and Lee et al. [59]. The only
exception to those three approaches is in the work of Jackson et al. [70], who do not provide
any numerical assessment of the error between the simulated and monitored θair_i data.
A graphical comparison (a line plot) is given to provide an extent of the reliability of the
simulation model.

A final note is dedicated to the topic of model calibration, which is closely linked
to model validation. Model calibration means fine-tuning model parameters so that the
predicted values closely match with the measured ones. The topic of model calibration was
not faced in the framework of this review because the scientific literature on the topic is
very scarce. Very few works amongst the ones analyzed in this review face this topic. It is
worth mentioning that the work of Shin et al. [53] is entirely focused on calibration aspects,
with a special focus on the calibration of the modeled fans. Moreover, they performed
an optimization-based calibration on θair_i by considering calibration parameters as the
infiltration rate and the equipment load. The work of Nguyen-Ky and Pentillä [60] also
thoroughly discussed the performed optimization-based calibration, providing several
details about the optimization parameters, their initial values, and the adjusting range. The
seven considered optimization parameters regard the cow emissions (heat, CO2, and vapor
emissions), the thermophysical properties of the curtain wall window (its thermal, solar,
and visible transmittance), and its opening curve, defined as the ratio of opening area and
total window area as a function of the outdoor air temperature. An optimization-based
calibration was adopted by Costantino et al. [63] who considered as a calibration parameter
the direct saturation effectiveness of the evaporative pads. Silva et al. [65] performed the
model calibration via a consecutive approximation approach for estimating a correction
factor for the heat sources of the livestock house.

4. Discussion
4.1. Toward BES Models as a Standard Practice in the Livestock Sector

As pointed out, there has been a remarkable recent increase in the use of BES models
in literature. However, it has to be remarked that the current predominant use of BES
models is limited mainly to research applications, with minimal integration into actual
industry practices. To facilitate the broader adoption of BES models as a standard practice
in research and, more crucially, in industry, concerted efforts should focus on overcoming
some specific limitations that are hindering the scalability and versatility of BES models for
livestock houses.

The complex modeling methods at the basis of BES models, especially dynamic ones,
are one of the main limitations that could prevent their scalability. Developing a reliable
dynamic BES model is a time-consuming process, which requires a deep multidisciplinary
knowledge of the involved physical phenomena, the building, and the systems. Ready-
to-use simulation tools may, in part, overcome this limitation because the main equations
are pre-defined, as well as some equipment. However, some customizations can also be
required in ready-to-use simulation models to adjust them to the simulation of livestock
houses because ready-to-use simulation models were primarily developed for human-
occupied buildings. To definitively overcome this limitation, the research efforts made
in recent years could be channeled toward the development of a ready-to-use BES model
specifically developed for the application to livestock houses. In this way, energy simulation
of livestock house could have a shared approach and practitioners could have a well-
established ready-to-use tool.

Another disadvantage of BES models is the limitation in performing detailed fluid
analyses due to the reasons previously mentioned in Section 2.1.1. This limitation mainly
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affects their versatility because it narrows down the scope of application to totally enclosed
livestock houses with mechanical ventilation. Thus, ruminant housing systems—mainly
dairy barns—are usually not analyzed using BES models, as is also pointed out in Table 2.
CFD [93] or DD [94] models are usually preferred for naturally ventilated buildings or when
hybrid ventilation systems, a combination of mechanical and natural ventilation, are adopted.
Extending the applicability of BES models to partially enclosed houses or totally enclosed
livestock houses with natural ventilation is challenging because the accurate estimation of
the natural ventilation flow rate gains complexity because of wind effects, thermal buoyancy
forces, and their combination [93]. Some recent works tried to overcome this limitation with
different approaches. Nguyen-Ky and Pentillä [60], for example, adopted the mass–pressure
balance method directly embedded in IDA ICE to estimate the natural ventilation flow rate.
Another possible approach to solve this problem is the co-simulation between BES and CFD
models, as performed by Lee et al. [59] for evaluating the wind pressure coefficients necessary
to estimate the natural ventilation rate. This approach seems promising because can provide
more accurate estimations about energy use and indoor environmental conditions by using
the complementary information provided by BES and CFD models [95]. However, these more
accurate estimations have to be counterweighted by an increased computational time. A
study performed in the context of the building sector showed that a co-simulation required
approximately four hours to run, while the simulation performed only via the BES model
required only a few seconds [96]. Such high computational time may hinder the adoption of
co-simulation by practitioners. Thus, future works may investigate the specific application
of BES-CFD co-simulation to livestock houses, focusing on the variables that should be
transferred between the models to find a tradeoff between computational time and more
accurate estimations.

Finally, another limitation that could be attributed to BES models—and simulation
models in general—is their reliability. Model validation is crucial in this perspective.
However, this review underscored that the approaches regarding model validation vary
significantly amongst the analyzed works. As previously shown in Table 4, some of the
analyzed works validated the models by estimating the extent of the model error via
specific GoF indexes that are then compared with thresholds established by protocols.
Other works only calculate the GoF indexes to provide an extent of the model error without
comparing them to any thresholds. Finally, some other works do not validate the model
and do not provide any indication of the model reliability. Starting from this premise, it
appears necessary to harmonize the validation procedure amongst BES models for livestock
houses. This task poses a complex challenge because, while there exists an extensive body
of knowledge on validating energy models for human-occupied buildings [97,98], the
scientific literature regarding the validation of BES models for livestock houses is notably
scarce. Certainly, many approaches could be borrowed from the validation procedures
of BES models for human-occupied buildings. However, the development of specific
procedures is encouraged for BES models for livestock houses due to their significative
differences with other building types. A similar approach was adopted to ensure the
prediction quality of CFD models for livestock houses [35]. This development represents
a complex task that deserves to be analyzed in future specific works. However, some
valuable recommendations for model validation can be drawn from the results of this work.

4.2. Recommendations for BES Model Validation
4.2.1. Perform Model Validation

The first recommendation regards the necessity of validating all the models, whether
they are customized models or are implemented in ready-to-use tools. This recommenda-
tion is provided because it has to be considered that a difference exists between customized
models and the ones implemented using ready-to-use simulation tools. The former, in
fact, are usually developed from scratch, while the latter are based on software that was
previously verified by the developers. Model verification and validation are both neces-
sary to quantify and build credibility in numerical models [99], but they are two different
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processes. Model verification can be defined as “the process of determining that a model
implementation accurately represents the developer’s conceptual description of the model
and its solution” [99]. In contrast, model validation can be defined as “the process of
determining the degree to which a model is an accurate representation of the real world
from the perspective of the intended uses of the model” [87]. Thus, differences in pre-
dictions that may be caused by algorithmic differences or coding errors were previously
identified by the developers [87] in ready-to-use tools. In contrast, those differences should
be carefully identified by the modeler in customized BES models through a debugging
operation. Hence, model verification represents a step toward the accurate representation
of the real world by the model, but it does not exempt the models from the validation,
which makes them suitable for their intended use. This holds particularly true, especially
considering that ready-to-use tools were primarily developed for environments for human
(rather than for livestock) occupancy and comfort and then adapted to livestock houses.
This adaptation makes the validation even more recommended.

