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Abstract: Leaf size significantly impacts photosynthetic capacity and forage yield in alfalfa, a major
legume forage crop. Therefore, elucidating the genetic factors governing leaf development is critical
for breeding improved alfalfa varieties. In this study, a genome-wide association analysis (GWAS)
was performed to dissect the genetic architecture of leaf length (LL) and leaf width (LW) using
220 alfalfa accessions phenotyped over three years. Substantial variation for both traits was observed
across environments, with coefficients of variation ranging from 10.09–16.53%. GWAS identified
26 significant SNPs associated with leaf morphology spread across seven chromosomes. Each
SNP accounts for 9.7–15.6% of the phenotypic variance. Haplotype analyses confirmed positive
correlations between the number of superior alleles and both LL and LW. BLAST searches revealed
six candidate genes involved in leaf development within 20 kb flanking regions of significant SNPs.
Our results provide novel marker-trait associations and candidate loci to facilitate molecular breeding
efforts to optimize leaf size and improve productivity in alfalfa. This study establishes a foundation
for integrating favorable alleles into future alfalfa varieties.

Keywords: alfalfa; GWAS; leaf size

1. Introduction

Photosynthesis is a fundamental process that underpins plant growth, development,
and organic matter accumulation [1]. As the primary photosynthetic organ, leaves play
a pivotal role in carbon fixation [2]. Leaf morphology and area impact key physiological
processes, including photosynthetic rate, transpiration, and carbon sequestration, which
collectively determine biomass yield [3–5]. Modifying leaf size presents a promising route
to improve productivity, particularly for forage crops such as alfalfa, where both stems
and leaves are harvested. Elucidating the genetic factors governing leaf size will provide
molecular markers to guide targeted breeding efforts to optimize leaf traits and improve
crop performance.

Leaf morphological development is a complex process involving many functional
genes and transcriptional regulators [6]. Overexpression of genes such as Auxin Regulated
Gene involved in Organ Size (ARGOS) and Small Auxin-up RNA (SAUR) results in larger-than-
normal leaves [7,8]. In addition, miRNAs play key regulatory roles in leaf development and
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morphogenesis across plant species [9]. For instance, miR319 regulates the transcription
factor TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORS (TCP),
which is crucial for cell proliferation and leaf growth. Overexpression of miR319 or loss
of TCP function induces enlarged and curled leaves [10]. In Arabidopsis, the REVOLUTA
transcription factor involved in leaf development is regulated by miR165 [11]. Quantitative
trait locus (QTL) mapping and gene cloning have also uncovered loci and candidate genes
associated with leaf size variation in major grass crops, including maize [12], rice [13],
wheat [14], and barley [15].

Alfalfa (Medicago sativa L.), known as the “Queen of Forages”, is a globally cultivated
forage crop valued for its high biomass yield and nutritional quality [16,17]. The change
in its growth and development determines its yield and economic benefit [18]. Increasing
biomass is a key breeding objective for alfalfa. However, alfalfa poses challenges for
genetic analysis and plant improvement as an autotetraploid species with a complex and
self-incompatible genome [19].

In the post-genomic era, the ability to identify gene function remains a major challenge
in molecular biology [20]. This is crucial for advancing the process of crop breeding. At
present, the establishment of multi-omics databases has accelerated the research process
of molecular breeding. Sun et al. [21] developed Milletdb, which is a millets multi-omics
database containing a large amount of data. This database can provide effective services for
functional genomics and population genetics research in millets. In addition, QTL mapping
and genome-wide association studies (GWAS) are two primary strategies used to dissect
the genetic architecture of complex quantitative traits, such as biomass yield [22]. QTL
mapping employs biparental populations to identify genomic regions harboring loci that
influence trait variation. Subsequently, significant QTL can be validated for marker-assisted
selection or integrated with GWAS to refine candidate regions [23]. Compared with QTL
mapping, GWAS offers a higher mapping resolution by exploiting historical recombination
events across diverse germplasms. It also bypasses time-consuming population devel-
opment. GWAS-derived markers linked to traits of interest can be directly implemented
in genomic selection [23]. Recently, GWAS has been extensively used to understand the
genetic underpinnings of leaf morphology, which is crucial for alfalfa productivity. For
example, Chiteri et al. [24] used GWAS to identify four candidate genes associated with
multiple leaf traits in mung beans, which are suitable candidate genes for further study of
their roles in leaf development, growth, and function. GWAS has also revealed leaf-size loci
in other crops, including rice [25], maize [26], poplar [27] and wheat [28]. The application
of GWAS to alfalfa will likely provide new insights into leaf trait genetics to guide breeding
for optimized leaf morphology and improved biomass yield.

