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Abstract: Generic parameter calibration for crop growth models is a very important step in model
use. However, studies of the effect of sample size and sampling methods on the calibration and
validation of genotypic parameters have seldom been conducted. Scientists commonly apply the
hold-out (HO) method, by default, to deal with samples for calibration and validation in the practice
of model use. In this paper, we applied the hold-out, cross-validation (CA), and bootstrapping (BS)
methods with different sample sizes to analyze the influence of sampling methods and sample size
on the final calibration results of genotypic parameters. The results showed that, (1) overall, CA and
BS performed better than HO at most observation stations. However, there was great variability in
the calibration and validation results obtained from the three methods. (2) Because of data quality
differences, we could not conclude that the more samples there were, the greater the validation
accuracy of the three methods. (3) The CV of the genotypic parameter values for the three methods
and sample sizes varied greatly. Thus, when genotypic parameter calibration is performed, both
sampling methods and sample size should be considered.

Keywords: hold-out; cross-validation; bootstrapping; genotypic parameter calibration; sample size

1. Introduction

Since crop growth models have the unique advantage of providing in-depth information
regarding the interaction between crop genotypic traits and environmental variables, manage-
ment practices, such as DSSAT, APSIM, and WOFOST, have been widely applied [1–4]. Crop
growth models are expressed by mathematical equations and functions, which represent
the physiological and physical processes of the crop life cycle [5]. Because not every aspect
of cropping systems can be effectively modeled, various sources of uncertainty exist in the
crop-modeling process [6]. Notably, observation, model, and prediction uncertainties have
been summarized to perform corresponding analyses [7]. Model inputs, model structure,
and model parameters have been defined as the three major sources of model uncertain-
ties [7–9]. Decomposing and quantifying sources of uncertainty not only enhances the
scientific validity and practicality of crop models but also aids in making more effective
decisions in agricultural production and resource management [10].

Parameter uncertainty arises from variability in model parameter values. This can
stem from the data used for calibration, the limited amount of available data, or the
calibration process itself. [11]. The parameters of a crop growth model can be catego-
rized into genotypic parameters, soil parameters, management practice parameters, and
other parameters, of which genotypic parameters are characterized by comparatively
strong uncertainty [12,13]. Uncertainty in genotypic parameters is mainly derived from
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low-quality calibration data, limited calibration samples, and inappropriate calibration
methods [10]. Observation and input uncertainty, which is usually caused by using indirect
observation data, in the calibration process of genotypic parameters has a significantly
negative impact on the accuracy of the final output [14,15]. The calibration methods for
estimating genotypic parameters and the customized application of a method by users
also influence eventual results. Some articles have estimated parameters by using trial
and error [16,17], whereas others have used different approaches for calibration, such
as GLUE [18–20], EFAST [21,22], and Bayesian approaches, including the Markov chain
Monte Carlo (MCMC) algorithm, the MCMC method based on the Adaptive Metropolis
algorithm (MCMC-AM) algorithm [22–25], etc., resulting in different ways of estimating
parameter uncertainty. In addition, the genetic algorithm (GA) [26], the shuffled complex
evolution method (SCE-UA) developed by the University of Arizona [5,27], particle swarm
optimization [28,29], simplex algorithm (SA) [30], maximum likelihood solution (MLS) [31],
Powell’s conjugate direction method (PCD) [32], the annealing algorithm (AA) [33], and
the unconstrained Levenberg–Marquardt algorithm (ULM) [34] have also been applied to
estimate the genotypic parameters of crop growth models. In addition, in the calibration
process for genotypic parameters, the initial value range of parameters, the number of
algorithm iterations, and the selection of the objective function impact the quantification
of uncertainty [35]. Some studies have focused on uncertainty due to calibration, while
others have explored the uncertainty of both calibrated and uncalibrated parameters [11].
Moreover, the number and sets of parameters vary depending on the crop model [17,36–38].

At present, most scholars focus on model parameter estimate methods, and the impact
of the sample size and sampling methods on the calibration results is rarely considered. Al-
though a few methods have obtained output statistics and optimal parameters by repeating
model simulations with randomly sampled input variables [22,23], the existing sampling
methods for calibrating genotypic parameters from a systemic analysis perspective are still
lacking. Moreover, the most popular sampling method is the hold-out (HO) method, which
is characterized by insufficient sample utilization and is extremely dependent on users’
subjective experiences. Eventually, the accuracy of the calibration of genotypic parameters
must be impacted. In fact, there are other sampling methods, such as cross-validation and
bootstrapping, that provide useful sample information. However, few relevant studies
have explored the influence of different sampling methods and different sample sizes on
calibration analyses of genotypic parameters.

