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Abstract: Accurate weight measurement is critical for monitoring the growth and well-being of
cattle. However, the traditional weighing process, which involves physically placing cattle on scales,
is labor-intensive and stressful for the animals. Therefore, the development of automated cattle
weight prediction techniques assumes critical significance. This study proposes a weight prediction
approach for Korean cattle using 3D segmentation-based feature extraction and regression machine
learning techniques from incomplete 3D shapes acquired from real farm environments. Firstly, we
generated mesh data of 3D Korean cattle shapes using a multiple-camera system. Subsequently,
deep learning-based 3D segmentation with the PointNet network model was employed to segment
3D mesh data into two dominant parts: torso and center body. From these segmented parts, the
body length, chest girth, and chest width of Korean cattle were extracted. Finally, we implemented
five regression machine learning models (CatBoost regression, LightGBM, polynomial regression,
random forest regression, and XGBoost regression) for weight prediction. To validate our approach,
we captured 270 Korean cattle in various poses, totaling 1190 poses of 270 cattle. The best result was
achieved with mean absolute error (MAE) of 25.2 kg and mean absolute percent error (MAPE) of
5.85% using the random forest regression model.

Keywords: 3D segmentation; feature extraction; regression machine learning; weight estimation

1. Introduction

The agricultural sector plays a pivotal role in meeting human food needs, with live-
stock farming serving as a vital source of meat, milk, and related products. To effectively
manage and promote sustainable livestock production, the accurate weight estimation
of livestock holds a critical position. Traditional livestock weighing methods often in-
volve labor-intensive processes that cause stress to the animals, consequently negatively
impacting overall productivity.

The development of an algorithm for livestock weight estimation without direct
contact with the animals is essential. This approach addresses ethical concerns by the
minimizing stress and discomfort of the animals during the weighing process.

In today’s era of rapid technological advancements, the integration of computer
vision-based techniques in livestock farming aligns perfectly with the movement towards
smart and precision agriculture. The application of computer vision in livestock weight
estimation represents a significant leap forward for automation and data-driven decision-
making in agriculture.

Leveraging this technology, farmers can gain real-time insights into livestock weight
and health, allowing for more efficient resource allocation, early disease detection, and
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improved breeding strategies. This has the potential to increase productivity, reduce costs,
and contribute to sustainable agricultural practices.

The development of algorithms to predict livestock weight through computer vision-
based techniques has garnered significant attention, with various research studies in this
area. There are two main approaches: 2D (two-dimensional) image analysis and 3D
(three-dimensional) image analysis.

First, we review 2D image analysis approaches. Tasdemir and Ozkan [1] conducted
a study to predict the live weight of cows using an artificial neural network (ANN) ap-
proach. They captured cows from various angles, applied photogrammetry to calculate
body dimensions, and predicted live weight using ANN-based regression. Anifah and
Haryanto [2] proposed a fuzzy rule-based system to estimate cattle weight, extracting body
length and circumference as features to feed the fuzzy logic system for weight estimation.
Ana et al. [3] conducted a study to predict live sheep weight using extracted features and
machine learning. They captured sheep images from top view, created masks of the top
view, and measured six distances in the mask as features to feed a random forest regression
model. Weber et al. [4] proposed a cattle weight estimation approach using active contour
and regression trees bagging. They first segmented the images, then created a hull from
the segmented images, then extracted features, and predicted weight using a random
forest model.

Compared to 2D image analysis approaches, 3D image processing approaches have
gained more research attention in recent years. Jang et al. [5] estimated body weight
for Korean cattle using 3D images, capturing them from the top view. After extracting
body length, body width, and chest width, they built a linear function to calculate cattle
weight. Na et al. [6] proposed a solution to predict cattle weight using depth images,
capturing images from the top view, segmenting them, and extracting the characteristics of
shape and size for cattle weight prediction using machine learning model. Kwon et al. [7]
reconstructed a pig 3D model, created distances along pig’s body as features, and utilized
neural networks to predict pig weight. Hou et al. [8] collected data using LIDAR (light
detection and ranging) sensor, segmented 3D beef object models using PointNet++ [9],
measured body length and chest girth, and calculated weight using a pre-defined formula.
Ruchay et al. [10] proposed a model for predicting live weight based on augmenting 3D
point clouds in the form of flat projections and images with regression deep learning. Na
etal. [11] developed a pig weight prediction system using Raspberry Pi, capturing RGB-D
(Red Geen Blue Depth) images from the top view of pigs, extracting body characteristics and
shape descriptors after segmenting the images, and applying various regression machine
learning models to predict pig weight. Le et al. [12] calculated body sizes, surface area,
length, and morphological traits from completed 3D shapes acquired using a laser scanning
device to feed into a regression model for dairy cow weight estimation. Cominotte et al. [13]
captured top view 3D images of cattle, extracted features from segmented images, and used
linear and non-linear regression models to predict beef cattle weight. Martins et al. [14]
also captured top view and side view 3D images, measuring several distances to feed into
the Lasso regression model for body weight estimation.

