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Abstract: Cassava (Manihot esculenta Crantz) is a major tuber crop worldwide, but its mechanized
harvesting is inefficient. The digging–pulling cassava harvester is the primary development direction
of the cassava harvester. However, the harvester clamping–pulling mechanism cannot automatically
adjust its position relative to the stalks in forward movement, which results in clamping stalks
with a large off-center distance difficulty, causing large harvest losses. Thus, solving the device’s
clamping location problem is the key to loss reduction in the harvester. To this end, this paper
proposes a real-time detection method for field stalks based on YOLOv4. First, K-means clustering is
applied to improve the consistency of cassava stalk detection boxes. Next, the improved YOLOv4
network’s backbone is replaced with MobileNetV2 + CA, resulting in the KMC-YOLO network.
Then, the proposed model’s validity is demonstrated using ablation studies and comparison tests.
Finally, the improved network is embedded into the NVIDIA Jetson AGX Xavier, and the model is
accelerated using TensorRT, before conducting field trials. The results indicate that the KMC-YOLO
achieves average precision (AP) values of 98.2%, with detection speeds of 33.6 fps. The model size is
reduced by 53.08% compared with the original YOLOv4 model. The detection speed after TensorRT
acceleration is 39.3 fps, which is 83.64% faster than before acceleration. Field experiments show
that the embedded model detects more than 95% of the time at all three harvest illumination levels.
This research contributes significantly to the development of cassava harvesters with intelligent
harvesting operations.

Keywords: digging–pulling cassava harvester; intelligent clamping; stalk section detection; YOLOv4
optimization algorithm; embedded platform

1. Introduction

Cassava (Manihot esculenta Crantz) is one of the world’s three major crops, the third
largest food crop in the tropical region, the world’s sixth largest food crop, and 1 billion
people’s food rations, known as “the king of starch”. It is widely planted in more than
100 countries or regions in Asia, Africa, and Latin America and also an important energy
crop and industrial raw material [1–3]. However, cassava harvesting primarily relies on
manual methods, where farmers either pull up the tubers by hand or use a type of manual
lever harvester [4]. This heavy reliance on manual labor for harvesting severely restricts
the advancement of the cassava industry. Consequently, there is a critical need for research
and development in cassava harvesting machinery.

Currently, three types of cassava harvesting machines are available [5]. The first type
is the digging type of cassava harvester, which includes the 4UMS390II cassava harvester
designed by Xue et al. [6], the TEK cassava harvester in Ghana [7], and the cassava harvester
model P900 in Brazil [8], as shown in Figure 1a. This type of harvester can only function at
semi-mechanized operation and requires manually pulling out the tubers after loosening
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the soil. Although they exhibit lower operational efficiency, they are well suited for various
soil conditions. The second type is the digging and shaking separation type of cassava
harvester, which includes the vibrating cassava root harvester developed by Gupta. et al. [9]
in Thailand, the classic model API cassava harvester developed in Malaysia [10], the 4UMZ-
1400 rear-collected cassava combine harvester designed by Li et al. [11], and the 4UM-160
cassava harvester developed by Mo and Huang [12], which adopts the technical route of
shoveling (cutting), soil breaking, soil sieving, separating–lifting, and placing, as shown
in Figure 1b. This kind of harvester can function at the fully mechanized level, with great
operating efficiency, but it consumes a lot of power and is poorly adapted to diverse soil
types where cassava is cultivated, with less tuber loss and damage in sandy soils and
more tuber loss and damage in clayey soils. The third type is the digging–pulling cassava
harvester, which includes the cassava root digging–pulling type of harvester in Cuba [5],
the cassava harvester developed by the University of Leipzig in Germany [13], and a series
of digging–pulling types of cassava harvesters developed by Hainan University [14] and
Guangxi University [15], as shown in Figure 1c, among others. This kind of harvester can
achieve fully mechanized operation, relatively high operational effectiveness, low power
consumption, and excellent soil adaptability. Therefore, the primary direction of cassava
harvester development has been the digging–pulling type.
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Figure 1. Typical models in three types of mainstream cassava harvesters: (a) digging cassava har-
vester; (b) digging and shaking separation type cassava harvester; (c) digging–pulling cassava 
harvester. 

As illustrated in Figure 1c, the digging–pulling cassava harvester consists of a soil 
loosening device, a stalk clamping–pulling mechanism, and other components. The tradi-
tional working principle is as follows: during harvesting, the digging shovel loosens the 
soil first, and then, the clamping–pulling mechanism, located directly above it, clamps the 
stalks, pulls up the tubers, and conveys the tubers to the upper rear. Since cassava stalks 
present a thin and tall condition, the stalks tend to grow at an incline due to wind force, 
resulting in deviation from the vertical direction, as shown in Figure 2. The off-center dis-
tance is defined in this paper as the distance of the cross-section of cassava stalks 30 cm 
above the ground at harvest from the centerline between the two furrows, as illustrated 
in Figure 3. According to a significant number of field statistics, 84.5% of the stalks had an 
off-center distance of less than 200 mm, 9.3% had an off-center distance of 200–300 mm, 
and 6.2% had an off-center distance of more than 300 mm [16]. However, the existing dig-
ging–pulling harvester’s clamping–pulling mechanism cannot automatically adjust its po-
sition relative to the stalks in forward movement, which results in clamping stalks with 
large off-center distance difficulty, causing large harvest losses. Thus, solving the device’s 

Figure 1. Typical models in three types of mainstream cassava harvesters: (a) digging cassava
harvester; (b) digging and shaking separation type cassava harvester; (c) digging–pulling cassava
harvester.