Based on the abovementioned factors, the objectives of this study were to (1) explore
whether different sampling methods have an impact on the calibration of genotypic param-
eters and, if so, to select the optimal sampling method for different sample sizes; (2) conduct
a comparison to determine which sampling method is best in cases with single-station and
multi-station data; and (3) explore new orientations that can improve the efficiency and
accuracy of modeling and provide references for resolving the low application efficiency of
genotypic parameter calibration when using crop growth models.

2. Materials and Methods
2.1. Field Experiments

The study area is located in the northeast subregion of the Northern Single-Cropping
Zone (NSCZ) of potatoes in China (Figure 1), with a temperate continental monsoon climate
and seasonal weather variations. This zone includes the Heilongjiang, Jilin, Eastern Inner
Mongolia, and Liaoning Provinces. It is one of the main production areas for fresh vegetable
varieties and one of the main potato starch processing areas [39].
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records. Fertilization was performed in the initial stage of tuber formation with an amount 
equal to 130 kg/hm2. The observed data derived from the experiment were the average 
value of the three replicates. 
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ber 32.8 ± 13.2 indicates the mean value (32.8) with a standard deviation of 13.2; GSL represents 

Figure 1. Locations of observation stations in the study area.

Field experiments were conducted at the ten observation stations for the period of
2016–2020 (Table 1), which are part of the northeast group of the national potato variety
regional trials [40], and the experimental area for each station was 700 m2. The potato
variety in this study was Kexin #13 with medium-to-late maturation characteristics. Three
replicates were conducted in each experimental field. The average yield was 35 tons
per hectare, and the average growing period was 120 days within the same trial group,
according to a unified experimental plan and technical operating procedures. The sow-
ing depth was 22 cm with a plant distance of 30 cm, while the sowing density reached
60,000 plants/hm2. The sowing and harvest dates for each station were obtained in terms
of actual records. Fertilization was performed in the initial stage of tuber formation with
an amount equal to 130 kg/hm2. The observed data derived from the experiment were the
average value of the three replicates.

Table 1. Meteorological and experimental sites in this study.

Experimental
Site Year Longitude (◦) Latitude (◦) Altitude

(m)
Observed

Yield (t/ha) GSL * (d) ≥10 ◦C
GDD * Soil Type

Haerbin 2016–2020 126.63 45.75 155 32.8 ± 13.2 * 114 ± 7 2243 ± 186 SiLo *
Wenchun 2016–2020 129.50 44.42 251 44.2 ± 3.9 124 ± 4 2259 ± 85 SiLo
Zhalantun 2016–2020 122.74 48.03 307 37.4 ± 5.4 131 ± 11 2240 ± 142 ClLo *

Keshan 2016–2020 125.87 48.07 236 27.6 ± 2.7 113 ± 4 2252 ± 86 SiClLo *
Keshan Farm 2016–2020 125.37 48.30 315 47.1 ± 8 121 ± 10 2251 ± 182 SiClLo

Suiling 2016–2020 127.10 47.23 212 35.9 ± 4.4 107 ± 9 2254 ± 214 SiClLo
Hegang 2016–2020 130.27 47.33 228 31.1 ± 1.8 123 ± 11 2258 ± 169 SiLo

Jiagedaqi 2016–2020 124.12 50.40 372 28.7 ± 6 117 ± 7 2237 ± 105 Lo *
Changchun 2016, 2018–2020 125.32 43.83 237 34.7 ± 13.5 124 ± 6 2266 ± 106 SiLo

Longjing 2016, 2018–2020 129.70 42.70 242 33.5 ± 9.2 122 ± 5 2263 ± 77 Lo

Note *: ≥10 ◦C GDD represents the accumulated growing degree days (GDD) above 10 ◦C. The number
32.8 ± 13.2 indicates the mean value (32.8) with a standard deviation of 13.2; GSL represents Growing Sea-
son Length (days); Lo: Loam; SiLo: Silty Loam; ClLo: Clay Loam; SiClLo: Silty Clay Loam.

2.2. DSSAT-SUBSTOR Model Inputs

In this study, the DSSAT-SUBSTOR model and potato genotypic parameters were
selected. DSSAT-SUBSTOR is a process-based crop model that has been tested and applied
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in various potato-producing areas of China [41–43]. It can simulate potato phenology and
yield based on potato genotypic parameters, weather, soil, and field management data.