Both the 2D analysis and 3D analysis approaches exhibit distinct advantages and
drawbacks. The advantage of the 2D analysis approaches is that 2D imaging offers ease in
segmentation and measurement processing, leveraging existing technology. Additionally,
2D images can be used to measure perimeter and area morphology, which also are features
in the model to predict cattle weight. However, its limitation lies in the absence of depth
information when using a single camera, constraining certain morphological measure-
ments [10]. For example, chest girth (chest circumference) is replaced by chest diameter
and chest depth measurements. The limitations of the 2D method can be overcome with
3D analysis approaches by using 3D cameras, but the cost is too high and the 3D data
processing processes are often more complicated, so they are still not widely utilized.

Whether employing 2D or 3D image analysis approaches, a common formula involves
the extraction of features for subsequent weight prediction. However, the feature extraction
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process often relies on 2D segmented images or projection masks of 3D images, which
can make it challenging to accurately represent 3D spatial elements, such as chest girth.
Research has shown that chest girth is a critical factor in weight calculation [15].

In this study, we propose an approach that extracts features based on 3D segmenta-
tion, enabling us to measure features with precision, incorporating 3D spatial elements
accurately. Furthermore, while previous studies were primarily conducted in laboratory
or fence environments, our research predicts weights using 3D shapes acquired from real
farm environments.

The main contributions of this proposal are as follows:

1.  We introduce an effective approach for predicting Korean cattle weight using vision-
based techniques.

2. We present a straightforward method for extracting cattle body dimensions through
3D segmentation.

3. We explore multiple regression machine learning algorithms for Korean cattle weight
prediction.

4. Our approach not only predicts Korean cattle weight but also automatically measures
three essential body dimensions of the cattle, facilitating further analysis.

2. Materials and Methods
2.1. Data Acquisition

To collect 3D Korean cattle data, we designed a specialized multiple-camera system,
which is illustrated in Figure 1. In Figure la, you can see the system’s design, and in
Figure 1b, you can observe the actual setup.

Figure 1. Multiple-camera system. (a) System design; (b) real-world deployment.

The system comprises ten stereo cameras arranged in a half-ring configuration, maxi-
mizing the coverage of Korean cattle as they pass by. Ideally, an image acquiring system
should form a symmetrical U-shape to capture data from all angles. However, practical
considerations, such as bulkiness, mobility issues, and animal fear, make such a design
unfeasible. Our mechanical design, in contrast, is lightweight, flexible, and collapsible
when not in use. This approach ensures efficient data acquisition without causing distress
to the livestock. The mechanical components’ sizes were specifically chosen to encompass
the full range of Korean cattle, accommodating heights from 1 m to 1.5 m and lengths
spanning from 1.5 m to 2.3 m. These design parameters ensure the adaptability of our
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Infrared image 6 (Left)

system to cater to the cattle between 8 to 24 months. Information on camera specification is
shown in Table 1.

Table 1. Camera specifications.

Device Specifications

Use environment: Indoor/Outdoor
Baseline [mm]: 50
Resolution: 1920 x 1080 px

Depth Camera Frame rate: 30 fps

(Intel Realsense D4351) Sensor FOV 1

(HxV xD): 69.4° x 42.5 x 77(+£3)
User environment: Indoor/QOutdoor
Connection: USB-C 3.1

LFOV: field of view.

The relative translation and rotation between all cameras remained constant through-
out the data collection process. We employed stereo cameras, allowing each camera to
capture two infrared images: a left infrared image and a right infrared image. Figure 2
provides an example featuring ten left infrared images from our proposed camera system.
The ten right images captured by the system exhibit similar characteristics.