4.2.2. Prefer Empirical Validation

The second recommendation regards the methodological basis of the validation.
This review underscores that empirical validation is the most adopted methodology for the
validation of BES models for livestock houses. According to the ASHRAE Fundamental
Handbook [87], empirical validation relies on the comparison of the simulation results to
monitored data. Indoor climate conditions—φair_i and, especially, θair_i—are the variables
that are usually monitored for this purpose. The use of θair_i as a validation parameter
enables the validation even for those models that, excluding the HVAC system, focus
solely on simulating indoor climate conditions and thermal loads, without considering
energy consumption. In these cases, the validation of θair_i is the main way to evaluate the
accuracy of the model in estimating the livestock house thermal behavior. When the HVAC
system is incorporated into the model, it is advisable to monitor the energy consumption
for a comprehensive comparison with simulated data. In this case, the evaluation extends
beyond assessing the estimation of the thermal behavior of the building to also encompass
the reliability in the estimation of the HVAC system performance. This paper does not
delve into specific details on how to conduct a monitoring campaign, as this topic is consid-
ered beyond the scope of our current work. However, comprehensive information can be
explored in the existing literature and the references provided in Table 4. The only crucial
aspect emphasized in this context is the duration of the validation period, which should
be sufficiently extended to accurately capture the dynamic effects of the building and the
changes in the boundary conditions, such as the variation in air set point temperature or
the ventilation air flow rate. This is considered a crucial element because those changes are
considered one of the main specificities of livestock houses when compared to buildings
for human occupancy [31]. Moreover, it seems recommendable to consider a validation
period that encompasses the operation of various climate control systems—e.g., heating
system, ventilation, and evaporative cooling—and their control logic.

Currently, performing empirical validations has been eased, compared to the past,
thanks to the widespread availability of accurate sensors and advancements in Internet of
Things (IoT) technologies that are playing a key role in smart farming. Moreover, most of
the recently built livestock houses are equipped with digital systems for the monitoring
and acquisition of several parameters, providing valuable datasets for empirical validation.
However, if real data are not available, two alternative methodologies in compliance with
the ASHRAE Fundamentals Handbook [87] and ASHRAE Standard 140 [100] could be
adopted, namely the analytical verification and the intermodal comparison. The former
relies on the comparison of model results to results from a known analytical solution or
a generally accepted numerical method, while the latter relies on the comparison of the
model to another [87]. In this last case, the results from a customized model could be
compared with the results from a ready-to-use tool, as carried out in previous studies [101].
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4.2.3. Choose GoF Indexes with Defined Thresholds

The last recommendation provided in this work regards one of the most critical aspects
of model validation. It is the identification of the GoF indexes and the thresholds that should
be respected for deeming the model validated when empirical validation is performed.
Various GoF indexes (e.g., MAE, MaxAE, and MBE) can be adopted to evaluate the model
error, as reported in Table 4. Additional indexes with related insights about their use can
be found in [102]. A first recommendation that could be provided is to always specify the
formulation of the adopted GoF indexes, to consistently clarify how they were calculated,
as there may be slightly different formulations in the literature. It is noteworthy that only
a subset of the considered GoF indexes has established thresholds that make it easier to
define whether the model can be considered validated. In Table 5, some GoF indexes with
their thresholds that can be used for the BES model validation in future works are reported.
Please note that the table is not intended to provide an exhaustive list, but it only reports
some of the GoF indexes and the respective thresholds that were identified in this review.
Their formulation is provided in Appendix B.

Table 5. Recommended Goodness-of-Fit (GoF) indexes with their respective threshold intervals
specified for the time step of the validation dataset.

GoF Index Threshold Interval Time Step of the
Validation Dataset Source

NMBE 1
[−10%,+10%] Hour [86,88]
[−5%,+5%] Month [86,88]
[−20%,+20%] Month [89]

CVRMSE

[0%,+30%] Hour [86,88]
[0%,+20%] Hour [89]
[0%,+15%] Month [86,90]
[0%,+5%] Month [91]

R2 [+75%,+100%] Hour [87,88]

GoF (+80%,+100%] Hour [45]

MAPE 2 [0%,+10%) Hour/Entire period [60]
1 Not recommended to be used alone due to cancellation errors. 2 Mainly recommended for evaluating the
estimation of the energy consumption over the entire validation period.

The first identified GoF index is the NMBE, whose threshold is fixed in the inter-
val [−10%,+10%] for hourly data. In the case of monthly data, that interval reduces
being [−5%,+5%]. These thresholds are provided by ASHRAE Guideline 14 [86] and the
FEMP [90], even though slight differences exist between the adopted nomenclatures and
formulations. According to FEMP [88], the NMBE is a metric for the accuracy of the model
estimations compared to measured data. However, it has to be considered that NMBE in a
GoF index is subject to cancellation errors, meaning that the combination of positive and
negative differences between measured and simulated data reduces the NMBE. For this
reason, it is recommended to evaluate it together with the CVRMSE to avoid such can-
cellation errors. CVRMSE indicates the overall uncertainty of the prediction [90], and the
lower its value, the better the estimation. According to ASHRAE Guideline 14 [86] and the
FEMP [90], the CVRMSE should be positive and lower than 30% when hourly data are
used or lower than 15% when monthly data are used. IPMVP [91] suggests thresholds for
the same indexes, and, as visible in Table 5, they are more restrictive than the ones of both
ASHRAE Guideline 14 [86] and the FEMP [90]. It has to be pointed out that all the previ-
ously presented thresholds were originally developed for being used with measured and
simulated data on energy consumption. Nevertheless, this review highlighted that their
use is generally accepted in literature to evaluate the robustness of the model estimation
regarding other variables, such as θair_i and φair_i.

Another GoF index that is recommended to be used for the model validation is R2,
which indicates how close the simulated variables are to the regression line of the measured
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ones [73]. ASHRAE Fundamentals [87] primarily suggests the use of R2 to gauge the
goodness-of-fit of univariate regression models for estimating the energy consumption of a
building. However, the analyzed literature shows that, in many works, this GoF index was
used for validating different types of models -not only univariate regression models- with
respect to the predictions of θair_i and φair_i, as carried out by Cho et al. [73], Lee et al. [59],
and Shin et al. [43]. The threshold of R2 is fixed in the interval [+75%,+100%], as reported
in ASHRAE Fundamentals [87] and FEMP [90]. Another index that can be used to validate
the model with respect to the predictions of θair_i and φair_i is the GoF by Nawalany and
Sokołowski [45], which considers a threshold within the interval (+80%,+100%] .