The meteorological data inputs required by the DSSA-SUBSTOR model include the
daily maximum temperature (◦C), the daily minimum temperature (◦C), daily radiation
(MJ·m−2·d−1), and daily precipitation (mm), which were obtained from the China Me-
teorological Administration (http://www.cma.gov.cn/, accessed on 31 October 2023).
Soil data derived from the China Soil Database (http://vdb3.soil.csdb.cn/, accessed on
31 October 2023) were pH, field capacity (g/cm3), saturated water content (g/cm3), bulk
density in the different soil layers (g/cm3), organic matter content (g/cm3), and other
basic parameters [44]. The management data for the model included the seeding method,
planting density, sowing and harvesting dates, fertilization and irrigation amounts and
dates, etc., which were generally derived from experimental records. In addition, genotypic
parameters for potatoes are shown in Table 2 [45].

Table 2. Genotypic parameters for potatoes in DSSAT.

Genotypic
Parameters Definition Type

G2 (cm2·m−2·d−1) Leaf expansion rate For yield
G3 (g·m−2·d−1) Tuber growth rate For yield

PD Determinacy For yield
P2 Sensitivity of tuber initiation to photoperiod For phenology

TC (◦C) Coefficient for critical temperature For phenology

2.3. Sampling Methods and Sampling Design Framework
2.3.1. Introduction to Sampling Methods

The hold-out (HO), cross-validation (CA), and bootstrapping (BS) sampling methods
were selected in this study to analyze the differences in the effectiveness of calibration
results for SUBSTOR genotypic parameters. The sampling demonstration for the three
methods is shown in Figure 2. HO is a method in which samples are directly taken from
the sample pool, not returned, and divided into calibration and validation groups. The
calibrated samples group is used to estimate genotypic parameters, while the validated
samples group is used to test the assessment accuracy and precision [46]. CA is a method
in which the sample pool is, through hierarchical sampling, divided into k subdatasets that
have similar sizes and are mutually exclusive. One sample subdataset is the validation
group, while the remaining k-1 sample subdatasets are calibration groups for each round of
sampling. After calibration and validation over K iterations, the mean value is regarded as
the final output. This technique is advantageous because it minimizes the variance linked
to a single train/test split, thereby offering a more accurate assessment of the model’s
performance [47]. BS is a method of sampling with replacement. There are a total of m
samples in the initial pool, and n samples are randomly taken out and put back N times
(n ≤m). After N times, some original samples may be selected multiple times, while others
might not be selected at all. The samples that are not selected can be used as a validation
set for assessing the performance of the model, whereas the selected samples form the
calibration set, used for training and tuning the model [48].

2.3.2. Sampling Design Framework

In terms of research requirements and because of differences in the quality of data
used in field experiments, sample data from Harbin, Wenchun, Zhalantun, Keshan, Suiling,
Hegang, Jiage, and Keshan Farm for 2016 to 2020 and from Changchun and Longjing for
2016, 2018, 2019, and 2020 were used. Thus, a total of 48 samples were applied in this
study (Table 1). A comparison of the calibration results of the three sampling methods was
conducted for each of the eight observation stations mentioned above, and the differences
in results derived from the eight observation stations caused by using a single sampling

http://www.cma.gov.cn/
http://vdb3.soil.csdb.cn/
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method were analyzed. In addition, the differences in 48 samples were used to compare
the calibration results of the genotypic parameters by using the three sampling methods.
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Figure 2. Sampling demonstration for the three methods. Note: The variable “D” in black represents
the calibration set, the red “D” represents the validation set, and “D1” is the first sampling; “m”
represents the total number of samples in the original dataset. In the BS method, “D′” represents
the samples that were never selected for the validation dataset, and “D-D′” represents the selected
samples for the calibration dataset.

To maintain the consistency of the sample data distribution before and after sampling
and according to the sampling principle and the capacity of the original samples, the
percentage of total samples for validation was uniformly 20–40% and for calibration was
60–80%. However, calibration and validation samples can be partitioned into groups in
many ways. The estimation results obtained by using a single sampling method are often
not stable and reliable. Thus, numerous random partitions were adopted, and at least five
calibration sample groups for each sampling method were used in the GLUE module of the
DSSA-SUBSTOR model for generic parameter estimation. After the genotypic parameters
were determined for the five calibration sample groups, the results could be tested based
on the validation sample group. Finally, the average values of the calibrated genotypic
parameters were selected as the estimated values for the sampling method.