Infrared image 4 (Left) Infred i;r;a"é:e (Left)

Infrared image 7 (Left) Infrared image 8 (Left) Infrared image 9 (Left) Infrared image 10 (Left)
Figure 2. Left infrared images from our capturing system.

We generated 3D data from the left and right images of each camera using stereo
matching, as described in [16]. Because the pre-defined relative distances and rotation
angles of the cameras are constant, we could align the 3D images from each individual
camera. The 3D mesh data was then reconstructed using the Poisson surface reconstruction
algorithm [17] to construct a comprehensive 3D representation of the entire scene featuring
the Korean cattle.

Once this was completed, we subtracted the background scene, resulting in the creation
of the 3D mesh data only containing the Korean cattle, as exemplified in Figure 3. In Figure 3,
each row displays the left view, top view, and right view of an animal. To assess the accuracy
of our reconstruction process, we randomly and manually measured the length and chest
girth of 10 Korean cattle and compared with the reconstructed results, revealing a length
error of less than 1% and a chest girth error of 2.3%. Considering the intended application of
reconstruction for weight prediction, these errors fall within acceptable ranges. Notably, the
mesh data on the right side and the under area of the cattle appears incomplete due to our
system’s flexible design, which is designed to adapt to the real-world farm environments.
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Animal 1 Animal 2

Figure 3. Three-dimensional mesh data of two random animals (Korean cattle) after reconstruction.

We conducted data collection on two separate occasions, in August 2023 and Septem-
ber 2023, at two distinct farms located in Seosan province, South Korea. Our dataset consists
of a total of 270 cattle, ranging in age from 9 months to 12 months. For each individual
animal, we captured between 3 to 5 shots in various poses, resulting in a collection of 1190
3D data files. Concurrently, we recorded the weight of each animal during the data capture

process. The weight of the cattle in our dataset varies within the range of 300 kg to 600 kg.
The weight distribution is visualized in Figure 4.

160 -
140 A
120 A

100 A

Count

80 A

60 -

20 1

300 450 550  (kg)
Weight

Figure 4. Weight distribution of Korean cattle used in this study.

2.2. Proposed Pipeline Overview

The overall diagram of the proposed pipeline is depicted in Figure 5. After the
reconstruction process, the 3D images of Korean cattle were saved as 3D mesh files. The 3D
mesh data were sampled into multiple point cloud data for the 3D segmentation process.

Two segmentation models are designed for this project: torso segmentation and center
body segmentation.
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Input data 3D Segmentation-based Feature Extraction Weight Prediction
3D Korean Cattle mesh T .
orso Body length Regression Model
Segmentation
* CatBoost
* LightGBM Prediction
* Polynomial value
Center Body Chest girth e Random Forest
Segmentation Chest width « XGBoost

Figure 5. Overview structure diagram of proposed pipeline.

The output of the torso segmentation was used to measure the body length, while
the output of the center body segmentation was used to extract the chest girth and chest
width. After three important body dimensions are extracted, a regression machine learning
model was developed to predict Korean cattle weight with these three dimensions as input.
We applied five of the most prominent regression machine learning models: CatBoost,
LightGBM (light gradient boosting machine), polynomial, random forest, and XGBoost
(extreme gradient boost).

2.3. Three-Dimensional Segmentation-Based Feature Extraction
2.3.1. Definition of Korean Cattle Body Dimensions

A recent study [15] has demonstrated the feasibility of determining cattle weight
by measuring 10 specific distance parameters which are chest girth, body length, chest
width, rump width, hip height, wither height, pelvic width, rump length, chest depth,
and hip bone width. These parameters were ranked based on their influence ratios on
weight. In this study, we propose a solution that automates the measurement of three body
dimensions, which have shown the highest influence ratios on weight. Subsequently, we
utilized these dimensions to develop our weight prediction model. These three critical
body dimensions are body length, chest girth, and chest width. Detailed measurement
definitions for these body dimensions are provided in Table 2, and the corresponding
measurement sites for each body dimension are visually represented in Figure 6.

Table 2. Definitions of body dimensions for Korean cattle.

Body Dimensions Symbol Definition
Body length BL Horizontal length of the body
Chest girth CG Perimeter of the vertical body axis at the chest
Chest width Ccw Maximum width of chest

Figure 6. Three body dimensions of Korean cattle.