The last GoF index recommended in Table 5 is the MAPE that was used by Nguyen-Ky
and Pentillä [60]. This index is not subject to cancellation errors, as it occurs for the
MPE. Thus, the former could be preferred to the latter. MAPE can be used for the model
validation with an hourly time step or for the energy consumption over the entire validation
period, as carried out by Nguyen-Ky and Pentillä [60].

4.3. BES Models for a More Environmentally Sustainable and Resilient Livestock Sector

Having robust and reliable BES models is crucial for tackling some of the challenges
that the livestock sector currently confronts. Specifically, BES models can contribute to
moving toward a more environmentally sustainable and resilient livestock sector.

In the context of environmental sustainability, BES models can actively contribute
to enhancing the integration of RESs in intensive livestock systems. For this integration,
both experimental and numerical approaches are needed. Experimental setups could
provide detailed information about the technical feasibility of such integration, as well as
highlight practical problems. Numerical simulations performed via reliable BES models
integrate well with experimental setups since they provide a multitude of advantages.
First, BES models may be helpful in the preliminary stage of an experimental setup to
have exploratory results that could help in better defining the integration between the
building and the systems also using optimization methods. Second, BES models facilitate
standardized assessments, enabling apples-to-apples comparisons of different solutions
and scenarios that could not be possible with experimental setups. Third, BES models are
ideal for long-term analyses that are functional for financial evaluations (e.g., cost-optimal,
and global cost analyses) of the RES integration. Finally, BES models can play a key role in
the evaluation of the impact of RES integration on the overall greenhouse gas emissions
from livestock houses. At present, there is a notable gap in the literature regarding the
quantification of the share of greenhouse gas emissions attributable to energy use within
the overall emissions from livestock systems. Consequently, it remains unclear whether the
adoption of RESs could play a pivotal role in mitigating the carbon footprint associated
with the livestock sector or if it would have a minor impact.

In the context of resilience to climate change, BES models can have a crucial role in
assessing the impacts of climate change, as well as evaluating the effectiveness of some
mitigation and adaptation strategies and solutions. BES models, in fact, can be used to perform
simulations in future climate scenarios considering the Shared Socioeconomic Pathways [103]
and provide a numerical evaluation of their impacts. In this way, it will be possible to evaluate,
for example, the impacts of heat waves in terms of heat stress, increased energy consumption,
and decrease in productivity. An example of this analysis was performed in [104] for the
specific context of the USA. However, more information is needed. It is of the uttermost
importance, in fact, to understand where the actual design and management of livestock
houses have room for improvement. For example, it is worth understanding if evaporative
cooling systems will still be effective in the context of future heat waves and water scarcity
or if alternative solutions, such as mechanical cooling, should be preferred. Also, different
management strategies should be evaluated, as carried out by Zhao et al. [58], who compared
the impact of different farming systems for laying hens (i.e., conventional, aviary, and enriched
colony houses) and management parameters (e.g., stocking density, θair_i, and φair_i) on both
the house energy consumption and the running cost related to energy. BES models are crucial
for this type of assessment because they can be used for optimizing livestock housing. This is
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possible by defining multi-objective optimization problems whose solution could bring, for
example, to the optimum tradeoff between energy consumption, productivity, and costs. This
type of energy analysis is highly current, considering that various countries are implementing
modifications in livestock systems to guarantee better animal welfare. For example, New
Zealand [105] and Canada [106] are shifting from egg production in conventional cage systems
to enriched or cage-free systems. BES models can evaluate how this shift could affect energy
consumption and contribute to evaluating the impact on the final product price.

5. Conclusions

In this work, a comprehensive analysis of the Building Energy Simulation (BES)
models for livestock houses present in the literature is performed to contribute to paving
the way for making their use a standard practice in research and industry. For this purpose,
a systematic review of 42 scientific papers—selected out of 795 resulting from the initial
database query—was performed for a 25-year time span (1998–2023). The results indicated
a recent increasing trend in the use of BES models for various applications to livestock
houses, such as energy assessments and heat stress evaluations. However, the results
pointed out that a common and shared approach for this specific modeling activity is
still not present in scientific literature. The analyzed BES models, in fact, present several
differences in terms of development and validation, such as the adoption of different
simulation methods and validation procedures.

The results of this review represent a solid background for future research, which
considers the use or development of BES models for livestock houses. Researchers can
have a complete framework of the different existing BES models that can be useful for
the development and application of new ones. Moreover, the validation procedure of
the new models can be facilitated by the recommendations provided in this work. At
a more general level, this work represents a significant contribution to the current body
of knowledge toward the development of commercial tools for the energy analysis and
management of livestock houses. Future research endeavors, in fact, could prioritize
overcoming the limitations identified in this review that currently hinder BES models from
becoming standard practice primarily in the livestock industry. This is of crucial importance,
considering that BES models could contribute to moving toward a more environmentally
sustainable and resilient livestock sector.
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Appendix A

The following query was introduced in the Scopus® database:
“TITLE-ABS-KEY((livestock OR animal OR poultry OR broiler OR hen OR duck OR

swine OR pig* OR farrow* OR cattle OR dairy OR cow) PRE/1 (hous* OR building OR
room OR barn OR facilit* OR farm*)) AND TITLE-ABS-KEY((energ* OR simulation OR
therm* OR dynamic) PRE/3 (model* OR simulation OR assessment)) AND (LIMIT-TO
(SRCTYPE, ”j”)) AND (LIMIT-TO (DOCTYPE, ”ar”)) AND (LIMIT-TO (PUBYEAR,2023)
OR LIMIT-TO (PUBYEAR,2022) OR LIMIT-TO (PUBYEAR,2021) OR LIMIT-TO (PUB-
YEAR,2020) OR LIMIT-TO (PUBYEAR,2019) OR LIMIT-TO (PUBYEAR,2018) OR LIMIT-
TO (PUBYEAR,2017) OR LIMIT-TO (PUBYEAR,2016) OR LIMIT-TO (PUBYEAR,2015)
OR LIMIT-TO (PUBYEAR,2014) OR LIMIT-TO (PUBYEAR,2013) OR LIMIT-TO (PUB-
YEAR,2012) OR LIMIT-TO (PUBYEAR,2011) OR LIMIT-TO (PUBYEAR,2010) OR LIMIT-
TO (PUBYEAR,2009) OR LIMIT-TO (PUBYEAR,2008) OR LIMIT-TO (PUBYEAR,2007)
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OR LIMIT-TO (PUBYEAR,2006) OR LIMIT-TO (PUBYEAR,2005) OR LIMIT-TO (PUB-
YEAR,2004) OR LIMIT-TO (PUBYEAR,2003) OR LIMIT-TO (PUBYEAR,2002) OR LIMIT-TO
(PUBYEAR,2001) OR LIMIT-TO (PUBYEAR,2000) OR LIMIT-TO (PUBYEAR,1999) OR
LIMIT-TO (PUBYEAR,1998)) AND (LIMIT-TO (LANGUAGE, ”English”))”

Appendix B

Table A1. Nomenclature (in alphabetical order) referring to the Goodness-of-Fit indexes (GoF)
reported in Table 4.