The specific sampling process is shown in Tables 3 and 4. In single-station sampling
(Table 3), the HO method randomly selects data from 3 years as the calibration set and from
the remaining 2 years as the validation set. For the CA method, we set k = 5 to perform
five-fold cross-validation. In this process, the five years are divided into five equal subsets
with a 4:1 split. The crop model is calibrated based on four years and validated based on the
remaining year. This procedure is repeated five times, with each subset used exactly once
as the validation set. The BS sampling method with replacement obtains data proportions
of 3:2 and 4:1 for the calibration and validation sets. Given the characteristics of sampling
with replacement, some years will be repeatedly sampled, and the proportion of the dataset
division will not be exactly the same each time.
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Table 3. Summary of sampling methods and selected years in single-station sampling.

Sampling Sequence
Number Sampling Method Calibration Year Validation Year

1

HO

2017, 2018, 2019 2016, 2020
2 2016, 2018, 2019 2017, 2020
3 2016, 2017, 2019 2018, 2020
4 2016, 2017, 2018 2019, 2020
5 2017, 2018, 2020 2016, 2019

6

CA

2017, 2018, 2019, 2020 2016
7 2016, 2018, 2019, 2020 2017
8 2016, 2017, 2019, 2020 2018
9 2016, 2017, 2018, 2020 2019
10 2016, 2017, 2018, 2019 2020

11

BS

2017, 2018, 2020, 2018, 2020 2016, 2019
12 2017, 2019, 2020, 2019, 2020 2016, 2018
13 2017, 2018, 2019, 2020, 2020 2016
14 2016, 2018, 2019, 2016, 2018 2017, 2020
15 2016, 2018, 2019, 2020, 2018 2017

Table 4. Summary of sampling methods and sample division in multi-station sampling.

Sampling Sequence
Number Sampling Methods Calibration Set Validation Set

1

HO

29 * 19 **
2 34 * 14 **
3 33 * 15 **
4 34 * 14 **
5 31 * 17 **

6

CA

2017, 2018, 2019, 2020 *** 2016 ****
7 2016, 2018, 2019, 2020 *** 2017 ****
8 2016, 2017, 2019, 2020 *** 2018 ****
9 2016, 2017, 2018, 2020 *** 2019 ****
10 2016, 2017, 2018, 2019 *** 2020 ****

11

BS

30 * 18 **
12 31 * 17 **
13 34 * 14 **
14 31 * 17 **
15 30 * 18 **

Note: * indicates the number of calibration samples randomly selected from the 48 total samples; ** refers to the
number of validation samples, which are the remaining samples after * selections. *** represents the years selected
for calibrating genotypic parameters, and **** designates the years selected for validation.

In multi-station sampling (Table 4), we treat all trials across all sites and years as a
single total sample set with a size of 48 and then apply each of the three sampling methods
to this sample set. For the HO method, 5 samples were established without replacement
from all 48 samples to obtain five different calibration and validation sets. The difference
from single-station sampling lies in the range of division ratios. The random division
is conducted with 60–80% of the samples forming the calibration set and 20–40% as the
validation set. For the CA method, 48 samples were divided into 5 subsets by year, rotating
1 subset as the validation set and the others as the calibration sets. The specific process is the
same as for a single station. For the BS method, 5 samples were conducted with replacement
for all 48 samples to obtain 5 different calibration and validation sets. Given the differences
in sampling methods, the proportions of calibration and validation samples were not
completely consistent. However, the abovementioned 20–40% and 60–80% proportions
were maintained for the validation set and the calibration set.

2.4. Genotypic Parameter Calibration and Validation

In this study, the generalized likelihood uncertainty estimation (GLUE) method em-
bedded in DSSAT was used to estimate genotypic parameters [49]. The GLUE module runs
over 6000 iterations to obtain a group of genotypic parameters. Based on calibrated generic
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parameters and the observation input data for validation, the DSSAT-SUBSTOR model can
simulate yield values for validation. The root mean square error (RMSE) and the relative
root mean square error (RRMSE) were used to analyze the error between the simulated and
observed yields for each sampling result (Equations (1) and (2)). The average value of the
errors for all the samplings was the final estimated error.