2.3.2. Three-Dimensional Segmentation-Based Feature Extraction

Automatically extracting body dimensions from Korean cattle data acquired in 3D can
be a challenging task. To overcome this, we employed a segmentation approach to isolate
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the specific parts of the cattle for measurement. We conducted two distinct segmentation
processes: one for cattle torso segmentation to measure body length and another for center
body segmentation, which allows us to measure chest girth and chest width, as illustrated
in Figure 7.

Figure 7. Torso segmentation (left) and center body segmentation (right).

The advancement of artificial intelligence (Al), particularly in deep learning techniques,
has introduced powerful tools for 3D data analysis. One such network, PointNet [18],
specializes in 3D data analysis and offers the advantage of learning both global and local
features. It can be effectively applied to various 3D tasks, including 3D classification, 3D
segmentation, and 3D part segmentation. In this project, we adopt the PointNet network
for 3D cattle part segmentation. To simplify the data labeling process while maintaining
high accuracy, we used binary 3D segmentation, simplifying the model’s complexity.
Consequently, we implemented two models with identical architecture but distinct labeling
data: one for cattle torso segmentation and the other for center body segmentation.

The architectural overview of PointNet, designed for point cloud segmentation tasks,
is presented in Figure 8. It incorporates an Input Transform network (T-Net) followed
by a series of Multi-Layer Perceptrons (MLPs) for local feature extraction. The Input
Transform network captures transformations to ensure the network’s robustness to input
point permutations, rotations, and translations. Subsequently, a Feature Transform network
(T-Net) enhances the network’s capacity to handle diverse point orderings. After local
feature extraction, a global feature vector is derived through max pooling, enabling the
network to aggregate information from the entire point cloud. This global feature vector is
further processed by a set of MLPs to produce the final segmentation mask, which assigns
class labels to each point. The combination of Input and Feature Transform networks
empowers PointNet to effectively segment complex 3D data.

Input transform Input transform

Multi-Layer
Perceptron

Matrix
multiply

Matrix
multiply

Multi-Layer
Perceptron

<+—— Max pooling
Global feature

Multi-Layer
Perceptron

Figure 8. PointNet Architecture for 3D segmentation [18].
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2.4. Regression Machine Learning

With three numeric inputs (body length, chest girth, chest width) and the numeric
output of cattle weight, as illustrated in Figure 9, regression models are the most appropriate
choice. In this project, we selected five prominent regression machine learning models for
Korean cattle weight prediction, CatBoost regression, Light GBM, polynomial regression,
random forest regression, XGBoost regression.

Body length

Chest grith

_—

VERIUEREEIRINES predicted weight
Algorithm

Chest width

—_—

Figure 9. Simple schematic of regression machine learning for weight prediction.

2.4.1. CatBoost Regression

CatBoost [19] is a renowned ensemble machine learning algorithm, particularly ef-
fective in regression tasks. It employs category-based optimization to enhance predictive
accuracy and utilizes gradient boosting to iteratively construct decision trees, effectively re-
ducing errors. Notable features of CatBoost include its intrinsic handling of categorical data,
adept feature selection, and strategies to prevent overfitting. The algorithm also demon-
strates efficiency in real-world applications, offering support for parallel computation and
fine-tuned hyper-parameter optimization.

2.4.2. Light Gradient Boosting Machine

Grounded in gradient boosting techniques, LightGBM [20] meticulously constructs
decision trees to iteratively correct errors. Its innovation lies in histogram-based algorithms
and leaf-wise tree growth, ensuring computational efficiency. LightGBM further employs
gradient-based one-side sampling and exclusive data filtering to enhance robustness and
mitigate overfitting. Its parallel processing capabilities make it an excellent choice for
regression tasks.

2.4.3. Polynomial Regression

Polynomial regression [21] extends linear regression by incorporating basic mathe-
matical functions. This algorithm is particularly useful for handling nonlinear data by
employing linear factors. It demonstrates the capability to work effectively with a wide
range of nonlinear data while maintaining efficiency comparable to linear functions.

2.4.4. Random Forest Regression

Random forest [22] is an ensemble learning technique based on decision tree models.
During training, it builds a collection of decision trees, with each tree constructed indepen-
dently and accessing a random subset of the training data. The use of random subsets of
data and features helps prevent overfitting, contributing to the model’s robustness.