Acronym/Variable Definition

ANOVA ANalysis Of VAriance
CV Coefficient of Variation

CVRMSE Coefficient of Variation of the Root Mean Square Error
GOF Goodness Of Fit
IQR Interquartile Range
LSD Fisher’s Least Significant Difference

M Arithmetic mean of the monitored values
Mi i-th measured value

MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error

Max Maximum value
MaxAE Maximum Absolute Error
MaxRE Maximum Relative Error

MBE Mean Bias Error
Min Minimum value
MPE Mean Percentage Error

n Dataset cardinality
NMBE Normalized Mean Bias Error

r Correlation coefficient
R2 Coefficient of determination

RMSE Root Mean Square Error
S Arithmetic mean of the simulated values
Si i-th simulated value
SE Standard Error
x Arithmetic mean of values
σ Standard deviation

The algebraic formulations of the main GoF indexes presented in Table 4 are reported
below. The GoF indexes are presented in alphabetical order, except for those whose
formulation is a function of another index (e.g., CVRMSE and RMSE) that, for clarity,
were presented before. Please note that slight differences may be found between various
formulations present in the literature.

The Root Mean Square Error (RMSE) reads [90]

RMSE =

√
∑n

i=1(Si − Mi)
2

n
(A1)

The Coefficient of Variation of the RMSE (CVRMSE) reads [90]

CVRMSE =
RMSE

M
·100 (A2)

The Goodness of Fit (GOF) reads [45]

GOF =

1 −

√
∑n

i=1(Mi − Si)
2√

∑n
i=1

(
Si − M

)2

·100 (A3)
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The Mean Absolute Error (MAE) reads [102]

MAE =
100
n

n

∑
i=1

|Si − Mi| (A4)

The Mean Absolute Percentage Error (MAPE) reads [102]

MAPE =
100
n

n

∑
i=1

∣∣∣∣Si − Mi
Mi

∣∣∣∣ (A5)

The Maximum Absolute Error (MaxAE) reads (adapted from [102])

MaxAE =
n

max
i=1

|Si − Mi| (A6)

The Maximum Relative Error (MaxRE) reads

MaxRE =
n

max
i=1

∣∣∣∣Si − Mi
Mi

∣∣∣∣ (A7)

The Mean Bias Error (MBE) reads [90]

MBE =
∑n

i=1(Mi − Si)

n
·100 (A8)

The Normalized Mean Bias Error (NMBE) reads (adapted from [86])

NMBE =
MBE

M
(A9)

Please note that some works in the literature use Equation (A9) while referring to MBE.
However, the formulation that is considered correct in the framework of this work is the one
reported in Equation (A8). MBE, in fact, measures the average difference between measured
and simulated data. NMBE normalizes the MBE over the mean of the measured values.

The Mean Percentage Error (MPE) reads [102]

MPE =
100
n

n

∑
i=1

(
Si − Mi

Mi

)
(A10)

Various formulations can be used for calculating the coefficient of determination (R2).
The one reported in [45] reads

R2 =

 ∑n
i=1

(
Mi − M

)
·
(
Si − S

)√
∑n

i=1
(

Mi − M
)2·∑n

i=1
(
Si − S

)2

2

·100 (A11)

The correlation coefficient (r) can be obtained as follows:

r =
√

R2 (A12)

Please note the sign of r depends on whether the data are positively correlated or
negatively correlated.

The Standard Error (SE) reads
SE =

σ√
n

(A13)
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11. Karaman, S.; Taşcıoğlu, Y.; Bulut, O.D. Profitability and Cost Analysis for Contract Broiler Production in Turkey. Animals 2023, 13, 2072.

[CrossRef]
12. Costantino, A.; Calvet, S.; Fabrizio, E. The Use of Renewable Energy Sources as a Driver to Reduce the Carbon Footprint of

the Livestock Sector. In Technology for Environmentally Friendly Livestock Production; Bartzanas, T., Ed.; Springer International
Publishing: Cham, Switzerland, 2023; pp. 217–250; ISBN 978-3-031-19730-7.

13. Paris, B.; Vandorou, F.; Tyris, D.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy Use in
the EU Livestock Sector: A Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption. Appl.
Sci. 2022, 12, 2142. [CrossRef]

14. IRENA; FAO. Renewable Energy for Agri-Food Systems—Towards the Sustainable Development Goals and the Paris Agreement; IRENA
and FAO: Abu Dhabi, United Arab Emirates, 2021.

15. FAO. Energy-Smart Food for People and Climate—Issue Paper; FAO: Rome, Italy, 2011.
16. Jackson, P.; Guy, J.H.; Sturm, B.; Bull, S.; Edwards, S.A. An Innovative Concept Building Design Incorporating Passive Technology

to Improve Resource Efficiency and Welfare of Finishing Pigs. Biosyst. Eng. 2018, 174, 190–203. [CrossRef]
17. Costantino, A.; Calvet, S.; Fabrizio, E. Identification of Energy-Efficient Solutions for Broiler House Envelopes through a Primary

Energy Approach. J. Clean. Prod. 2021, 312, 127639. [CrossRef]
18. Alberti, L.; Antelmi, M.; Angelotti, A.; Formentin, G. Geothermal Heat Pumps for Sustainable Farm Climatization and Field

Irrigation. Agric. Water Manag. 2018, 195, 187–299. [CrossRef]
19. Tyris, D.; Gkountas, A.; Bakalis, P.; Panagakis, P.; Manolakos, D. A Dynamic Heat Pump Model for Indoor Climate Control of a

Broiler House. Energies 2023, 16, 2770. [CrossRef]
20. Kwak, Y.; Shin, H.; Kang, M.; Mun, S.-H.; Jo, S.-K.; Kim, S.-H.; Huh, J.-H. Energy Modeling of Pig Houses: A South Korean

Feasibility Study. Energy Strat. Rev. 2021, 36, 100672. [CrossRef]
21. Tan, H.; Yan, W.; Ren, Z.; Wang, Q.; Mohamed, M.A. Distributionally Robust Operation for Integrated Rural Energy Systems with