As illustrated in Figure 1c, the digging–pulling cassava harvester consists of a soil
loosening device, a stalk clamping–pulling mechanism, and other components. The tra-
ditional working principle is as follows: during harvesting, the digging shovel loosens
the soil first, and then, the clamping–pulling mechanism, located directly above it, clamps
the stalks, pulls up the tubers, and conveys the tubers to the upper rear. Since cassava
stalks present a thin and tall condition, the stalks tend to grow at an incline due to wind
force, resulting in deviation from the vertical direction, as shown in Figure 2. The off-center
distance is defined in this paper as the distance of the cross-section of cassava stalks 30 cm
above the ground at harvest from the centerline between the two furrows, as illustrated in
Figure 3. According to a significant number of field statistics, 84.5% of the stalks had an
off-center distance of less than 200 mm, 9.3% had an off-center distance of 200–300 mm,
and 6.2% had an off-center distance of more than 300 mm [16]. However, the existing
digging–pulling harvester’s clamping–pulling mechanism cannot automatically adjust its
position relative to the stalks in forward movement, which results in clamping stalks with
large off-center distance difficulty, causing large harvest losses. Thus, solving the device’s
clamping location problem is the key to loss reduction in the harvester. But the traditional
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sensor fusion approach [17] is difficult to apply to stalk clamping with a considerable
off-center distance. As a result, in this work, stalks are recognized during the harvesting
stage by carrying an embedded detection platform to gather stalk position information
relative to the harvester. These data will be utilized to direct the automatic adjustment of
the movement of the clamping–pulling mechanism, which will improve stalk clamping
success and reduce harvesting loss.

Agriculture 2023, 13, x FOR PEER REVIEW 3 of 20 
 

 

clamping location problem is the key to loss reduction in the harvester. But the traditional 
sensor fusion approach [17] is difficult to apply to stalk clamping with a considerable off-
center distance. As a result, in this work, stalks are recognized during the harvesting stage 
by carrying an embedded detection platform to gather stalk position information relative 
to the harvester. These data will be utilized to direct the automatic adjustment of the 
movement of the clamping–pulling mechanism, which will improve stalk clamping suc-
cess and reduce harvesting loss. 

 
Figure 2. The growth of cassava stalks. 

 
Figure 3. Cassava planting patterns and cassava stalk distribution during harvest. 

Nowadays, object detection has become an effective means to assist in the positioning 
of mechanical structures, which can help the digging–pulling cassava harvester obtain an 
accurate position of the stalk for clamping. Different object detection algorithms have been 

Centerline CenterlineCenterline

Cassava 
stalk

Row spacing Row spacing

Spacing

Off-center 
distance

Tire distance
Working width

F
u
r
r
o
w

F
u
r
r
o
w

Figure 2. The growth of cassava stalks.
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Figure 3. Cassava planting patterns and cassava stalk distribution during harvest.

Nowadays, object detection has become an effective means to assist in the positioning
of mechanical structures, which can help the digging–pulling cassava harvester obtain
an accurate position of the stalk for clamping. Different object detection algorithms have
been successively applied to the detection and positioning of agricultural products by
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researchers [18] and have achieved certain results. Among the two-stage detection al-
gorithms, the representative Faster R-CNN algorithm has been used for fruit detection
and has achieved great detection results [19]. Manual kiwifruit harvesting in orchards
is labor-intensive, and Song et al. [20] have developed a VGG16-based Faster R-CNN
all-weather working harvesting robotic vision system with good detection of kiwifruit
images collected under different lighting conditions (morning, afternoon, and evening).
A robotic vision system for multi-class fruit detection based on Faster R-CNN has been
proposed by Wan and Goudos [21], who have established a library of outdoor fruit images
and optimized the structure of the convolution and pooling layers in the model, and the
mAP (mean Average Precision) of apples, mangoes, and oranges was above 91%. In the
one-stage detection algorithm, Peng et al. [22] replaced the VGG16 network of the SSD
algorithm with the ResNet-101 network for fruit detection, achieving an average accuracy
of 88.4%. Gai et al. [23] improved the YOLOv4 model for cherry fruit detection by changing
the prior bounding box to a circular marker box in line with the fruit shape and replacing
the backbone network with the DenseNet network model, achieving a higher mAP value
than YOLOv4.

Compared to the detection of fruit, the cassava stalk section is more difficult to distin-
guish from the soil due to the similar color, especially during field cassava tuber harvesting
when illumination values vary greatly. Therefore, fully considering the influencing fac-
tors in constructing a cassava stalk dataset is crucial for successful field detection. Quan
et al. [24] proposed an improved Faster R-CNN model based on a Field Robot Platform
(FRP), which used five industrial USB cameras for data acquisition to capture a large num-
ber of sample images from different shooting angles. This system provides the basis for the
extraction and detection of maize seedlings at different growth stages in a complex field en-
vironment. Junos et al. [25] used an improved YOLO model to detect scattered fruits in the
oil palm plantation and adopted data enhancement methods such as fuzzy enhancement
to simulate the actual natural environment. The results showed an outstanding average
precision of 99.76% of the UAV image, with a detection time of 34.06 ms. Overall, object
detection algorithms have shown great potential for improving agricultural automation,
but their effectiveness depends on various factors such as lighting conditions, image quality,
and dataset construction.