RMSE =

√
∑n

i=1(Si − Ri)
2

n
(1)

RRMSE =

√
∑n

i=1(Si−Ri)
2

n
R

× 100% (2)

Ri is the observation yield value; Si is the simulated yield value; n is the number of
validation samples; and R is the average value of the observation yield. It is generally
believed that the smaller the RMSE and RRMSE values are, the better the consistency
between the simulated and the observation values. In this study, R language version 4.1.2,
Origin 2023, and WPS version 11.1.0.14309 were used for data processing.

3. Results
3.1. Statistical Distribution Consistency Analysis of Calibration Set and Original Sample Data

To avoid additional bias in calibration and validation sample data partitioning, the
statistical distributions of all sample data before and after partitioning need to be as
consistent as possible to ensure the generalizability of the DSSAT-SUBSTOR model for
all sample data and to obtain better calibration results. Figure 3 shows the statistical
distributions of all sample data before and after partitioning with the three sampling
methods; these distributions were very consistent with each other and were suitable for
subsequent genotypic parameter calibration. The overlap between the post-sampling fitting
curve and the prior fitting curve exceeded 91% in all instances, which demonstrated that
the calibration sample data were consistent with the original data and could be applied.
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3.2. Validation of the Calibrated Yield Results Obtained with the Three Sampling Methods for Data
from Each of the Observation Stations

The validation results for the RMSE and RRMSE of the yields and their coefficient
of variation (CV) values are shown in Table 5, while the correlation analysis is depicted
in Appendix A, Figures A1–A3. In terms of the RMSE and RRMSE from Table 5, the
validation accuracies of the calibrated results obtained with the three sampling methods
for a single observation station differed from each other. The performance of CA was best
for the observation stations in Zhalantun, Hegang, Suiling, Keshan Farm, and Haerbin,
and the accuracy of BS was highest for Chunshan and Keshan. HO was better than the
other two methods for Jiagedaqi only. For Haerbin station, the CV values of RMSE and
RRMSE were both approximately 10%, lower than those of the other stations except for
Keshan, which indicated that the gap in the validation accuracy of the calibrated results
obtained with the three methods was small. However, the RMSE and RRMSE for Haerbin
were the highest among the eight stations, which suggested that the quality of the data
obtained at Haerbin was not sufficient. Compared with Haerbin, the data quality for
Hegang and Keshan was much better. The CV values of the RMSE and RRMSE showed
that the differentiation of the validation accuracy of the calibrated results obtained with
the three sampling methods at the eight stations varied. A value of 6.07% for Keshan Farm
indicated that the effectiveness of the three sampling methods for calibrating genotypic
parameters varied little, and the CV values of the RMSE and RRMSE were greater than 20%
at Zhalantun, Wenchun, Hegang, and Keshan, which indicated that the prudent selection
of the sampling method was necessary. According to relevant research on the performance
evaluation of the DSSAT-SUBSTOR model, the average RMSE and RRMSE values of the
tuber fresh weight of potatoes are 5.23 t/ha and 21%, respectively. The calibration results
of this study are consistent with the accuracy of existing studies [50]. In addition, the CV
values of the RMSE and RRMSE were quite different at various geospatial locations, which
suggested that environmental variables impact the differentiation of the calibrated results
obtained with the three methods.

Table 5. Accuracy comparison of calibration results obtained with the three sampling methods for
each of the eight observation stations.

Observation
Station

Sampling
Methods

Mean of
RMSE CV of RMSE Mean of

RRMSE
CV of

RRMSE

Zhalantun
HO 8.70

20.86%
23.09%

21.84%CA 5.74 15.34%
BS 8.12 23.11%

Wenchun
HO 6.35

20.04%
14.93%

22.99%CA 4.58 10.35%
BS 4.54 10.12%

Hegang
HO 3.01

26.63%
9.45%

25.04%CA 1.84 5.93%
BS 2.09 6.73%

Suiling
HO 10.06

15.17%
31.87%

18.32%CA 7.73 24.40%
BS 7.90 22.83%

Keshan
HO 3.82

37.45%
13.55%

37.41%CA 2.89 10.48%
BS 1.72 6.08%

Keshan Farm
HO 6.40

6.07%
12.87%

7.85%CA 5.96 12.67%
BS 6.73 14.58%
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Table 5. Cont.