2.4.5. Extreme Gradient Boost Regression

XGBoost [23] is another ensemble learning technique rooted in the gradient boosting
framework, primarily applied to regression tasks. XGBoost iteratively refines predictive
models by constructing a series of decision trees, each correcting the errors of the previous
iteration. It is distinguished by its incorporation of sophisticated L1 and L2 regularization
techniques to mitigate overfitting and maintain model parsimony. XGBoost is also known
for its robust handling of missing data.



Agriculture 2023, 13, 2266

9o0f21

3. Results
3.1. Segmentation
3.1.1. Cross-Sampling Augmentation

Building deep learning models always necessitates a substantial number of labeled
samples for the training process. In the case of 3D PointNet networks, achieving high
model accuracy demands training on thousands of samples. However, the manual labeling
of thousands of samples is an exceedingly labor-intensive task. To address this challenge,
we introduced an augmentation method named cross-sampling.

The cross-sampling process is illustrated in Figure 10. Starting with each 3D Korean
cattle data sample, we conducted down-sampling with a resolution of 0.1 mm. Following
down-sampling, each the 3D cattle point cloud typically contains between 11 thousand
to 12 thousand points. We partitioned these into N segments (in this study we selected
N = 10), each consisting of 1024 points (PointNet with 1024 input was selected for this
project). This process yielded N sparse point clouds (depicted in blue in Figure 10) for each
original sample. Subsequently, we further divided each sparse point cloud into N segments
and recombined them to create additional N samples (depicted in green in Figure 10),
distinct from the previous set. Through this approach, with each original 3D mesh data, we
generated 2N sparse point cloud samples, each consisting of 1024 points.

Cross - sampling
|

Sampling— ‘ 3 ‘

It |

Figure 10. Cross-sampling.

The data preparation for the 3D segmentation process was executed as follows: in an
effort to reduce the labor-intensive task of manual labeling, we selectively chose 100 files
from the total pool of 1190 3D Korean cattle data files to construct 3D segmentation model,
with 80 files allocated for the training set and 20 for validation. Subsequently, labeling was
performed on these 100 cattle data files, followed by the use of cross-sampling augmentation
to expand our dataset by a factor of 20. Consequently, this process yielded 1600 samples
for the training set and 400 for the validation set, resulting in a total of 2000 samples.

3.1.2. Feature Extraction

To verify the accuracy of 3D segmentation process, we employed global accuracy
metric [24], which is defined as below:
Global accuracy:

Number of correct prediciton
Total number of prediction

Global Accuracy = 1)

The experiments were conducted on a computational workstation equipped with a
CPU Core-i9 3.5 GHz and an NVIDIA 3060Ti GPU with 8 GB of memory. For deep learning,
we chose the TensorFlow 2.1.0 framework [25] and CUDA 11.0. The network parameters
included the use of the adaptive moment estimation optimizer (Adam), a batch size of 64,
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1000 training epochs, and a learning rate of 0.001. Only the best weights were saved during
training. The records of the training history are displayed in Figures 11 and 12, and the
accuracy results are summarized in Table 3.

1.00 A

Y wow

0.95 4

0.90 -

0.85 A

accuracy

0.80 -

0.75 A

—— accuracy
0.70 A - val_accuracy

T

0 200 400 600 800 1000
Epochs

Figure 11. Torso segmentation training history plot.
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Figure 12. Center body segmentation training history plot.

Table 3. Three-dimensional segmentation accuracy.

Case Training Accuracy Validation Accuracy
Torso segmentation 99.04% 97.55%
Center body segmentation 99.01% 97.21%

In Figures 11 and 12, the blue line represents the training process, while the orange
line represents the testing process. The training process was stabilized after approximately
400 epochs, resulting in a training accuracy of 99% and a testing accuracy of 97% for both
segmentation cases. We applied the trained segmentation models to perform 3D cattle
segmentation, and the results are visualized in Figures 13 and 14.
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. True positive

. True negative

False

Figure 13. Torso segmentation results.

. True positive

. True negative

False

Figure 14. Centre body segmentation results.

In Figures 13 and 14, the red area represents “True positive”, the green area represents
“True negative”, and the yellow region indicates False (“False positive” or “False negative”).
It is notable that the yellow area occupies very small areas at the border between the red
and green areas, which has a negligible impact on the subsequent size measurement.