Although object detection algorithms are increasingly being utilized in agricultural
engineering, the working environment of agricultural machinery in the field is terrible,
and the expense of establishing large-scale computing platforms on it is prohibitively
expensive, with no guarantee of dependability. Embedded platforms are tiny in size and
can provide greater performance and reduced power consumption, as well as greater
dependability and security and field edge computing at a cheaper cost [26]. On the other
hand, the computational complexity of deep learning networks remains a challenge for their
practical implementation in vehicular field environments with limited computing power.
To address this issue, researchers have proposed various methods to simplify the current
object detection models and improve real-time detection efficiency. Simplifying the network
structure is an effective method to reduce the amount of calculation. For instance, Fu
et al. [27] constructed the YOLO-Banana network by simplifying the network layer, which
reduced the model size and shortened the detection time, providing a broad application
prospect for the intelligent management and harvest in banana orchards. Another approach
is to streamline the model by using a lightweight network structure to improve detection
accuracy. The MobileNet lightweight network [28] with a streamlined architecture is one
of the most successful application models. This network uses a depthwise separable
convolution operation instead of standard convolution, which reduces the amount of
calculation several times and greatly improves the network operation speed. On this basis,
the MobileNetV2 lightweight network [29] uses an inverted residual, removing ReLU
to avoid information loss. In addition, the MobileNetV3 lightweight network [30] uses
neural architecture search (NAS) parameters to redesign the time-consuming layer structure
and introduce the attention mechanism, making the network more accurate and efficient.
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For existing object detection algorithms, researchers have also proposed corresponding
lightweight versions, such as Light-Head R-CNN [31], Tiny-YOLO, Tiny-SSD [32], etc.

The objective of this study is to develop a real-time cassava stalk position detection
method for adjusting the movement of the clamping–pulling mechanism. Firstly, the
field environment and the growth state of the cassava are analyzed to determine a real-
time cassava stalk coordinate acquisition scheme. Next, an image acquisition platform is
established to acquire cassava stalk images and build a dataset. Then, the YOLOv4 model
is adapted to improve and simplify its structure. The accuracy and real-time performance
of the improved network are compared with those of different models to meet the detection
requirements. Finally, the optimal detection model is deployed into the NVIDIA Jetson
AGX Xavier (hereafter referred to as Xavier) embedded device for field trial validation.
The results of this paper can provide important technical support for the development of
digging–pulling cassava harvesters and intelligent harvesting research.

2. Materials and Methods
2.1. Dataset Production
2.1.1. Image Acquisition

The outdoor image acquisition site is located in cassava cultivation area A, at the teach-
ing and research base of Guangxi University College of Agriculture, Nanning, Guangxi,
China (22◦51′ N, 108◦17′ E). Cassava was cultivated in a conventional ridged pattern with
row spacing of 1 m and plant spacing of 0.7–1 m. As shown in Figure 3, the stalks grew to a
height of 2–2.5 m and their diameters ranged from 25–40 mm. Like with manual cassava
harvesting, stalks more than 30 cm above the ground must be manually chopped off and
debris swept away before the digging–pulling cassava harvester operation. As displayed
in Figure 4, the stalks that remained after truncation varied in thickness and attitude, and
there were various off-center positions in the cassava stalks.
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The field movement of harvesters is complicated. In order to collect stalk images
while the harvester is moving in the field and reduce the influence of the cassava stalk
postures and the complexity of detection, a field acquisition platform was constructed on a
digging–pulling cassava harvester developed by Guangxi University, as shown in Figure 5.
The Xavier development board (NVIDIA Corporation, Santa Clara, CA, USA), camera
and lens, and related supporting equipment (as shown in Table 1) were installed on the
harvester. Specifically, the industrial camera was mounted on the front end of the cassava
harvester frame, and the lens was arranged vertically in line with the field to detect the
top section of the cassava stalk, as shown in Figure 6. The camera was arranged before
the clamping mechanism to allow enough time for the movement of the clamping–pulling
mechanism. The camera was arranged vertically in line with the field so that the camera
field of view and the lower plane of the frame can be roughly coincident, and a machine
coordinate system was constructed in which the camera detection field of view and the
frame of the harvester coincide. In this way, the harvester can more easily obtain the
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position information of the cassava stalks relative to the rack, facilitating the harvester
clamping device to directly obtain the position coordinates of the cassava stalks for real-
time adjustment and also reducing the use of arithmetic power. During the acquisition
process, the cassava harvester simulates the harvesting state by driving along the ridge
in a straight line. When the collector observes that the cassava stalk cross-section is fully
presented on the screen, the cassava stalk cross-section photographs are collected manually.
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Table 1. Image acquisition platform equipment.

Carrier Computing Platform Camera/Lens

Lovol M504-E tractor NVIDIA Jetson AGX Xavier Alvium 1800 U-508M/
KOWA LM8JC5MC
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Figure 6. Cassava stalk truncated cross-section (test section).

The working principle of a digging–pulling cassava harvester equipped with an em-
bedded inspection platform is as follows: when the cassava harvester travels along the
ridge in a straight line, the camera, vertically arranged at the front end of the cassava
harvester frame, acquires the positional information about the cross-section of the cassava
stalks on the ridge in the field of view and transmits the information to the slave com-
puter (Programmable Logic Controller) after processing. The slave computer controls the
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movement of the clamping–pulling mechanism according to the information, and finally,
the clamping–pulling mechanism accurately clamps the cassava stalks and completes the
pulling and harvesting action.

In this study, images were captured using OpenCV paired with Vimba5.0, which
is the official development package for Allied Vision USB3.0 interface cameras (Allied
Vision Technologies Gmbh., Stuttgart, Germany). The field of view for object detection is
approximately 600 mm × 500 mm, with a detection height of 600 mm. The camera has
5 × 106 pixels with a resolution of 0.25 mm per pixel. However, changes in illumination
intensity during harvest can lead to changes in the color presented by the object, resulting
in large differences in chromaticity information. The illumination intensity under natural
conditions, such as cloudy days and evenings, ranges from 500 lux to 6000 lux, and the soil
will behave in a non-granular manner. On a sunny day, when the illumination intensity
is greater than or equal to 100,000 lux, the cassava stems will appear as white reflected
light [33]. Therefore, to represent these variations in illumination intensity, an illumina-
tion intensity detector (Dongguan Wanchuang Electronic Products Co., Ltd., Dongguan,
China, range 1–200,000 Lux, measurement accuracy (±4% rdg ± 10 dgt for ≤10,000 Lux,
±5% rdg ± 10 dgt for >20,000 Lux)) was used to detect the illumination intensity before
capturing the image, as shown in Figure 7a. Then, the images can be classified accurately.