Despite its agronomic significance, the genetic underpinnings and molecular mech-
anisms of leaf morphology in alfalfa are less explored than those in other crops. GWAS
offers a powerful approach to elucidate the genetic basis of complex quantitative traits in
alfalfa, including leaf morphology. The ubiquity, abundance, and precise genomic localiza-
tion of SNP markers make them highly amenable to GWAS and subsequent applications
in marker-assisted breeding [29]. In this study, we performed an SNP-based GWAS on
220 alfalfa accessions to identify novel loci that control leaf morphology. Our objectives
were to identify candidate genes influencing leaf traits and provide informative markers
to facilitate molecular breeding efforts aimed at optimizing leaf characteristics and plant
productivity in alfalfa.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The plant materials used in this study comprised 220 alfalfa accessions collected world-
wide [30]. The phenotypes of different individuals of the same germplasm resources used
by us were more consistent, and there were great differences among germplasm resources.
Field experiments were conducted at the International Agricultural High-tech Industrial
Park of the Chinese Academy of Agricultural Sciences in Langfang City, Hebei Province,
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China (39.59◦ N, 116.59◦ E). This region is characterized by a warm, temperate continental
monsoon climate with an average annual temperature of 11.9 ◦C and precipitation of
554.9 mm. The soil was of the medium loam type with a pH of 7.37, containing 1.69%
organic matter. In 2017, 220 materials were planted in a greenhouse, and in April 2018, a
single plant with the same growth in each material was selected and transplanted into the
field. Because alfalfa is a perennial crop, it remains in the field for many years after planting.
The experimental design was a completely randomized block with three replicates per
accession and five plants per plot. No supplemental fertilization or irrigation was applied.
Weeding was performed manually as needed. Prior to phenotypic data collection, all plants
were uniformly trimmed to homogenize growth.

2.2. Phenotypic Data Collection and Analysis

Leaf length (LL) and leaf width (LW) were measured in 2018, 2019, and 2020 at the stage
when the first flower appeared for each genotype. For consistent sampling across years, the
middle leaflet of the third or fourth fully expanded trifoliate leaf, counted from the shoot tip,
was collected from each plant. Three leaves were measured per plant. LL was quantified
at the longest part and LW at the widest part of each leaf using a ruler. The average of
the three leaves represents the LL and LW for an individual plant. Both single-year and
three-year average data were analyzed for LL and LW; single-year phenotype dates were
denoted as 18LL, 18LW, 19LL, 19LW, 20LL, and 20LW, and three-year average phenotype
dates were denoted as LL-mean and LW-mean. Statistical analysis of the phenotypic data
was performed using Excel 2016, SPSS 19.0, and R 4.1.3 software. Origin 2022 software was
used to perform Pearson correlation analysis and visualization of leaf size data. We used
the R package “lme4” to calculate the generalized heritability (H2) and related contents. H2

was calculated as follows:

H2 =
Vg

Vg +
Ve
L

× 100%

where Vg denotes the genetic variance, Ve denotes the residual variance, and L denotes the
number of environments.

2.3. Sequencing and SNP Calling

Based on field phenotype observations, DNA was extracted from 100 mg of fresh
young leaf tissue from a representative plant (a single plant in each material that was
relatively consistent with the other individuals) selected from each accession using the
CWBIO Plant Genome DNA Kit (CoWin Biosciences, Beijing, China). Library construction
and whole-genome resequencing were performed at Beijing Berry and Kang Biotechnology
Co., Ltd. (Beijing, China) to generate ~10 Gb of raw sequencing data per sample, with≥85%
of reads exceeding the Q30 quality threshold. The raw sequencing data were deposited
at the National Genomics Data Center (NGDC, https://bigd.big.ac.cn/, accessed on 8
November 2023, BioProject: PRJCA004024).