Broiler Houses. Energy 2022, 254, 124398. [CrossRef]
22. Chong, A.; Gu, Y.; Jia, H. Calibrating Building Energy Simulation Models: A Review of the Basics to Guide Future Work. Energy

Build 2021, 253, 111533. [CrossRef]
23. Costantino, A.; Fabrizio, E. Envisioning an Energy Performance Certificate for Livestock Houses: A General Methodological

Development and a Specific Application to Growing-Finishing Pig Houses. J. Clean. Prod. 2023, 429, 139279. [CrossRef]
24. Harish, V.S.K.V.; Kumar, A. A Review on Modeling and Simulation of Building Energy Systems. Renew. Sustain. Energy Rev. 2016,

56, 1272–1292. [CrossRef]
25. Barone, G.; Buonomano, A.; Forzano, C.; Palombo, A. Building Energy Performance Analysis: An Experimental Validation of an

In-House Dynamic Simulation Tool through a Real Test Room. Energies 2019, 12, 4107. [CrossRef]
26. Coakley, D.; Raftery, P.; Keane, M. A Review of Methods to Match Building Energy Simulation Models to Measured Data. Renew.

Sustain. Energy Rev. 2014, 37, 123–141. [CrossRef]
27. Fabrizio, E.; Monetti, V. Methodologies and Advancements in the Calibration of Building Energy Models. Energies 2015, 8, 2548–2574.

[CrossRef]
28. Choi, K.; Park, S.; Joe, J.; Kim, S.-I.; Jo, J.-H.; Kim, E.-J.; Cho, Y.-H. Review of Infiltration and Airflow Models in Building Energy

Simulations for Providing Guidelines to Building Energy Modelers. Renew. Sustain. Energy Rev. 2023, 181, 113327. [CrossRef]
29. Hong, T.; Chen, Y.; Belafi, Z.; D’Oca, S. Occupant Behavior Models: A Critical Review of Implementation and Representation

Approaches in Building Performance Simulation Programs. Build. Simul. 2018, 11, 1–14. [CrossRef]

https://doi.org/10.1016/j.gfs.2017.01.001
https://doi.org/10.3390/app11209549
https://doi.org/10.1016/j.livsci.2020.104006
https://doi.org/10.1093/ps/86.6.1059
https://doi.org/10.1016/j.egypro.2016.11.024
https://doi.org/10.3390/ani13132072
https://doi.org/10.3390/app12042142
https://doi.org/10.1016/j.biosystemseng.2018.07.008
https://doi.org/10.1016/j.jclepro.2021.127639
https://doi.org/10.1016/j.agwat.2017.10.009
https://doi.org/10.3390/en16062770
https://doi.org/10.1016/j.esr.2021.100672
https://doi.org/10.1016/j.energy.2022.124398
https://doi.org/10.1016/j.enbuild.2021.111533
https://doi.org/10.1016/j.jclepro.2023.139279
https://doi.org/10.1016/j.rser.2015.12.040
https://doi.org/10.3390/en12214107
https://doi.org/10.1016/j.rser.2014.05.007
https://doi.org/10.3390/en8042548
https://doi.org/10.1016/j.rser.2023.113327
https://doi.org/10.1007/s12273-017-0396-6


Agriculture 2023, 13, 2280 26 of 28

30. Shin, M.; Haberl, J.S. Thermal Zoning for Building HVAC Design and Energy Simulation: A Literature Review. Energy Build 2019,
203, 109429. [CrossRef]

31. Costantino, A.; Comba, L.; Cornale, P.; Fabrizio, E. Energy Impact of Climate Control in Pig Farming: Dynamic Simulation and
Experimental Validation. Appl. Energy 2022, 309, 118457. [CrossRef]

32. Song, W.; Zhang, Z.; Chen, Z.; Wang, F.; Yang, B. Thermal Comfort and Energy Performance of Personal Comfort Systems (PCS):
A Systematic Review and Meta-Analysis. Energy Build. 2022, 256, 111747. [CrossRef]

33. Arakawa Martins, L.; Soebarto, V.; Williamson, T. A Systematic Review of Personal Thermal Comfort Models. Build Environ. 2022,
207, 108502. [CrossRef]

34. Bournet, P.-E.; Rojano, F. Advances of Computational Fluid Dynamics (CFD) Applications in Agricultural Building Modelling:
Research, Applications and Challenges. Comput. Electron. Agric. 2022, 201, 107277. [CrossRef]

35. Rong, L.; Nielsen, P.V.; Bjerg, B.; Zhang, G. Summary of Best Guidelines and Validation of CFD Modeling in Livestock Buildings
to Ensure Prediction Quality. Comput. Electron. Agric. 2016, 121, 180–190. [CrossRef]

36. Singh, M.; Sharston, R. A Literature Review of Building Energy Simulation and Computational Fluid Dynamics Co-Simulation
Strategies and Its Implications on the Accuracy of Energy Predictions. Build. Serv. Eng. Res. Technol. 2022, 43, 113–138. [CrossRef]

37. Shan, X.; Luo, N.; Sun, K.; Hong, T.; Lee, Y.-K.; Lu, W.-Z. Coupling CFD and Building Energy Modelling to Optimize the Operation
of a Large Open Office Space for Occupant Comfort. Sustain. Cities Soc. 2020, 60, 102257. [CrossRef]

38. Corrado, V.; Fabrizio, E. Chapter 5—Steady-State and Dynamic Codes, Critical Review, Advantages and Disadvantages, Accuracy,
and Reliability. In Handbook of Energy Efficiency in Buildings; Asdrubali, F., Desideri, U., Eds.; Butterworth-Heinemann: Oxford,
UK, 2019; pp. 263–294; ISBN 978-0-12-812817-6.

39. Chen, Y.; Guo, M.; Chen, Z.; Chen, Z.; Ji, Y. Physical Energy and Data-Driven Models in Building Energy Prediction: A Review.
Energy Rep. 2022, 8, 2656–2671. [CrossRef]

40. Cooper, K.; Parsons, D.J.; Demmers, T. A Thermal Balance Model for Livestock Buildings for Use in Climate Change Studies. J.
Agric. Eng. Res. 1998, 69, 43–52. [CrossRef]

41. Liberati, P.; Zappavigna, P. A Dynamic Computer Model for Optimization of the Internal Climate in Swine Housing Design.
Trans. ASABE 2007, 50, 2179–2188. [CrossRef]

42. Lee, S.-Y.; Lee, I.-B.; Kim, R.-W.; Yeo, U.-H.; Kim, J.-G.; Kwon, K.-S. Dynamic Energy Modelling for Analysis of the Thermal and
Hygroscopic Environment in a Mechanically Ventilated Duck House. Biosyst. Eng. 2020, 200, 431–449. [CrossRef]