Observation
Station

Sampling
Methods

Mean of
RMSE CV of RMSE Mean of

RRMSE
CV of

RRMSE

Jiagedaqi
HO 7.60

16.94%
25.22%

18.35%CA 10.25 35.70%
BS 7.89 27.96%

Haerbin
HO 14.52

11.22%
38.59%

8.79%CA 11.69 35.64%
BS 13.98 42.46%

3.3. CV Values of Calibrated Genotypic Parameters for the Three Sampling Methods

As shown in Tables 6 and 7, the CV values for the five genotypic parameters differ-
entiated from each other for each of the eight observation stations, and the CV values of
the calibrated single genotypic parameters at all eight observation stations derived from
the three sampling methods were similar; however, these values varied greatly between
the genotypic parameters. Compared with the other four parameters, the CV values of
the calibrated results obtained with the three sampling methods for all eight observation
stations were the lowest, which verified that the G3 value had little effect on the geographic
and environmental variables. The CV value of P2 was the highest among the five geno-
typic parameters, suggesting that P2, which influences the phenology of potato growth, is
affected most by natural and ecological elements. In terms of Table 6, there was no obvious
regularity in the sequence of the CV values of the five genotypic parameters for each station.
In Table 7, compared with those of parameters G3, PD, and TC, the CVs of P2 and G2 for
the three methods were the lowest, which showed that the calibrated results for each of
the two parameters obtained with the three sampling methods were similar. Moreover,
the calibrated result for TC was the opposite, with a maximum value of 21.04%. Overall,
HO, CA, and BS displayed different calibration effectiveness values for the five geno-
typic parameters.

Table 6. Calibrated genotypic parameters obtained with the three sampling methods and the corre-
sponding CV for each observation station.

Observation
Station

Sampling
Method G2 G3 PD P2 TC

Zhalantun

HO 1772.54 24.46 0.78 0.48 16.98
CA 1683.80 23.62 0.68 0.50 16.48
BS 1779.36 22.38 0.76 0.42 16.44
CV 3.05% 4.46% 7.15% 8.92% 1.81%

Wenchun

HO 1384.06 23.74 0.76 0.40 17.50
CA 1585.56 23.52 1.00 0.40 18.30
BS 1329.64 23.96 1.00 0.40 17.70
CV 9.41% 0.93% 15.06% 0.00% 2.33%

Hegang

HO 1548.48 23.28 0.84 0.64 15.96
CA 1266.10 23.60 0.84 0.80 17.56
BS 1476.32 23.02 0.96 0.80 18.44
CV 10.26% 1.25% 7.87% 12.37% 7.26%

Suiling

HO 1262.18 22.94 0.60 0.80 18.58
CA 1576.18 21.70 0.76 0.74 19.44
BS 1544.84 22.96 0.68 0.82 19.34
CV 11.84% 3.20% 11.76% 5.29% 2.46%

Keshan

HO 1683.14 23.72 0.88 0.86 19.78
CA 1835.72 23.38 0.88 0.84 19.10
BS 1619.58 23.00 1.00 0.90 20.58
CV 6.49% 1.54% 7.53% 3.53% 3.74%
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Table 6. Cont.

Observation
Station

Sampling
Method G2 G3 PD P2 TC

Keshan Farm

HO 1597.34 23.18 0.78 0.34 18.86
CA 1729.30 23.80 0.60 0.34 16.58
BS 1810.84 23.88 0.66 0.36 16.88
CV 6.29% 1.62% 13.48% 3.33% 7.10%

Jiagedaqi

HO 1756.38 21.98 0.92 0.72 18.92
CA 1460.30 23.22 0.82 0.72 18.80
BS 1559.70 22.64 0.78 0.72 20.24
CV 9.46% 2.74% 8.58% 0.00% 4.14%

Haerbin

HO 1633.28 23.20 0.78 0.72 16.84
CA 1348.58 23.30 0.92 0.54 15.82
BS 1764.50 23.28 0.82 0.56 15.18
CV 13.44% 0.23% 8.58% 16.26% 5.25%

Table 7. CV of the five genotypic parameters for each of the three sampling methods for all eight
observation stations.