The SNP calling pipeline was described previously [30]. Briefly, resequencing reads
were aligned to the Zhongmu-4 reference genome, and SNPs were identified using the cri-
teria of minor allele frequency (MAF) ≥0.05, missing rate <10%, and minimum sequencing
depth >5. This yielded a final set of 875,023 high-quality SNPs for downstream GWAS.

2.4. Genome-Wide Association Study (GWAS) and Haplotype Analysis

GWAS utilized 875,023 previously identified high-quality SNPs. GWAS was imple-
mented in TASSEL 5 software using the general linear model (GLM) approach [31]. The R2

in the GWAS results directly derived from Tassel can represent the phenotypic variance
explained (PVE) by a single SNP. We then used the R package “CMplot” to visualize the
GWAS results. Significance thresholds were set at a logarithm of the odds (LOD) score of
≥6. Manhattan and quantile-quantile (QQ) plots showed GWAS results across the genome
and assessed expected and observed p-value distributions.

https://bigd.big.ac.cn/
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GWAS results were analyzed in combination with haplotypes. First, we exported
the haplotype of the selected SNPs corresponding to each material from the genotype
HapMap file and then combined it with the phenotypic data of each material to identify
the haplotypes with better phenotypic characteristics as superior alleles. The significance
between groups was tested using the t-test. Here, we used LL-mean and LW-mean as
phenotypic data for haplotype analysis. For further analysis of the superior alleles, we
selected 13 Chinese cultivars from 220 accessions to determine the proportion of supe-
rior alleles in these 13 materials. These 13 materials are CF032020, CF002722, CF020901,
CF000715, CF020976, CF030056, PI502646, PI499544, PI502647, PI491400, PI491401, PI430638
and PI430636 (Table S1).

2.5. Candidate Gene Analysis

Genes within the significantly correlated loci were identified using the reference hap-
loid genome of Zhongmu-4. All genes within 40 kb (20 kb upstream and downstream)
of significant SNPs were identified according to the linkage disequilibrium (LD) of the
association panel. These genes were searched using BLASTP at the National Center for
Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/, accessed on 8 Novem-
ber 2023). Genes with known roles related to plant development and leaf morphology were
prioritized as candidates influencing associated leaf traits.

3. Results
3.1. Phenotypic Data Analysis

LL and LW exhibited extensive variation across the 220 alfalfa accessions in all envi-
ronments (Table 1). The coefficient of variation ranged from 10.09% (LL-mean) to 16.53%
(19LW), indicating substantial phenotypic diversity. In addition to 20LW, the skewness and
kurtosis values fell between −1 and 1 for all traits (Table 1). The normal distribution plots
further confirmed that LL and LW followed typical quantitative genetic patterns (Figure 1).
Pearson correlation analysis revealed strong positive correlations between LL and LW
within and across years (Figure 2). The correlation between the LL-mean and LW-mean
was 0.78, implying that a shared genetic basis may underlie the two traits. Broad-sense
heritability estimates were moderate for LL (65.09%) and LW (56.62%), suggesting that
although genetic factors play an important role, environmental factors also substantially
influence the observed phenotypic variation.

Table 1. Analysis of single- and three-year mean phenotypic data for leaf length (LL) and leaf
width (LW).

Category Average SD Median Minimum Maximum Skewness Kurtosis SE CV (%) p-Value

18LL 1.76 0.22 1.8 1 2.3 −0.16 0.36 0.01 12.56 <0.001
19LL 2.53 0.31 2.6 1.6 3.3 −0.49 0.5 0.02 12.1 <0.001
20LL 2.3 0.27 2.3 1.5 3 −0.14 0.22 0.02 11.6 <0.01

LL-mean 2.17 0.22 2.19 1.09 2.59 −0.29 −0.43 0.01 10.09 <0.001
18LW 0.83 0.1 0.8 0.5 1.1 −0.14 0.02 0.01 12.08 <0.001
19LW 1.44 0.24 1.5 0.6 2 −0.4 0.46 0.02 16.53 <0.001
20LW 1.09 0.14 1.1 0.7 1.6 0.32 1.08 0.01 13.22 <0.001