43. Shin, H.; Kwak, Y.; Jo, S.-K.; Kim, S.-H.; Huh, J.-H. Calibration of Building Energy Simulation Model for a Mechanically Ventilated
Livestock Facility. Biosyst. Eng. 2022, 217, 115–130. [CrossRef]

44. Qi, F.; Li, H.; Zhao, X.; Huang, J.; Shi, Z. Investigation on Minimum Ventilation, Heating, and Energy Consumption of Pig
Buildings in China during Winter. Agriculture 2023, 13, 319. [CrossRef]

45. Nawalany, G.; Sokołowski, P. Interaction between a Cyclically Heated Building and the Ground, for Selected Locations in Europe.
Energies 2022, 15, 7493. [CrossRef]

46. Izar-Tenorio, J.; Jaramillo, P.; Griffin, W.M.; Small, M. Impacts of Projected Climate Change Scenarios on Heating and Cooling
Demand for Industrial Broiler Chicken Farming in the Eastern U.S. J. Clean. Prod. 2020, 255, 120306. [CrossRef]

47. Axaopoulos, P.; Panagakis, P.; Axaopoulos, I. Optimization of Exterior Wall and Roof Insulation Thickness of a Growing-Finishing
Piggery Building. Trans. ASABE 2017, 60, 489–495. [CrossRef]

48. Wang, K.; Xue, H. Effects of Roof and Wall Insulation on Thermal Performance of Piglet Building Using Dynamic Simulation and
Life Cycle Cost Analysis. Trans. ASABE 2016, 59, 915–922. [CrossRef]

49. Si, B.; Wang, C.; Cheng, S.; Ma, X.; Xu, W.; Wang, Z.; Li, B.; Wang, Y.; Shi, Z.; Jiang, W. Carbon and Water Footprint Analysis of Pig
Farm Buildings in Northeast China Using Building-Information-Modeling Enabled Assessment. Sci. Total Environ. 2023, 888, 164088.
[CrossRef]

50. Mikovits, C.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.;
Schönhart, M.; et al. Impacts of Global Warming on Confined Livestock Systems for Growing-Fattening Pigs: Simulation of Heat
Stress for 1981 to 2017 in Central Europe. Int. J. Biometeorol. 2019, 63, 221–230. [CrossRef]

51. Schauberger, G.; Schönhart, M.; Zollitsch, W.; Hörtenhuber, S.J.; Kirner, L.; Mikovits, C.; Baumgartner, J.; Piringer, M.; Knauder,
W.; Anders, I.; et al. Reduction of the Economic Risk by Adaptation Measures to Alleviate Heat Stress in Confined Buildings for
Growing-Fattening Pigs Modelled by a Projection for Central Europe in 2030. Agronomy 2022, 12, 248. [CrossRef]

52. Gonçalves, I.C.M.; Turco, S.H.N.; Lopes Neto, J.P.; do Nascimento, J.W.B.; de Lima, V.L.A.; Borges, V.P. Thermal Performance of Aviary
Located in the Semiarid Region of Pernambuco Based on Computer Simulation. Rev. Bras. Eng. Agríc. E Ambient. 2022, 26, 533–540.
[CrossRef]

53. Shin, H.; Kwak, Y.; Jo, S.-K.; Kim, S.-H.; Huh, J.-H. Development of an Optimal Mechanical Ventilation System Control Strategy
Based on Weather Forecasting Data for Outdoor Air Cooling in Livestock Housing. Energy 2023, 268, 126649. [CrossRef]

54. Lambert, M.; Lemay, S.P.; Barber, E.M.; Crowe, T.G.; Chénard, L. Humidity Control for Swine Buildings in Cold Climate—Part I:
Modelling of Three Control Strategies. Can. Biosyst. Eng./Le Genie Des Biosyst. Au Can. 2001, 43, 529–536.

55. Manolakos, D.; Panagakis, P.; Bartzanas, T.; Bouzianas, K. Use of Heat Pumps in HVAC Systems for Precise Environment Control
in Broiler Houses: System’s Modeling and Calculation of the Basic Design Parameters. Comput. Electron. Agric. 2019, 163, 104876.
[CrossRef]

https://doi.org/10.1016/j.enbuild.2019.109429
https://doi.org/10.1016/j.apenergy.2021.118457
https://doi.org/10.1016/j.enbuild.2021.111747
https://doi.org/10.1016/j.buildenv.2021.108502
https://doi.org/10.1016/j.compag.2022.107277
https://doi.org/10.1016/j.compag.2015.12.005
https://doi.org/10.1177/01436244211020465
https://doi.org/10.1016/j.scs.2020.102257
https://doi.org/10.1016/j.egyr.2022.01.162
https://doi.org/10.1006/jaer.1997.0223
https://doi.org/10.13031/2013.24093
https://doi.org/10.1016/j.biosystemseng.2020.10.015
https://doi.org/10.1016/j.biosystemseng.2022.03.009
https://doi.org/10.3390/agriculture13020319
https://doi.org/10.3390/en15207493
https://doi.org/10.1016/j.jclepro.2020.120306
https://doi.org/10.13031/trans.12009
https://doi.org/10.13031/trans.59.11460
https://doi.org/10.1016/j.scitotenv.2023.164088
https://doi.org/10.1007/s00484-018-01655-0
https://doi.org/10.3390/agronomy12020248
https://doi.org/10.1590/1807-1929/agriambi.v26n7p533-540
https://doi.org/10.1016/j.energy.2023.126649
https://doi.org/10.1016/j.compag.2019.104876


Agriculture 2023, 13, 2280 27 of 28

56. Omar, M.N.; Samak, A.A.; Keshek, M.H.; Elsisi, S.F. Simulation and Validation Model for Using the Energy Produced from Broiler
Litter Waste in Their House and Its Requirement of Energy. Renew. Energy 2020, 159, 920–928. [CrossRef]

57. Wang, Y.; Li, B.; Liang, C.; Zheng, W. Dynamic Simulation of Thermal Load and Energy Efficiency in Poultry Buildings in the
Cold Zone of China. Comput. Electron. Agric. 2020, 168, 105127. [CrossRef]

58. Zhao, Y.; Xin, H.; Shepherd, T.A.; Hayes, M.D.; Stinn, J.P. Modelling Ventilation Rate, Balance Temperature and Supplemental
Heat Need in Alternative vs. Conventional Laying-Hen Housing Systems. Biosyst. Eng. 2013, 115, 311–323. [CrossRef]

59. Lee, S.-Y.; Lee, I.-B.; Yeo, U.-H.; Kim, J.-G.; Kim, R.-W.; Kwon, K.-S. Dynamic Energy Model of a Naturally Ventilated Duck House
and Comparative Analysis of Energy Loads According to Ventilation Type. Biosyst. Eng. 2022, 219, 218–234. [CrossRef]