To achieve accurate measurements of the body dimensions of Korean cattle, it is essential
for the cattle to be in an upright position from head to tail. However, in reality, the cattle often
stand in a tilted position. To address this, we corrected the animals’ posture both horizontally
and vertically using rendered silhouettes derived from the 3D-segmented torso.

We employed the principal component analysis (PCA) method [26] for posture cor-
rection. The process involved extracting contour points from an image, calculating the
centroid of these points to center the data, creating a covariance matrix toestablish the
relationship between x and y coordinates, and computing the eigenvalues and eigenvectors
of the covariance matrix. The eigenvector with the largest eigenvalue signified the principal
axis, aligning with the contour’s orientation in both the vertical and horizontal views. The
results of orientation correction are illustrated in Figure 15.
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(a) (b)
Figure 15. Posture correction using PCA: (a) top view; (b) side view.

Posture correction allowed us to measure body length by capturing the horizontal
length of the segmented torso, as shown in Figure 16.

Figure 16. Extracting body length from the 3D-segmented torso.

To extract chest girth and chest width, we followed these steps. First, we corrected the
animal’s posture both horizontally and vertically. Then, we cut planes perpendicular to the
animal’s body axis to delineate the boundary surrounding its chest. Despite not obtaining a
closed contour due to the limitations of the 3D data collection system, the achieved contour
encompassed over 60% of the cattle’s chest, facilitating the interpolation of a ellipse. We
fitted an ellipse to the achieved contour, with the perimeter of the fitted ellipse measuring
chest girth and the minor axis of the ellipse measuring chest width. Figure 17 on the left
displays a 3D image of cattle after center body segmentation, and Figure 17 on the right
depicts the extraction process.

Chest width

Figure 17. Extracting chest girth and chest width from segmented center body.

3.2. Weight Prediction

Having extracted the three dimensions from 1190 3D Korean cattle samples in the
previous step, we investigated the relationship between body sizes and cattle weight within
the dataset. We utilized Pearson’s correlation [27] coefficient to calculate linear correlation
between features and weight. Pearson’s correlation R can be observed in Equation (2).
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Pearson’s correlation coefficient:

()

R Vi (i = %) (yi — 9)
\/Z?:l (xi = %)\ /X (vi — 9)°

where:

R is the correlation coefficient.

x; and y; are the values of the x-variable and y-variable.

X and ¥ are the means of the values of the x-variable and y-variable, respectively.

Figure 18 presents a scatter plot showcasing the relationship between the cattle weight
and each dimension, along with correlation coefficients calculated between weight and body
length, chest girth, and chest width, respectively: 0.632, 0.524, and 0.428. These coefficients
represent varying degrees of the positive linear relationship between the animal’s weight
and each dimension. Specifically, there appears to be high correlations with body length
and chest girth, while the correlation with chest width is weaker.
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Figure 18. Scatter plot of the relationship between three body dimensions and weight of Korean
cattle: (a) body length and weight; (b) chest girth and weight; (c) chest width and weight.

3.2.1. K-Fold Cross-Validation

To assess the performance of the chosen machine learning models, we employed
K-fold cross-validation. The data were randomly divided into ten partitions of equal size
(k =10). For each partition (p), we trained the selected machine learning models on the
remaining nine partitions and subsequently tested the models on partition (p). The final
score was computed as the average of all ten scores obtained. The schematic of K-fold
validation with k = 10 is depicted in Figure 19.
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Figure 19. Schematic of K-fold cross-validation with k = 10.

3.2.2. Evaluation Metrics

—
average

Final score:

To evaluate weight prediction performance of the proposed approach, two standard
evaluation metrics are used. We used the mean absolute error (MAE) and mean absolute

percentage error (MAPE).
MAE:

1 n
MAE = 3 1yi— pi
i3
where:

n is a number of tested samples.
yi, i=1,..., n is a known value of cattle weight.

pi, i =1,...,nis a predicted value of the cattle weight.

MAPE: :
MAPE = 12
=

yi— pi
yi

where:
n is a number of tested samples.
yi, i=1,..., n is a known value of cattle weight.

pi, i =1,...,n1is a predicted value of the cattle weight.

3.2.3. Results and Discussion

®)

4)

The experiments aimed to estimate Korean cattle weight using the five proposed
machine learning models: CatBoost regression, LightGBM, polynomial regression, ran-
dom forest regression, and XGBoost regression. These experiments were conducted ten
times. The results are displayed in Tables 4-8, and the average performance across the ten

experiments is summarized in Table 9.