LW-mean 1.1 0.15 1.12 0.49 1.46 −0.71 0.8 0.01 13.25 <0.001

https://www.ncbi.nlm.nih.gov/
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Figure 1. Phenotypic data distribution box plot and normal distribution curve. (a) Box plot and nor-
mal distribution curve of leaf length (LL) related phenotypic data. (b) Box plot and normal distribu-
tion curve of leaf width (LW) related phenotypic data. The horizontal coordinates represent different 
years, and the vertical coordinates represent the LL and LW values. The horizontal line in the middle 
of the box represents the average value, the square in the middle of the box represents the median 
value, and the curve on the right side of the box represents the normal distribution curve of the data. 
Different colored boxes represent the phenotypes of different years, using red, yellow, blue, and 
green to represent the phenotypes of 2018, 2019, 2020, and the average, respectively. 

 
Figure 2. Correlation analysis between leaf length (LL) and leaf width (LW). The numbers in the 
figure represent the Pearson correlation coefficient between the two traits; the oval represents the 
correlation between the two traits, and the darker the color of the oval, the greater the correlation 
between the two traits. ** p < 0.001. 
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Figure 1. Phenotypic data distribution box plot and normal distribution curve. (a) Box plot and
normal distribution curve of leaf length (LL) related phenotypic data. (b) Box plot and normal
distribution curve of leaf width (LW) related phenotypic data. The horizontal coordinates represent
different years, and the vertical coordinates represent the LL and LW values. The horizontal line in
the middle of the box represents the average value, the square in the middle of the box represents the
median value, and the curve on the right side of the box represents the normal distribution curve of
the data. Different colored boxes represent the phenotypes of different years, using red, yellow, blue,
and green to represent the phenotypes of 2018, 2019, 2020, and the average, respectively.
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3.2. Genome-Wide Association Studies

GWAS was performed using 875,023 high-quality SNPs distributed across the eight
chromosomes of the alfalfa genome. Manhattan plots were generated, depicting SNP
p-values (negative log-transformed) against their genomic positions for each trait (Figure 3).
QQ plots were used to compare the observed and expected p-value distributions (Figure S1).
Using a significance threshold of LOD score ≥ 6, a total of 26 significant SNPs were
identified on seven chromosomes associated with LL and LW (Table 2). Specifically, the
significant SNPs detected across the chromosomes were as follows: three on chromosome
1, three on chromosome 3, seven on chromosome 4, five on chromosome 5, three on
chromosome 6, one on chromosome 7, and four on chromosome 8. Notably, no associations
were observed on chromosome 2. The proportion of PVE by the 26 significant SNPs ranged
from 9.7% to 15.6%. For LL, chr4__10421186 exhibited the highest PVE (R2 = 13.5%). For
LW, chr6__22371428 exhibited the highest PVE (R2 = 15.6%).
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Table 2. Significant SNP markers related to leaf size.

Trait Marker Variant Superior Allele Chromosome p-Value LOD R2 (%)

18LL chr4__21547816 T/C T/T 4 7.88 × 10−8 7.103 10.9
chr4__25161830 A/G A/A 4 8.01 × 10−7 6.096 10.7
chr1__32276127 G/A G/G 1 9.97 × 10−7 6.001 10.5

18LW chr1__62417155 C/T C/T 1 1.34 × 10−7 6.873 11.6
chr8__32102377 A/G A/G 8 3.68 × 10−7 6.435 12.4
chr4__45272900 C/T C/T, C/C 4 6.31 × 10−7 6.2 12
chr4__2117557 A/G A/G 4 6.69 × 10−7 6.175 10.4

chr6__104023158 G/A A/G 6 7.77 × 10−7 6.11 10.3
19LL chr4__10421186 A/T A/T, A/A 4 1.27 × 10−7 6.897 13.5

chr5__24099977 T/G T/T 5 2.09 × 10−7 6.68 11.4
chr8__28919244 T/G T/T, G/T 8 8.55 × 10−7 6.068 12.2