60. Nguyen-Ky, S.; Penttilä, K. Indoor climate and energy model calibration with monitored data of a naturally ventilated dairy barn
in a cold climate. Appl. Eng. Agric. 2021, 37, 851–859. [CrossRef]

61. Menconi, M.E.; Chiappini, M.; Grohmann, D. Implementation of a Genetic Algorithm for Energy Design Optimization of
Livestock Housing Using a Dynamic Thermal Simulator. J. Agric. Eng. 2013, 44, 191–196. [CrossRef]

62. Turnpenny, J.R.; Parsons, D.J.; Armstrong, A.C.; Clark, J.A.; Cooper, K.; Matthews, A.M. Integrated Models of Livestock Systems
for Climate Change Studies. 2. Intensive Systems. Glob. Chang. Biol. 2001, 7, 163–170. [CrossRef]

63. Costantino, A.; Fabrizio, E.; Ghiggini, A.; Bariani, M. Climate Control in Broiler Houses: A Thermal Model for the Calculation of
the Energy Use and Indoor Environmental Conditions. Energy Build. 2018, 169, 110–126. [CrossRef]

64. Hamilton, J.; Negnevitsky, M.; Wang, X. Thermal Analysis of a Single-Storey Livestock Barn. Adv. Mech. Eng. 2016, 8, 1–9.
[CrossRef]

65. Silva, M.P.; Baêta, F.C.; Tinôco, I.F.F.; Zolnier, S.; Ribeiro, A. Evaluation of a Simplified Model for Estimating Energy Balance in
Broilers Production Housing. Rev. Bras. Eng. Agric. E Ambient. 2007, 11, 532–536. [CrossRef]

66. Van Wagenberg, A.V.; Vranken, E.; Berckmans, D. Simulation and Validation of the Evaporation of Water from Liquid Manure
Using Ventilation Exhaust Air: Linking of Two Simulation Models. Biosyst. Eng. 2003, 84, 31–43. [CrossRef]

67. Schauberger, G.; Piringer, M.; Petz, E. Steady-State Balance Model to Calculate the Indoor Climate of Livestock Buildings,
Demonstrated for Finishing Pigs. Int. J. Biometeorol. 2000, 43, 154–162. [CrossRef]

68. Panagakis, P.; Manolakos, D.; Axaopoulos, P. Optimal Financial Insulation Thickness of a Broiler House. Agric. Eng. Int. CIGR J.
2021, 23, 99–110.

69. Costantino, A.; Fabrizio, E.; Villagrá, A.; Estellés, F.; Calvet, S. The Reduction of Gas Concentrations in Broiler Houses through
Ventilation: Assessment of the Thermal and Electrical Energy Consumption. Biosyst. Eng. 2020, 199, 135–148. [CrossRef]

70. Jackson, P.; Guy, J.; Edwards, S.A.; Sturm, B.; Bull, S. Application of Dynamic Thermal Engineering Principles to Improve the
Efficiency of Resource Use in UK Pork Production Chains. Energy Build. 2017, 139, 53–62. [CrossRef]

71. Park, J.H.; Peters, T.M.; Altmaier, R.; Sawvel, R.A.; Renée Anthony, T. Simulation of Air Quality and Cost to Ventilate Swine
Farrowing Facilities in Winter. Comput. Electron. Agric. 2013, 98, 136–145. [CrossRef] [PubMed]

72. Scherllin-Pirscher, B.; Mikovits, C.; Baumann-Stanzer, K.; Piringer, M.; Schauberger, G. Are Adaptation Measures Used to Alleviate
Heat Stress Appropriate to Reduce Ammonia Emissions? Atmosphere 2022, 13, 1786. [CrossRef]

73. Cho, J.-H.; Lee, I.-B.; Lee, S.-Y.; Park, S.-J.; Jeong, D.-Y.; Decano-Valentin, C.; Kim, J.-G.; Choi, Y.-B.; Jeong, H.-H.; Yeo, U.-H.; et al.
Development of Heat Stress Forecasting System in Mechanically Ventilated Broiler House Using Dynamic Energy Simulation.
Agriculture 2022, 12, 1666. [CrossRef]

74. Haeussermann, A.; Vranken, E.; Aerts, J.-M.; Hartung, E.; Jungbluth, T.; Berckmans, D. Evaluation of Control Strategies for
Fogging Systems in Pig Facilities. Trans. ASABE 2007, 50, 265–274. [CrossRef]

75. Gates, R.S.; Chao, K.; Sigrimis, N. Identifying Design Parameters for Fuzzy Control of Staged Ventilation Control Systems.
Comput. Electron. Agric. 2001, 31, 61–74. [CrossRef]

76. European Commission. Farm to Fork Strategy—For a Fair, Healthy and Environmentally-Friendly Food System. 2020. Available
online: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 19 September 2023).

77. EN ISO 13790; Energy Performance of Buildings–Calculation of Energy Use for Space Heating and Cooling. European Committee
for Standardisation: Brussels, Belgium, 2008.

78. U.S. Department of Energy Energy Plus. Available online: https://energyplus.net/ (accessed on 19 September 2023).
79. Thermal Energy System Specialists TRNSYS—Transient System Simulation Tool. Available online: https://www.trnsys.com/

(accessed on 19 September 2023).
80. Crawley, D.B.; Hand, J.W.; Kummert, M.; Griffith, B.T. Contrasting the Capabilities of Building Energy Performance Simulation

Programs. Build. Environ. 2008, 43, 661–673. [CrossRef]
81. University of Strathclyde: Energy Systems Research Unit—ESP-r (Environmental Systems Performance—Research). Available

online: https://www.esru.strath.ac.uk/applications/esp-r/ (accessed on 19 September 2023).
82. Fraunhofer IBP WUFI. Available online: https://wufi.de/en/software/wufi-plus/ (accessed on 19 September 2023).
83. EQUA Simulation AB IDA Indoor Climate and Energy. Available online: https://www.equa.se/en/ida-ice (accessed on 20 September 2023).
84. Yan, D.; Xia, J.; Tang, W.; Song, F.; Zhang, X.; Jiang, Y. DeST—An Integrated Building Simulation Toolkit Part I: Fundamentals.

Build. Simul. 2008, 1, 95–110. [CrossRef]
85. Baxevanou, C.; Fidaros, D.; Bartzanas, T.; Kittas, C. Energy Consumption and Energy Saving Measures in Poultry. Environ. Eng.