Agriculture 2023, 13, x FOR PEER REVIEW 7 of 20 
 

 

Table 1. Image acquisition platform equipment. 

Carrier Computing Platform Camera/Lens 

Lovol M504-E tractor NVIDIA Jetson AGX Xavier 
Alvium 1800 U-508M/ 

KOWA LM8JC5MC 

In this study, images were captured using OpenCV paired with Vimba5.0, which is 
the official development package for Allied Vision USB3.0 interface cameras (Allied Vision 
Technologies Gmbh., Stuttgart, Germany). The field of view for object detection is approx-
imately 600 mm × 500 mm, with a detection height of 600 mm. The camera has 5 × 106 
pixels with a resolution of 0.25 mm per pixel. However, changes in illumination intensity 
during harvest can lead to changes in the color presented by the object, resulting in large 
differences in chromaticity information. The illumination intensity under natural condi-
tions, such as cloudy days and evenings, ranges from 500 lux to 6000 lux, and the soil will 
behave in a non-granular manner. On a sunny day, when the illumination intensity is 
greater than or equal to 100,000 lux, the cassava stems will appear as white reflected light 
[33]. Therefore, to represent these variations in illumination intensity, an illumination in-
tensity detector (Dongguan Wanchuang Electronic Products Co., Ltd., Dongguan, China, 
range 1–200,000 Lux, measurement accuracy (±4% rdg ± 10 dgt for ≤10,000 Lux, ±5% rdg ± 
10 dgt for >20,000 Lux)) was used to detect the illumination intensity before capturing the 
image, as shown in Figure 7a. Then, the images can be classified accurately. 

 

Detection head 

Light value 
(lux/lux×10)

 
(a) (b) 

Figure 7. Detection of light intensity: (a) field; (b) indoor. 

When capturing images of cassava stalk sections in the field, it is necessary not only to 
cut off the stalks as required but also to consider the range of illumination values for image 
acquisition. The crop harvest is time-sensitive and cannot be put on hold due to weather or 
light, and the truncated cassava stalks are very susceptible to mold after being wetted by rain. 
It is very difficult to acquire effective images in the field, and in order to have enough images 
for model training, an indoor field image dynamic simulation acquisition platform was built 
based on a simulated field acquisition environment, as shown in Figure 8, using a shade cloth 
with an adjustable LED light source to cooperate for shooting [34,35]. According to the range 
of illumination values, the illumination conditions of the indoor inspection platform were con-
trolled by light intensity detection instruments as well as LED lighting devices, as shown in 
Figure 7b, to acquire image data under different illuminations. At the same time, the field mo-
tion condition was simulated with a panning device. A total of 1000 images were finally col-
lected, of which 1/3 of the image data were acquired in the field and 2/3 of the cassava stalk 
section images were collected by the indoor acquisition platform. Finally, the illumination in-
tensity was divided into weak light, normal light, and strong light according to the range of 
500 lux to 6000 lux, 6000 lux to 100,000 lux, and greater than or equal to 100,000 lux, respec-
tively, and the stalk side light images were additionally taken under random illumination in-
tensity, for a total of four types of cassava stalk cross-section images, with the number of each 
type of image collection accounting for about one-fourth. 
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When capturing images of cassava stalk sections in the field, it is necessary not only to
cut off the stalks as required but also to consider the range of illumination values for image
acquisition. The crop harvest is time-sensitive and cannot be put on hold due to weather
or light, and the truncated cassava stalks are very susceptible to mold after being wetted
by rain. It is very difficult to acquire effective images in the field, and in order to have
enough images for model training, an indoor field image dynamic simulation acquisition
platform was built based on a simulated field acquisition environment, as shown in Figure 8,
using a shade cloth with an adjustable LED light source to cooperate for shooting [34,35].
According to the range of illumination values, the illumination conditions of the indoor
inspection platform were controlled by light intensity detection instruments as well as LED
lighting devices, as shown in Figure 7b, to acquire image data under different illuminations.
At the same time, the field motion condition was simulated with a panning device. A total
of 1000 images were finally collected, of which 1/3 of the image data were acquired in the
field and 2/3 of the cassava stalk section images were collected by the indoor acquisition
platform. Finally, the illumination intensity was divided into weak light, normal light,
and strong light according to the range of 500 lux to 6000 lux, 6000 lux to 100,000 lux, and
greater than or equal to 100,000 lux, respectively, and the stalk side light images were
additionally taken under random illumination intensity, for a total of four types of cassava
stalk cross-section images, with the number of each type of image collection accounting for
about one-fourth.
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Figure 8. Indoor field image dynamic simulation acquisition platform.

2.1.2. Data Pre-Processing

This paper employed OpenCV coding to perform data augmentation on the original
images so as to simulate the conditions that may be encountered in the field vehicle
environment at the same time, and to improve model generalization and prevent the
overfitting phenomenon. Prior to model training, the acquired raw images were randomly
assigned in a 10:1 training-to-test set ratio. As illustrated in Figure 9, five data improvement
methods, including motion blur, geometric changes, added noise, elastic changes, and
random masking, were applied to the training and test sets, respectively. The image
dataset was expanded to 11,000 pieces, comprising 10,000 images for the training set and
1000 images for the test set. As supervised learning in machine learning requires labeled
datasets, GT labeling of cassava stalk cross-sections was performed using the image labeling
tool LabelImg. The annotation results were stored in an XML file according to the PASCAL
VOC format, which contains information such as target location, annotation box size, and
category of the image, labeled as stem.
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2.2. Classical Model
2.2.1. YOLOv4