19LW chr4__10421186 A/T A/A, A/T 4 1.69 × 10−9 8.773 14.7
chr5__24099977 T/G T/T 5 4.12 × 10−8 7.385 11.1
chr3__54671421 A/G A/G, A/A 3 1.60 × 10−7 6.795 11.5
chr5__33941257 C/G C/G 5 8.43 × 10−7 6.074 11
chr8__16727552 T/G G/T, T/T 8 9.89 × 10−7 6.005 10.4

20LL chr5__56222287 C/A C/C 5 1.44 × 10−7 6.841 11.2
20LW chr7__25704991 T/C T/T 7 9.88 × 10−7 6.005 9.8

LL-mean chr8__34096759 T/C C/T 8 7.76 × 10−7 6.11 10.1
chr3__49868041 C/T C/C 3 9.14 × 10−7 6.039 11.5

LW-mean chr6__22371428 G/A A/G 6 2.48 × 10−10 9.605 15.6
chr5__46799336 C/T C/C 5 2.49 × 10−8 7.603 12.4
chr1__12214599 G/T G/T, G/G 1 1.64 × 10−7 6.785 12.5
chr4__23137976 T/C T/T 4 4.26 × 10−7 6.371 11.9
chr3__18740637 G/A A/G, A/A 3 6.65 × 10−7 6.177 11.4
chr6__23303002 A/C A/C 6 9.44 × 10−7 6.025 9.7

The GWAS results were further analyzed, and two colocalization SNPs were obtained.
chr4__10421186 was colocalized in 19LL and 19LW, and chr5__24099977 was colocalized in
19LL and 19LW (Figure 3c,d). Among them, the PVE of chr4__10421186 in 19LL and 19LW
was second only to chr6__22371428 in the LW-mean among all SNPs. This suggests that
these markers may have a significant effect on alfalfa leaf size. To better identify SNP loci
present across various phenotypes, we compiled the statistics of loci with LOD values of
4 or higher for all observed phenotypes (Figure S2). In total, 157 SNPs were detected in
two or more phenotypes. The phenotypes with the most colocalized SNPs were 18LL and
18LW, with 33 colocalized SNPs. One SNP site (chr4__2185950) was co-located across the
five phenotypes. This SNP site had an LOD of 4.22–5.96 across the five phenotypes.

To validate the GWAS results, haplotype analyses were performed for all 26 signif-
icant SNPs. Significant phenotypic differences were detected at each locus among the
haplotypes (Figures S2 and S3). Superior alleles were defined as those that were associated
with increased LL and LW values. The relationship between superior allele dosage and
leaf morphology was examined by counting the number of superior alleles within each
accession. Positive correlations were evident between superior allele number and both
LL and LW based on the three-year phenotype averages (Figure 4a,b). Accessions with
superior alleles tended to exhibit longer and broader leaves. Significant differences in LL
and LW were also apparent among the groups harboring different superior allele numbers
(Figure 4). Collectively, these validations support the accuracy of the GWAS outputs for
further genetic dissection of leaf morphology.
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To assess the potential application of the identified superior alleles for alfalfa im-
provement, their frequencies were examined in 13 Chinese cultivars of the 220 acces-
sions (Figure 5). For LL, the superior allele frequencies at the six significant SNPs ranged
from 50 to 92%, while the frequencies were below 40% at three SNPs (chr8__34096759,
chr3__4986804, and chr4__25161830). Regarding LW, superior allele frequencies exceeded
60% at 11 SNPs, with fixation (100%) at four of these (chr4__45272900, chr3__54671421,
chr8__16727552, and chr1__12214599). In contrast, the frequencies were below 40% at
six SNPs, including one absent superior allele (chr5__33941257). Overall, 11 and 12 of
the 13 cultivars carried superior alleles at over 50% of the LL- and LW-associated loci,
respectively. However, PI430638 contained less than 50% superior alleles for both traits.
These results highlight specific superior alleles at low frequencies in the current germplasm
that could be targeted to optimize leaf morphology in future alfalfa breeding.
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3.3. Candidate Gene Analysis for Leaf Development in Alfalfa

Genes within 20 kb regions flanking significant SNPs were identified using the
Zhongmu-4 reference genome. In total, 17 significant markers were associated with 32 anno-
tated genes in the syntenic Medicago truncatula genome (Table S2). Based on functional anno-
tations, six candidate genes were implicated in leaf development (Table 3). The associated
genes included putative histone acetyltransferase (Chr1__62417155), E3 ubiquitin-protein
ligase KEG (Chr3__54671421), TATA-binding protein-associated factor BTAF1 isoform X1
(Chr4__21547816), ATP-dependent Clp protease proteolytic subunit 6 (Chr4__45272900),
protein FAR1-RELATED SEQUENCE 5-like (Chr4__10421186), and GDSL esterase/lipase
At5g22810 (Chr8__32102377).