Sampling
Method G2 G3 PD P2 TC

HO 11.28% 3.08% 12.14% 30.89% 7.26%
CA 12.39% 2.84% 15.95% 31.10% 7.62%
BS 10.40% 2.39% 16.59% 34.37% 10.51%

CV of CV 8.82% 12.75% 16.17% 6.06% 21.04%

3.4. Comparison of Validation Results for Calibrated Genotypic Parameters Obtained with the
Three Sampling Methods Using All 48 Samples

In terms of the averaged RMSE and RRMSE values in Table 8, the validation accuracy
of the calibrated genotypic parameters obtained using all 48 samples was not better than
that obtained with the samples from a single observation station, which may have been
caused by the difference in data quality between the different stations. The CVs of the
RMSE and RRMSE values derived from 15 sets of data (Table 8) obtained with the three
sampling methods were 26.80% and 26.89%, much higher than 16.64% and 20.07, respec-
tively, which were the average values of the corresponding CVs obtained with data from
a single observation station (except for Keshan station). The results showed that, as the
number of samples increased, the difference in validation accuracy for calibrating genotypic
parameters with the three methods increased. For genotypic parameter calibration, CV
values for multi-station data obtained with the three methods were quite different from
those for single-station data (Table 8); this verified that calibration results derived from data
from a single station are inferior to those obtained using all 48 samples, and the genotypic
parameter calibration results varied greatly because of different manipulation pathways
and sample use strategies.

Table 8. RSME, RRMSE, and CVs for yield and genotypic parameters obtained with the three
sampling methods using 48 samples.

Sampling
Sequence
Number

Sampling
Method G2 G3 PD P2 TC RMSE RRMSE

1 HO 2044.40 23.10 0.90 0.70 18.20 8.85 25.57%
2 HO 1230.40 22.70 0.90 0.70 18.30 11.45 33.32%
3 HO 1962.30 25.00 0.80 0.70 18.40 8.54 25.00%
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Table 8. Cont.

Sampling
Sequence
Number

Sampling
Method G2 G3 PD P2 TC RMSE RRMSE

4 HO 2091.20 25.80 1.00 0.70 19.60 10.82 32.21%
5 HO 1729.40 23.30 0.70 0.80 20.10 9.58 28.82%

Average 1811.54 23.98 0.86 0.72 18.92 9.85 28.98%
6 CA 1960.00 24.00 0.60 0.70 19.70 11.16 31.85%
7 CA 992.00 21.90 0.90 0.70 21.10 9.19 26.28%
8 CA 1813.20 23.40 1.00 0.50 16.40 12.82 35.83%
9 CA 1902.10 24.30 1.00 0.60 17.70 8.29 23.30%

10 CA 1790.00 22.70 0.80 0.70 17.20 17.04 50.11%
Average 1691.46 23.26 0.86 0.64 18.42 11.70 33.48%

11 BS 990.70 24.00 1.00 0.60 18.30 7.00 19.61%
12 BS 2193.30 24.90 0.80 0.70 18.30 7.91 21.76%
13 BS 1702.00 22.40 0.80 0.70 16.90 16.75 45.88%
14 BS 1750.30 21.80 0.60 0.80 21.50 9.60 26.95%
15 BS 1104.20 25.50 0.80 0.80 21.30 10.71 28.86%

Average 1548.10 23.72 0.80 0.72 19.26 10.39 28.61%
CV 23.22% 5.17% 15.55% 11.13% 8.25% 26.80% 26.89%

4. Discussion

Sample size and sampling methods are seldom discussed when the genotypic parame-
ters of crop growth models are calibrated. The default method for dividing samples for
calibration and validation is the HO method. However, our findings suggest that different
sample sizes and sampling methods are superior in certain cases, thus influencing the
calibration and validation results for genotypic parameters. For small sample sizes, the
calibration and validation results derived from the HO, CA, and BS methods varied greatly.
With an increasing sample size, the gap between the calibration and validation results
among the three methods did not narrow. In addition, for the different geographic locations,
the calibration and validation results obtained with the three methods were different, and
the HO method was not the best after the test. Notably, the mechanism of the three methods
of sampling differed, and the information exploration and sample use strategies highly
varied, especially for small sample sizes. Compared with the HO method, CA and BS are
more suitable for cases with small sample sizes. The abovementioned results verified that,
in the calibration and validation of genotypic parameters, sample methods and sample
sizes should be considered.

In this study, RMSE, RRMSE, and the CVs of RMSE and RRMSE for the eight obser-
vation stations did not show any obvious geographic regularity with ascending latitude
and elevation. However, because of differences in data quality, the RMSE and RRMSE for
each of the stations differed greatly. Except for those of Haerbin station, the RMSE and
RRMSE values of each single observation station were lower than the average RMSE and
RRMSE values derived from the 48 samples. Thus, genotypic parameter calibration should
be performed with data from a single observation station only if the corresponding RMSE
and RRMSE values are small.