Table 4. CatBoot regression result.

Evaluation Metrics

Fold Number
MAE (kg) MAPE (%)
Fold 1 27.800 6.529
Fold 2 27.116 6.320
Fold 3 27.767 6.380
Fold 4 25.776 6.014
Fold 5 26.432 6.371
Fold 6 26.164 6.031
Fold 7 25.775 5.980
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Table 4. Cont.

Evaluation Metrics

Fold Number
MAE (kg) MAPE (%)
Fold 8 26.572 6.175
Fold 9 29.491 6.924
Fold 10 25.296 5.880
Average 26.819 6.260

Table 5. LightGBM regression result.

Evaluation Metrics

Fold Number
MAE (kg) MAPE (%)
Fold 1 26.268 6.124
Fold 2 24.656 5.712
Fold 3 26.193 6.094
Fold 4 24.284 5.731
Fold 5 25.383 6.033
Fold 6 26.272 6.045
Fold 7 24.096 5.537
Fold 8 25.042 5.844
Fold 9 26.560 6.191
Fold 10 26.760 6.173
Average 25.551 5.948

Table 6. Polynomial regression result.

Evaluation Metrics

Fold Number
MAE (kg) MAPE (%)
Fold 1 25.302 5.903
Fold 2 26.085 6.078
Fold 3 26.187 6.066
Fold 4 24.871 5.805
Fold 5 25.594 6.116
Fold 6 23.714 5.433
Fold 7 25.017 5.790
Fold 8 25.301 5.858
Fold 9 27.933 6.527
Fold 10 26.233 6.080
Average 25.624 5.966

Table 7. Random forest regression result.

Evaluation Metrics

Fold Number
MAE (kg) MAPE (%)
Fold 1 25.256 5.903
Fold 2 24.293 5.649
Fold 3 26.749 6.181
Fold 4 25.786 5.994
Fold 5 24.264 5.755
Fold 6 24318 5.559
Fold 7 24.955 5.682
Fold 8 25.294 5.890
Fold 9 26.856 6.282
Fold 10 24.269 5.622

Average 25.204 5.852
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Table 8. XGBoost regression result.

Evaluation Metrics

Fold Number
MAE (kg) MAPE (%)
Fold 1 27.257 6.393
Fold 2 27.150 6.285
Fold 3 27.359 6.277
Fold 4 27.252 6.370
Fold 5 26.066 6.188
Fold 6 27.299 6.296
Fold 7 25.569 5.830
Fold 8 27.052 6.274
Fold 9 28.070 6.538
Fold 10 26.401 6.108
Average 26.948 6.256

Table 9. Average results.

Evaluation Metrics

Model
Average of MAE (kg) Average of MAPE (%)
CatBoost regression 26.819 6.260
LightGBM regression 25.551 5.948
Polynomial regression 25.624 5.966
Random forest regression 25.204 5.852
XGBoost regression 26.948 6.256

The average MAE and MAPE for these algorithms are visualized in Figures 20 and 21.
As depicted in the bar graphs, the random forest model exhibited the highest performance,
achieving an MAE error of 25.2 kg and a MAPE of 5.852%. It was followed by LightGBM
and polynomial regression. XGBoost and CatBoost also performed well among the models.

Average of MAE over different regression models

27
26.5

26

25.5
25
24.5
24

CatBoost LightGBM Polynomial Random Forest XGBoost

MAE (kg)

Regression Models

Figure 20. Average MAE results of 10 fold experiments.
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Average of MAPE over different regression models

6.3

6.2

6.1

MAPE (%)

CatBoost

5.9
5.8
5.7
5.6

LightGBM

Polynomial

Random Forest XGBoost

Regression Models

Figure 21. Average MAPE results of 10 fold experiments.

To assess the effectiveness of estimating Korean cattle weight using the proposed
dimensions, we analyzed the estimation results in comparison to the actual cattle weight
for each machine learning model. We calculated the correlation coefficients between the
predicted weight and the actual weight for each model by employing Equation (2). Figure 22
presents these results, where the correction coefficients show the strengths of the linear
relationship between the predicted and actual weights across all models. Notably, random
forest and LightGBM demonstrate marginally stronger correlations in comparison to the
remaining models. Conversely, XGBoost displays a slightly lower correlation but is still
significant in magnitude.
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Figure 22. Scatter plot of predicted weight values and measured weight values and the correlation
coefficient (R) on different regression machine learning models: (a) CatBoost regression; (b) LightGBM

regression; (c) polynomial regression; (d) random forest regression; (e) XGBoost regression.