Table 3. Prediction and functional annotation of candidate genes related to leaf development.

Trait Marker Gene Model
Position BLAST-P

Chromosome Start-Pos End-Pos Stand Annotation E-Value %ID

18LL chr4__21547816 Msa0540020 4 21527816 21567816 -
TATA-binding

protein-associated factor
BTAF1 isoform X1

0 95.68%

18LW chr1__62417155 Msa0034440 1 62397155 62437155 - putative histone
acetyltransferase 4.00 × 10−76 78.53%

chr8__32102377 Msa1189740 8 32082377 32122377 - GDSL esterase/lipase
At5g22810 3.00 × 10−87 70.44%

chr4__45272900 Msa0549940 4 45252900 45292900 -
ATP-dependent Clp
protease proteolytic

subunit 6, chloroplastic
0 95.99%

19LW chr4__10421186 Msa0534800 4 10401186 10441186 + protein FAR1-RELATED
SEQUENCE 5-like 0 86.65%

chr3__54671421 Msa0362890 3 54651421 54691421 - E3 ubiquitin-protein
ligase KEG 0 96.87%

4. Discussion

Leaf size is a key trait that influences light capture and photosynthetic efficiency, mak-
ing it an important target for crop yield improvement [32]. Positive correlations have been
reported between increased leaf size and yield in rice, wheat, and other species [33,34]. As
a vital forage crop, alfalfa is widely cultivated because of its high protein and fiber content
in livestock feed [35]. Since leaves are harvested with stalks, leaf size directly impacts
yield and forage quality. The genetic basis of leaf morphology in alfalfa remains poorly
understood, posing challenges owing to its autopolyploid genome and high heterozygos-
ity [19]. Advancements in next-generation sequencing have enabled high-throughput SNP
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discovery at a reduced cost. SNPs, insertion/deletions (indels), and structural variations
(SV) as three ways of sequence variation are the basis of phenotypic variation in species [36].
It is of great importance to understand the distribution and impacts of these variants in
germplasm collections in order to utilize them in breeding programs [37].

Moreover, the recent completion of the alfalfa genome sequence provides an invaluable
genomic resource to facilitate GWAS and QTL mapping [19,38]. GWAS and QTL mapping
are powerful approaches to elucidate the genetic architecture of complex quantitative traits
in plants. For example, Chen et al. [39] performed a GWAS on tea plants and identified six
candidate genes associated with leaf size and other morphological traits. The expression
of the two-leaf size-related candidates was validated using RT-qPCR, which confirmed
their functional roles. In maize, Miculan et al. [20] uncovered 25 candidate genes linked
to leaf development through GWAS, including those involved in vacuolar function, cell
wall processes, and vesicle trafficking. The GWAS outputs can provide critical markers for
accelerating molecular breeding via marker-assisted selection.

We previously combined QTL mapping and RNA-seq to identify potential leaf trait
candidate genes [40,41]. Here, we conducted the first GWAS for leaf morphology in alfalfa
using a diverse panel evaluated over three years in Hebei Province, China. The GLM
selected in this study is a model with a wide detection range that can detect many SNPs
associated with target traits [39]. We identified 26 significant SNPs and six candidates
influencing LL and LW. Unlike traditional bi-parental linkage mapping, GWAS exploits
historical recombination within diverse germplasms without developing specialized crosses.
It can also directly tag causative polymorphisms for downstream functional validation [42].
Notably, our GWAS candidates did not overlap with those of previous QTL studies, which
likely reflects the population- and environment-specific associations. Therefore, the newly
identified loci provide complementary insights into leaf genetic architecture to guide alfalfa
improvement.