YOLOv4 is a typical one-stage detection algorithm that utilizes CSPDarknet-53 as the
backbone network and the PANet (Path Aggregation Network) structure for multi-scale
feature fusion. The network structure of YOLOv4, illustrated in Figure 6, comprises an
input layer, a backbone network layer, a feature enhancement layer, and a classification
regression layer. During the detection process, the image is partitioned into S×S grids,
with each grid responsible for detecting the object whose center point is located within that
region. Compared with the YOLOv3 network, Bochkovskiy et al. [36] incorporated the
experience of CSPNet (Cross Stage Partial Network) and improved the backbone structure,
which includes five CSP modules and (3 + 2 × X) convolutional layers in each CSPX,
resulting in a total of 72 convolutional layers in the entire backbone. This modification
addresses the issue of high forward computation in the network. Additionally, the Mish
activation function [37] is used in the backbone, while the Leaky_ReLU activation function
is still employed later in the network. The Mish function theoretically allows for a relatively
small negative gradient inflow, thus ensuring information flow instead of an absolute zero
bound as in ReLU. Moreover, the smoothed activation function enables better information
penetration into the neural network, resulting in better accuracy and generalization.

2.2.2. Evaluation Metrics

For evaluating objective detection algorithms, performance evaluation metrics are
necessary. The following two types of metrics are used to evaluate the models according to
the evaluation metrics of neural network models.

(1) Precision, Recall, and Average Precision (AP)

The confusion matrix in Table 2 is usually used in target detection to describe the
detection.

Table 2. Confusion matrix.

Confusion Matrix Predicted Position Negative

Actual
Positive True Positive (TP) True Negative (TN)

Negative False Positive (FP) False Negative (FN)

Precision represents the ratio of the number of true positive samples to the total
number of samples determined as positive, as shown in Equation (1). It measures the
accuracy of positive predictions. Recall represents the ratio of the number of true positive
samples to the number of all positive samples, as shown in Equation (2). It measures the
ability of the model to retrieve all positive results. In order to balance between precision
and recall, an evaluation index called average precision (AP) is commonly used to evaluate
the effectiveness of object detection models. AP is calculated by computing the area under
the precision–recall curve, as shown in Equation (3). In the context of cassava harvesting,
the detection accuracy needs to be above 95% to ensure minimal harvesting losses and
meet the requirements of the harvesting process.

Pre =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

AP =
∫

Precision× Recall =
∫ 1

0
p(r)dr (3)
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(2) Detection rate FPS

FPS (Frames Per Second) indicates the number of images detected in 1 s of time and
is used to represent the detection rate. The object detection network should also ensure
the speed of detection with high accuracy, and this system requires the detection model
to detect at 30 fps or more on the embedded development board, thus realizing real-time
object detection [38].

2.3. Proposed Model

The object detection network requires high accuracy for recognizing cassava stalk
sections during harvesting in a vehicle motion state. Therefore, we optimized the YOLOv4
network, comparing it to other methods and adapting it to embedded devices. First, the
cassava stalk section dataset produced in this paper was clustered and analyzed using the
K-means algorithm, and the obtained anchor boxes were improved through multi-scale
scaling to initially improve the detection accuracy of YOLOv4. The resulting network was
named K-YOLO. Second, the network model was designed to be lightweight to create
an efficient network computation model. Finally, an attention mechanism was added to
guarantee network performance while ensuring a lightweight network design [39].

2.3.1. Anchor Box Clustering Analysis Based on the K-Means Algorithm

The anchor box is a rectangular frame based on the common size and proportion of
the object to be detected, and its similarity to the prediction box is one of the important
prerequisites for accurate object prediction. The core problem of the K-means clustering
algorithm is how to represent the sample-to-sample distance, and different distance cal-
culation methods yield different clustering effects. In this paper, we used the classic IOU
(Intersection over Union) calculation method of the YOLO series to calculate the distance,
as shown in Equation (4):

d(box, centroid) = 1− IoU(box, centroid) (4)

where box is the bounding box and centroid is the cluster center. The larger the IOU
between box and the corresponding cluster center (anchor), the closer the distance.

2.3.2. Multi-Scale Scaling

The vertical distance during indoor shooting is relatively constant, and the aspect
ratio and size of the stalk section are more consistent. The size of the anchor box obtained
by distance-based clustering does not differ significantly across different sensing fields,
which can impact the model’s advantage of multi-scale output and does not align with the
complex field conditions. Therefore, it is necessary to perform multi-scale random linear
scaling on the obtained anchor box simultaneously in terms of aspect ratio. The scaling
rules are as follows: 

x′s = axs
x′m = bxm

x′i =
(xi−xs)
(xm−xs)

(x′m − x′s) + x′s
y′i = x′i

yi
xi

(5)

where a and b denote the maximum and minimum scaling multipliers, xs and xm are the
anchor frames before scaling, x′s and x′m denote the maximum and minimum anchor boxes,
respectively.

2.3.3. Network Lightweighting

Using lightweight networks on embedded devices is a practical solution, and one such
approach is to modify the K-YOLO network structure by adopting MobileNet. MobileNet
is specifically designed for mobile or embedded devices. MobileNetV2 is an upgraded
version of MobileNetV1, which introduces an image first before dimension raising and
convolution, then the inverse residual structure of dimension reduction, and finally the
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activation function of ReLU6. Moreover, it replaces the N × N matrix with the idea of
1 × N, N × 1, enabling the network to retain more low-dimensional information. Mo-
bileNetV3 further improves on MobileNetV2 by introducing the SE-Net (Squeeze and
Excitation Network) attention module. However, SE-Net only considers measuring the
importance of each channel by modeling channel relationships, ignoring the location in-
formation which is important for generating spatial coordinates. To solve this issue, the
coordinate attention module (CA module) [40] was proposed, which considers not only
the relationship between channels but also the location information in the feature space,
thereby helping the model better localize and identify targets.