Table 10 presents a performance comparison between our approach and previous
methodologies. We compared our results with the studies that also experimented on
cattle and used MAPE or MAE as performance metrics. In terms of MAPE, our approach
outperforms all other methods. Regarding MAE, this metric is used only in the studies
by Ruchay et al. [10] and Weber et al. [4]. Our MAE demonstrates superiority over the
findings in [10]. Although [4] shows a better MAE compared to ours, it is important to note
that their experiments were conducted in a feeding fence system, whereas our experiments

operated in real farm environments.

In this study, although the collected data exhibited limitations, the missing information
from regions on the right side and the under area of the cattle can be attributed to the
adaptation of our design to real farm environmental conditions. Additionally, our model
was constructed using only three body dimensions, yet it demonstrated significant efficacy
in predicting the weight of Korean cattle. In future iterations, we aim to enhance our pre-
dictive results by incorporating additional dimensions such as rump width and hip height.
This expansion is anticipated to bolster the accuracy of our weight prediction solution.
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Table 10. Comparison with previous publications.

No. Work Cattle Environment MAPE (%) MAE (kg)
Number
1 Jang et al. [5] 209 Real farm 19.10 -
2 Anifah and Haryanto [2] 13 Fence system 18.76 -
3 Yamamoto et al. [28] 105 Real farm 12.45 -
4 Ruchay et al. [10] 275 In door 9.60 40.10
5 Nishide et al. [29] 184 Cattle barn 6.39 -
6 Weber et al. [4] 110 Feeding fence - 13.44
7 Proposed approach 270 Real farm 5.85 25.20

The data utilized in this study is entirely collected from real farm environments,
ensuring the study’s outcomes closely mirror practical scenarios, allowing for potential real-
world deployment with minimal differences. There are two differences when deploying
our algorithm in real world in comparison to our experiments. The first difference is cattle
movement, and the second one is that the cattle may stand in unexpected poses involving
tilting, turning, or bowing their heads, which may affect precise body dimension extraction.
To address the cattle movement problem, a triggering mechanism synchronizing 10 cameras
was employed, ensuring the simultaneous capture to create stationary cattle images. To
address the unwanted posture problem, we developed a preprocessing algorithm capable
of discerning favorable cattle positions, enabling the exclusion of frames with undesirable
poses. We only took images when good cattle positions were confirmed. The remaining
processes are identical to the experiments described in this work.

Our approach not only demonstrates the efficacy of weight prediction for Korean cattle
but also presents potential applicability to other species of similar size, including dairy
cows and various type of cattle. From a solution-oriented perspective, this methodology
can be adapted to automatically measure the weight of other animals, such as sheep and
pigs, by making slight adjustments to the mechanical size of the multiple-camera system. In
these cases, data collection and model construction would need to follow a process similar
to ours for effective implementation.

4. Conclusions

In this paper, we presented a vision-based solution for predicting the weight of Korean
cattle using 3D segmentation and regression machine learning. After acquiring data using
multi-camera system, we employed PointNet for 3D segmentation, conducting two distinct
experiments: one to segment the torso for extracting body length and the other to segment
the center body for extracting chest girth and chest width. Finally, we applied five machine
learning algorithms to estimate cattle weight based on the three extracted body dimensions.
We conducted experiments on 1190 3D Korean cattle samples, captured from various poses
of 270 Korean cattle. The results of these experiments demonstrated an accuracy of 25.2 kg
in terms of MAE and 5.85% in terms of MAPE. Our approach not only showcases the
effectiveness of weight prediction for Korean cattle but also holds the potential for broader
applicability to other species.
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Abbreviations

The following abbreviations are used in this paper.
2D Two Dimensional

3D Three Dimensional

Al Artificial Intelligence

ANN Artificial Neural Network

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error
MLP Multiple Layer Perceptron
LIDAR Light Detection and Ranging
PCA Principal Component Analysis
RGB-D Red Green Blue Depth

LightGBM Light Gradient Boosting Machine
XGBoost Extreme Gradient Boost
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