2017, 5, 29–36. [CrossRef]

https://doi.org/10.1016/j.renene.2020.06.049
https://doi.org/10.1016/j.compag.2019.105127
https://doi.org/10.1016/j.biosystemseng.2013.03.010
https://doi.org/10.1016/j.biosystemseng.2022.05.003
https://doi.org/10.13031/aea.14280
https://doi.org/10.4081/jae.2013.280
https://doi.org/10.1046/j.1365-2486.2001.00401.x
https://doi.org/10.1016/j.enbuild.2018.03.056
https://doi.org/10.1177/1687814016643456
https://doi.org/10.1590/S1415-43662007000500014
https://doi.org/10.1016/S1537-5110(02)00234-9
https://doi.org/10.1007/s004840050002
https://doi.org/10.1016/j.biosystemseng.2020.01.002
https://doi.org/10.1016/j.enbuild.2016.12.090
https://doi.org/10.1016/j.compag.2013.08.003
https://www.ncbi.nlm.nih.gov/pubmed/26937062
https://doi.org/10.3390/atmos13111786
https://doi.org/10.3390/agriculture12101666
https://doi.org/10.13031/2013.22407
https://doi.org/10.1016/S0168-1699(00)00174-5
https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf
https://energyplus.net/
https://www.trnsys.com/
https://doi.org/10.1016/j.buildenv.2006.10.027
https://www.esru.strath.ac.uk/applications/esp-r/
https://wufi.de/en/software/wufi-plus/
https://www.equa.se/en/ida-ice
https://doi.org/10.1007/s12273-008-8118-8
https://doi.org/10.13189/eee.2017.050201


Agriculture 2023, 13, 2280 28 of 28

86. ASHRAE. Measurement of Energy and Demand Savings; ANSI/ASHRAE ASHRAE Guideline 14-2002; American Society of Heating,
Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2002.

87. ASHRAE. ASHRAE Handbook—Fundamentals (SI Edition); ASHRAE: Atlanta, GA, USA, 2017; ISBN 978-1-936504-46-6.
88. Federal Energy Management Program. M&V Guidelines: Measurement and Verification for Performance-Based Contracts Version 4.0;

U.S. Department of Energy: Washington, DC, USA, 2015.
89. IPMVP Technical Committee. International Performance Measurement & Verification Protocol—Concepts and Options for Determining

Energy and Water Savings—Volume I; IPMVP: Washington, DC, USA, 2002.
90. Federal Energy Management Program. M&V Guidelines: Measurement and Verification for Federal Energy Projects Version 3.0;

U.S. Department of Energy: Washington, DC, USA, 2008.
91. IPMVP New Construction Subcommittee. International Performance Measurement & Verification Protocol: Concepts and Option for

Determining Energy Savings in New Construction, Volume III; IPMVP: Washington, DC, USA, 2003.
92. Efficiency Valuation Organization. International Performance Measurement and Verification Protocol (IPMVP)—Core Concepts;

Efficiency Valuation Organization: Washington, DC, USA, 2016.
93. Ecim-Djuric, O.; Topisirovic, G. Energy Efficiency Optimization of Combined Ventilation Systems in Livestock Buildings. Energy

Build 2010, 42, 1165–1171. [CrossRef]
94. Izhboldina, O.; Mylostyvyi, R.; Khramkova, O.; Pavlenko, O.; Kapshuk, N.; Chernenko, O.; Matsyura, A.; Hoffmann, G.

Effectiveness of Additional Mechanical Ventilation in Naturally Ventilated Dairy Housing Barns during Heat Waves. Ukr. J. Ecol.
2020, 10, 56–62.

95. Zhai, Z.J.; Chen, Q.Y. Performance of Coupled Building Energy and CFD Simulations. Energy Build 2005, 37, 333–344. [CrossRef]
96. Barbason, M.; Reiter, S. Coupling Building Energy Simulation and Computational Fluid Dynamics: Application to a Two-Storey

House in a Temperate Climate. Build. Environ. 2014, 75, 30–39. [CrossRef]
97. Nawalany, G.; Sokołowski, P. Improved Energy Management in an Intermittently Heated Building Using a Large Broiler House

in Central Europe as an Example. Energies 2020, 16, 1371. [CrossRef]
98. Ruiz, G.R.; Bandera, C.F. Validation of Calibrated Energy Models: Common Errors. Energies 2017, 10, 1587. [CrossRef]
99. Thacker, B.H.; Doebling, S.W.; Hemez, F.M.; Anderson, M.C.; Pepin, J.E.; Rodriguez, E.A. Concepts of Model Verification and

Validation; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004.
100. ANSI/ASHRAE. ANSI/ASHRAE 140-2020—Method Of Test For Evaluating Building Performance Simulation Software; ANSI: Wash-

ington, DC, USA, 2020.
101. Costantino, A.; Ballarini, I.; Fabrizio, E. Comparison between Simplified and Detailed Methods for the Calculation of Heating

and Cooling Energy Needs of Livestock Housing: A Case Study. In Proceedings of the Building Simulation Applications,
Bozen-Bolzano, Italy, 8–10 February 2017; pp. 193–200.

102. Wen, X.; Jaxa-Rozen, M.; Trutnevyte, E. Accuracy Indicators for Evaluating Retrospective Performance of Energy System Models.
Appl. Energy 2022, 325, 119906. [CrossRef]

103. Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al.
The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview.
Glob. Environ. Chang. 2017, 42, 153–168. [CrossRef]

104. St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77.
[CrossRef]

105. Minister of Agriculture. Code of Welfare: Layer Hens; Minister of Agriculture: Wellington, New Zealand, 2018.
106. National Farm Animal Care Council (NFACC). Code of Practice for the Care and Handling of Pullets and Laying Hens; National Farm

Animal Care Council: Ottawa, CA, USA, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.enbuild.2009.10.035
https://doi.org/10.1016/j.enbuild.2004.07.001
https://doi.org/10.1016/j.buildenv.2014.01.012
https://doi.org/10.3390/en13061371
https://doi.org/10.3390/en10101587
https://doi.org/10.1016/j.apenergy.2022.119906
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.3168/jds.S0022-0302(03)74040-5

	Introduction 
	Background 
	Building Energy Simulation (BES) Models for Livestock Houses 
	Research Gap, Aim, and Contributions of This Work 

	Materials and Methods 
	Review Methodology 
	Scope Delimiting 
	Logic Grid Creation 
	Definitions of the Literature Database, Search Rules, and Screening Criteria 
	Database Search 
	Identification, Pre-Screening, and Final Screening 

	Analysis Methodology 
	Bias Risk and Limitations 

	Results 
	BES Models for Livestock Houses: Applications 
	BES Models for Livestock Houses: Development 
	BES Models for Livestock Houses: Validation 

	Discussion 
	Toward BES Models as a Standard Practice in the Livestock Sector 
	Recommendations for BES Model Validation 
	Perform Model Validation 
	Prefer Empirical Validation 
	Choose GoF Indexes with Defined Thresholds 

	BES Models for a More Environmentally Sustainable and Resilient Livestock Sector 

	Conclusions 
	Appendix A
	Appendix B
	References