The K-YOLO network was improved by replacing the CSPDarknet53 backbone in
the original structure with MobileNetV2 as the classification network, resulting in the
KM-YOLO network. However, the streamlined model structure led to detection accuracy
degradation. To solve this problem, the CA module was inserted between the global
average pooling layer of the bottleneck and the 1 × 1 convolutional layer to obtain the
KMC-YOLO network, as shown in Figure 10.
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Figure 10. KMC-YOLO network structure: conv refers to convolution; SPP is spatial pyramid pooling;
CA is coordinate attention; Conv is convolutional layer.

2.4. Training Platform and Environment

The object detection models were first trained and tested on a PC, using the PyTorch
deep learning framework with CUDA and CUDNN installed for GPU acceleration. The
training environment’s composition and version are shown in Table 3.
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Table 3. Algorithm operating environment.

Name Versions

Operating System Ubuntu18.04
CPU Inter Core (TM) i5-7500 CPU @ 3.40 GHz, RAM:8.00 GB
GPU NVIDIA GeForce GTX 2060-Super, RAM:8.00 GB

Compiler Environment Pycharm
OpenCv 4.1.0.25
PyTorch 1.7.0
Python 3.8

CUDA, CUDNN 11.0, 8.05

2.5. Training Strategy
2.5.1. Training Strategy for K-Means Clustering

To accelerate the model training and enhance its generalization ability, transfer learn-
ing [41,42] was employed in this study, whereby pre-trained weights of the COCO (Com-
mon Objects in Context) dataset were used as the backbone network during YOLOv4
training. The training was conducted for a total of 200 epochs. The initial learning rate was
0.0001; the learning rate at the end of training was 0.00001. The followings values were
also obtained: a weight decay value of 0.0005, a warm-up parameter value of 2 epochs,
and a batch size of 4. Optimization of the parameters was achieved using the small batch
gradient descent method with Momentum = 0.9.

2.5.2. Training Strategy for Lightweight Networks

The KMC-YOLO network was a redesigned network structure without a correspond-
ing pre-training model; thus, it was trained from scratch to update the weights without
using transfer learning. During training, multi-scale training was enabled, warm-up was
set to 2 epochs, and the weight decay value was adjusted to 0.0003 to accommodate the
simpler network structure.

2.6. Ablation Study and Comparison Test

Ablation studies were built using the YOLOv4 model with the adoption of five network
models to validate the efficacy of the suggested method. Instead of K-YOLO’s backbone
network, CSPDarknet53, the validation network in this research was developed using
MobileNetV1, MobileNetV2, MobilnetV3, and MobileNetV3-small networks with the SE-
Net attention module, respectively. The performance was then compared to that of the
KMC-YOLO network.

Meanwhile, in order to provide a more comprehensive comparison, we conducted
detection performance tests between our improved networks and existing mainstream
networks and their improved versions. The compared models include YOLOv3-SPP,
YOLOv4-tiny, YOLOX-tiny, YOLOv5s, and Faster R-CNN.

2.7. Model Deployment

The optimal network model was obtained after training and comparative validation
of the network model on the PC side, but it needed to be deployed on the development
board for practical applications. In this study, we used the Python environment manager
Archiconda3_0.2.3 on Xavier for Python package installation and virtual environment
creation [43]; the Xavier environment configuration is shown in Figure 11.
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The computing power of the embedded development board is limited, and running
the trained deep learning model on a specific learning framework may lead to inefficient
inference within the board. To overcome this issue, we used Xavier’s TensorRT 8.0.1.6 to
deploy the deep learning model on the development board. The implementation involved
converting the PyTorch-trained model into the ONNX (Open Neural Network Exchange)
intermediate format, which supports inference based on any framework, and then trans-
forming it into the TensorRT engine based on the ONNX file format. Finally, efficient
inference on the development board was achieved using the TensorRT engine file with
FP16 floating-point precision.

3. Experiment Results and Discussion
3.1. Analysis of Training Results
3.1.1. Representation of Multi-Scale Anchor Boxes

The cassava dataset was clustered with the “1-IOU” distance to obtain three sets
of anchor boxes (IOU anchors), and the obtained IOU anchors were randomly scaled at
multiple scales to obtain three new sets of anchor boxes (CIOU anchors), as shown in
Table 4. The COCO anchors are the three sets of anchor boxes obtained from the original
YOLOv4 model based on the COCO dataset.

Table 4. Anchor clustering results.

Receptive Field COCO Anchors IOU Anchors CIOU Anchors

Large (116 × 90), (156 × 198),
(373 × 326)

(78 × 77), (72 × 72),
(75 × 61)

(140 × 114), (124 × 124),
(156 × 154)

Medium (36 × 75), (76 × 55),
(72 × 146)

(65 × 67), (62 × 61),
(64 × 50)

(83 × 65), (72 × 71),
(88 × 91)

Small (12 × 16), (19 × 36),
(40 × 28)

(53 × 43), (48 × 50),
(55 × 55)

(26 × 21), (35 × 48),
(36 × 36)

The model’s detection performance was tested on a test set comprising 1000 images.
Table 5 shows the mAP scores for the three sets of models. The results indicate that
using K-means clustering to obtain IOU anchors for YOLOv4 improves the detection
accuracy compared to using COCO anchors. Moreover, using multi-scale scaling to obtain
CIOU anchors further improves detection accuracy. Among the models, the K-YOLO
model using CIOU anchors achieved the highest mAP score of 95.6% in the test set. With
GPU acceleration, the K-YOLO model using CIOU anchors achieved a detection speed of
19.23 fps.
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Table 5. Model accuracy under different anchor boxes.