LL and LW exhibited year-to-year variation, likely attributable to environmental
fluctuations, including climate and field effects [41]. In particular, the LL and LW in 2018
were significantly smaller than those in the other two years, possibly because 2018 was
the first year of alfalfa transplantation. The coefficients of variation for LL and LW ranged
from 10.09% to 16.53% across the environments, demonstrating substantial phenotypic
diversity in these traits among the alfalfa accessions. This variation provides useful genetic
potential for optimizing leaf morphology through breeding. Furthermore, we observed a
high positive correlation between LL and LW, which is consistent with previous reports on
alfalfa [43,44].

Haplotype analysis, an essential molecular marker, plays a crucial role in molecular
breeding applications and is widely used for crops such as wheat [45], maize [46], and
rice [47]. In alfalfa, a larger leaf size is considered a favorable phenotype [40]. Our haplotype
analysis of the 26 significant GWAS SNPs revealed that T/T was the most frequent superior
allele, occurring in 20.59% of the SNPs. This was followed by A/G and A/A, accounting for
17.65% and 14.71%, respectively. This information can guide haplotype-based selection in
alfalfa breeding programs. We found that the Chinese cultivars of the panel carried superior
alleles at only 22.22–77.78% of LL loci and 41.18–88.24% of LW loci, indicating potential
targets for introgression via marker-assisted selection. Furthermore, superior allele dosage
was positively associated with leaf size, supporting the feasibility of pyramiding favorable
alleles to increase leaf area.

This study identified 26 SNPs that were significantly associated with alfalfa leaf de-
velopment. Six candidate genes were identified and annotated. Chr4__45272900, located
on chromosome 4, is linked to ATP-dependent Clp protease proteolytic subunit 6, which
is chloroplastic, indicating its association with or localization in chloroplasts. This gene
encodes an essential housekeeping enzyme in plant chloroplasts that is involved in chloro-
plast development and function [48,49]. Chr3__54671421, located on chromosome 3, is
linked to the E3 ubiquitin-protein ligase KEG. This gene plays a key role in plant develop-
ment and has various effects on leaf development [50], such as regulation of chloroplast
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development [51], leaf senescence [52], and stomatal development [53]. Chr1__62417155,
located on chromosome 1, is linked to a putative histone acetyltransferase. Jenna et al. [54]
found that the histone acetyltransferase GCN5 has specific roles in the leaf tissue of Ara-
bidopsis, influencing cell growth and division in rosette leaves in complex and sometimes
opposite ways. Chr4__10421186, located on chromosome 4, is linked to the FAR1-RELATED
SEQUENCE 5-like protein. FAR1 has been reported to be a positive regulator of chloro-
phyll biosynthesis in Arabidopsis thaliana [55] and is related to chlorophyll synthesis [56].
Furthermore, chr8__32102377 on chromosome 8 and chr4__21547816 on chromosome 4
were linked to genes annotated as GDSL esterase/lipase At5g22810 and TATA-binding
protein-associated factor BTAF1 isoform X1, respectively. Although these genes have not
been directly linked to leaf development, they are known to be involved in developing
plant meristems [57,58].

In summary, we conducted a comprehensive GWAS of 220 alfalfa variants grown in
Langfang, Hebei Province, between 2018 and 2020. Our analysis identified 26 significant
SNPs with six candidate genes related to leaf development. This study offers valuable
resources for alfalfa leaf development and breeding.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture13122237/s1, Figure S1. Quantile–quantile (QQ) plots from GWAS for leaf types
for each year. The blue line represents the expected distribution of p-values, and the red dotted
line indicates a reference or threshold. The observed p-values are shown as blue dots. Figure S2.
Histogram of the colocalization of SNPs with LOD greater than 4 in eight phenotypes. The left
section displays the set sizes for each phenotype, while the right section illustrates the size of the
intersections between these sets. The bottom portion indicates overlaps or intersections between
different phenotypes. Figure S3. Haplotype analysis of SNP related to leaf length (LL). Figure S4.
Haplotype analysis of SNP related to leaf width (LW). Table S1. Details of the 13 Chinese cultivars.
Table S2. Candidate gene prediction and functional annotation.
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