The calibration results of the five genotypic parameters obtained with the three sam-
pling methods and using different sample sizes were quite different. For G3, the CVs of
the calibrated results obtained with the three sampling methods for the eight observation
stations were lower than 4%, as shown in Table 5, and the CVs of P2 were all greater
than 30%. The fluctuation in CVs among the eight stations was affected not only by input
data quality but also by the value range of each genotypic parameter. The value range of
G3 should be much narrower than that of the other four genotypic parameters, and the
calibration results for G3 were not affected by geographic or environmental elements; in
contrast, P2 was considerably influenced by natural ecological indicators. Although the CV
of the calibration results for P2 at the eight stations was the largest, the values obtained



Agriculture 2023, 13, 2207 12 of 16

with different methods varied little. Compared with P2, the variations in G2 among the
three methods were obvious.

Given the differences in quality from the different stations, we could not conclude
that the more samples there were, the better the calibration result would be. In cases
based on the genotypic parameter calibration results from a single observation station
or a small sample size, not only the RMSE and RRMSE values but also the CV of the
validation accuracy of the calibration results obtained with the three methods should be
considered. If the RMSE and RRMSE meet the relevant accuracy requirements, and the CV
of the calibration results is small, the calibrated genotypic parameters are likely suitable.
In this study, the genotypic parameters calibrated for Keshan seemed optimal for use. For
genotypic parameter calibration results from a large sample pool, since there was abundant
sample information, the effectiveness of the three sample methods varied. The RMSE
and RRMSE values were considered the main indicators of final genotypic parameter
calibration in such cases. Although the calibration results from a single observation station
seemed acceptable, overfitting may have occurred [51]. Thus, if possible, large samples
with high-quality data are still needed.

One limitation of this study was a lack of observed phenological data. Since pheno-
logical data were not available, we used yield, a single indicator, to perform calibration.
In addition, uncertainty existed in the process of sampling; for instance, the percentage
of partitioned samples can be manipulated by users. To control variables and reduce
the unreasonableness of sample partitioning, a fixed percentage was adopted in the sam-
pling procedure in this study; therefore, the influence of the sample-partitioning per-
centage on sampling was ignored. In future studies, the sampling percentage should be
fully considered.

5. Conclusions

Generic parameter calibration for crop growth models is a very important step in
model use. Scientists generally apply the HO method, by default, to obtain samples for
calibration and validation in practical model use. Our results indicate that the size of
the sample sets used for calibration and validation and the sampling method have very
important effects on the final calibration results for genotypic parameters. First, at the
different observation stations, it was difficult to conclude which of the HO, CA, and BS
methods performed best. Moreover, CA and BS outperformed the HO method at most
observation stations, suggesting that the sampling method should be appropriately selected
before calibrating genotypic parameters. In addition, as the sampling size increased, the
effectiveness of calibration with the three methods showed increased differentiation. Given
data quality differences, we could not conclude that the greater the number of samples there
were, the greater the validation accuracy of the three methods. The CVs of the genotypic
parameter values derived from the three methods and sample sizes varied greatly, and
this variation was also affected by the value ranges selected and the natural environmental
conditions. Thus, when genotypic parameter calibration is performed, both the sampling
methods and sample size should be seriously considered.
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(a) represents single-station data, and (b) represents multi-station data.



Agriculture 2023, 13, 2207 14 of 16

References
1. Farina, R.; Sándor, R.; Abdalla, M.; Álvaro-Fuentes, J.; Bechini, L.; Bolinder, M.A.; Brilli, L.; Chenu, C.; Clivot, H.; De Antoni

Migliorati, M.; et al. Ensemble Modelling, Uncertainty and Robust Predictions of Organic Carbon in Long-term Bare-fallow Soils.
Glob. Chang. Biol. 2021, 27, 904–928. [CrossRef] [PubMed]

2. Sándor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; et al. Ensemble
Modelling of Carbon Fluxes in Grasslands and Croplands. Field Crops Res. 2020, 252, 107791. [CrossRef]

3. Seidel, S.J.; Palosuo, T.; Thorburn, P.; Wallach, D. Towards Improved Calibration of Crop Models—Where Are We Now and
Where Should We Go? Eur. J. Agron. 2018, 94, 25–35. [CrossRef]

4. Porwollik, V.; Müller, C.; Elliott, J.; Chryssanthacopoulos, J.; Iizumi, T.; Ray, D.K.; Ruane, A.C.; Arneth, A.; Balkovič, J.;
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