Anchors mAP (%)

COCO anchors 92%
IOU anchors 93.5%

CIOU anchors 95.6%

3.1.2. Representation of Improved Network

According to the training strategies, each of the two improved lightweight networks
was trained for 200 epochs. The changes in loss values during the training of the KMC-
YOLO network are shown in Figure 12.
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From Figure 12, it can be observed that the network loss values converge rapidly and
decrease within 25 epochs. There are some small fluctuations in the confidence loss before
70 epochs, after which the fluctuations of each loss value become smaller and the conver-
gence effect improves. The reduction in loss values for the newly designed model is quick
and effective, indicating that the network structure design and hyperparameter settings are
reasonable. Testing on a test set with 1000 images also shows that no overfitting occurs.

3.1.3. Validation of the Network Model
Analysis of KMC-YOLO Test Results

The test results of the KMC-YOLO network are further analyzed, and some of the
results are shown in Figure 13. From the figure, it can be seen that the model demonstrates
good detection performance on images captured under three different lighting conditions:
bright, dark, and side light. The model also performs well on images with added processing
effects such as motion blur, rotation, and distortion, including images with tilted stalks.
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In general, the KMC-YOLO performed excellently, achieving better detection of cas-
sava stalks under different conditions during the network test.

Results and Analysis of Ablation Studies and Comparison Tests

The upper section of Table 6 displays the results of the ablation studies, while the
lower section displays the results of the comparison tests. According to the ablation
studies, the size of the KM1-YOLO model is significantly reduced after replacing the
backbone network with MobileNetV1, compared to the YOLOv4 model after K-means
clustering (K-YOLO). This demonstrates that replacing the YOLOv4 backbone structure
with the MobileNet network can achieve network lightweight, but the accuracy reduces by
4.4 percentage points. Compared to the prior model, the accuracy of the network model
has been enhanced after being replaced with MobileNetV2, although the model size has
more than doubled. The accuracy of the MobilnetV3 model with the self-contained SE
attention module improves with small model size growth, indicating that the adoption of
the attention module can improve model accuracy with little model size growth. The use
of the MobilnetV3-small model with its own SE module sacrifices detection accuracy, even
though the model size can be reduced relative to KM3-YOLO. Despite being able to employ
a smaller model than KM3-YOLO, the MobilnetV3-small model with its own SE module
reduces detection accuracy. In comparison to the other sets of models, the KMC-YOLO
model suggested in this study, which combines the MobileNetV2 model and CA module,
has a bigger accuracy improvement as well as improved model size and detection speed.

From the comparison test, it can be seen that the network detection performance of
KMC-YOLO is better than the YOLOv3-SPP network and Faster R-CNN network in terms
of detection accuracy and detection speed. Its detection accuracy is substantially higher
than that of the YOLOv4-tiny, YOLOX-tiny, and YOLOv5s, although its detection speed
is not as fast. The harvester clamping and pulling mechanism requires a high stalk–field
detection accuracy to offer accurate stalk location and a short detection speed to allow the
machine to make changes. The current model has excellent detection accuracy as well as
detection speed to match the time requirements of the machinery, allowing it to be used in
field detection.
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Table 6. Comparison of network detection performance.

Network Model Backbone Precision/% Model Size/M Detection Speed
under GPU/fps

K-YOLO CSPDarknet53 95.6 245.3 19.23
KM1-YOLO MobileNetV1 91.2 51.1 30.7
KM2-YOLO MobileNetV2 93.1 113.2 33.4
KM3-YOLO MobileNetV3 94.8 114.2 28.5
KM3-YOLO

(small) MobileNetV3-small 94.0 110.6 34.5

KMC-YOLO MobileNetV2 + CA 98.2 115.1 33.6

YOLOv3-SPP Darknet53 86.2 71.6 25.3
YOLOv4-tiny CSPDarknet53-tiny 71.4 22.4 48.5
YOLOX-tiny CSPDarknet53-tiny 86.43 19.4 48.6

YOLOv5s CSP + Focus 89.5 14.8 52.4
Faster R-CNN ResNet50 + FPN 84.6 137 18.5

3.2. Field Validation Trials

The detection speed of the KMC-YOLO network deployed directly into the Xavier
development board is 21.4 fps with 98.1% precision. After being accelerated by TensorRT
with FP16 floating-point numbers, the detection speed of KMC-YOLO is 39.3 fps with 96.8%
precision, meeting the requirements for field detection. Real-time detection experiments
were conducted on cassava stalk sections in the field to verify the model’s landing perfor-
mance after the development of the detection interface was completed. After truncation of
cassava stalks in the field, the cross-section of the stalks undergo oxidization and blackening
within a certain period of time, which cannot support long-term and repeated tests, so a
video stream shot in cassava planting area B of Guangxi University’s College of Agriculture,
a teaching and research base, was used for the test. The video was shot on 11 January
2022, and the field environment information is shown in Table 7. The cassava stalks were
truncated before shooting.

Table 7. Field environment information.

Weather Environmental
Temperature

Relative
Humidity

Average Surface
Soil Moisture

Content
Cassava Variety

Sunny 8–15 ◦C 71% 17.22% GR891, Bread
Cassava No.1

Three different time periods were chosen for shooting: 6:30–7:00 a.m., 11:00–12:00 p.m.,
and 6:00–6:30 p.m. The illumination value during noon was above 10,000 lux, while the
illumination value during the early morning and evening was around 1000 lux.

The shooting equipment was fixed on the cassava harvester, and the cassava harvester
moved in the same way as during normal operation. The videos captured during the three
time periods were saved separately. Videos of the detection process were recorded at three
different times and three frames were extracted from each video. Figure 14 displays the
extracted images during the test, and all three time periods yielded good recognition results.
The overall detection success rate exceeded 95% in all three cases, as presented in Table 8.
Upon analysis, false detections were observed in cases of strong light reflection during
high noon when illumination values were high. Conversely, missed detections occurred
during the morning and evening when illumination values were low. In the field test, the
high illuminance value at noon was identical to the simulated environment of the indoor
field image dynamic simulation acquisition platform, resulting in robust identification
results and even misclassifying clods with high light backlighting as cassava stalks. The
misdetection was caused by the low illuminance value in the morning and evening, as well
as the gap between natural light and stabilized incandescent light in the interior platform.
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Table 8. Detection statistics.

Detection Time Number of Stalks
Tested

Number of Correct
Detections

Number of
Non-Detects

Number of
Error Detection Success Rate/%

Morning 268 257 11 0 95.8
Noon 306 295 0 11 96.4

Evening 253 241 12 0 95.2

4. Conclusions

In this paper, a real-time cassava stalk localization detection method was proposed
to adjust the movement of the clamping–pulling mechanism. The accuracy and real-time
performance of the improved network were verified by comparing it with different models
and conducting adaptive improvement. We also evaluated the effectiveness of the model
after deploying it on an embedded device, NVIDIA Jetson AGX Xavier, through field trial
validation. The following conclusions can be drawn from the comparison, evaluation,
and validation:
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(1) For the lightweight design of the YOLOv4 model, the KMC-YOLO network was
constructed by incorporating the MobileNetV2 + CA module. The AP of the model
was tested to be 98.2%, with detection speeds of 33.6 fps and model size reductions of
53.08%. The KMC-YOLO network is suitable for deployment on the Xavier develop-
ment board.

(2) By deploying the KMC-YOLO network on the NVIDIA Jetson AGX Xavier with
TensorRT acceleration, the detection speed of the network on the development board
increased to 39.3 fps, which is 83.64% higher than the non-accelerated speed, satisfying
the requirement of real-time detection in the field.

(3) The field test validation under different illumination conditions shows that the de-
tection success rate of the model was above 95% under all illumination values tested,
demonstrating that the algorithm met the detection requirements of the digging–
pulling cassava harvester.

The detection method proposed in this paper meets the requirements for real-time
and accurate detection in field harvesting and has significant advantages in terms of small
memory usage and fast model operation. The proposed improved model can provide
important technical support for the development of digging–pulling cassava harvesters
and intelligent harvesting research. However, with the optimization of the algorithm, there
is still room for further optimization of the model detection efficiency while maintaining a
good detection effect. To accommodate the application of the target detection algorithm
in this paper, we collected cassava stalk diameters and deflection angles via extensive
statistical field trials, which guided the design of the clamping–pulling mechanism and
its opening size. Now, we have manufactured a new digging–pulling cassava harvester.
Finally, a cassava tuber harvesting test will be conducted in the field to completely check
the operation of the cassava harvesting machine equipped with the upper vision device.

Author Contributions: Conceptualization, W.Y., J.X., Z.W. and Z.L.; methodology, J.X. and Z.W.;
software, J.X. and Z.W.; validation, D.Z. and Y.H.; formal analysis, J.X. and Z.W.; investigation, D.Z.
and Y.H.; resources, W.Y.; data curation, Z.W.; writing—original draft preparation, J.X.; writing—
review and editing, W.Y., Z.L. and X.Z.; visualization, J.X.; supervision, X.Z.; project administration,
W.Y. and Z.L.; funding acquisition, W.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos.
32160422 and 51365005) and the Guangxi Natural Science Foundation (Grant No.2023GXNSFAA026376).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the main manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brown, A.L.; Cavagnaro, T.R.; Gleadow, R.; Miller, R.E. Interactive effects of temperature and drought on cassava growth and

toxicity: Implications for food security? Glob. Chang. Biol. 2016, 22, 3461–3473. [CrossRef] [PubMed]
2. Parmar, A.; Sturm, B.; Hensel, O. Crops that feed the world: Production and improvement of cassava for food, feed, and industrial

uses. Food Secur. 2017, 9, 907–927. [CrossRef]
3. Li, C.; Dong, G.; Bian, M.; Liu, X.; Gong, J.; Hao, J.; Wang, W.; Li, K.; Ou, W.; Xia, T. Brewing rich2-phenylethanol beer from

cassava and its producing metabolisms in yeast. J. Sci. Food Agric. 2021, 101, 4050–4058. [CrossRef] [PubMed]
4. Amponsah, S.K.; Sheriff, J.T.; Byju, G. Comparative evaluation of manual cassava harvesting techniques in Kerala, India. Agric.

Eng. Int. CIGR J. 2014, 16, 41–52.
5. Yang, W.; Yang, J.; Zheng, X.T.; Jia, F.Y. Current Research and Development Trends of Cassava Root Harvest Machinery and

Technology. J. Agric. Mech. Res. 2012, 34, 230–235.
6. Xue, Z.; Huang, H.; Li, M.; Di, Z.F.; Gao, W.W.; Cui, Z.D. Study on 4UMS-390 II cassava harvester. J. Agric. Mech. Res. 2010, 32,

79–81.
7. Bobobee, E.Y.H.; Yakanu, P.N.; Marenya, M.O.; Ochanda, J.P.O. Development in Ghana—Challenges, opportunities and prospects

for cassava production in Africa. J. Eng. Agric. Environ. 2019, 5, 41–60.

https://doi.org/10.1111/gcb.13380
https://www.ncbi.nlm.nih.gov/pubmed/27252148
https://doi.org/10.1007/s12571-017-0717-8
https://doi.org/10.1002/jsfa.11040
https://www.ncbi.nlm.nih.gov/pubmed/33349937


Agriculture 2023, 13, 2144 19 of 20

8. Ospina, B.; Cadavid, L.F.; Garcia, M.; Alcalde, C. Mechanization of cassava production in Colombia. In Cassava Research and
Development in Asia; Centro Internactional de Agricultura Tropical: Bangkok, Thailand, 2002; pp. 277–287.

9. Gupta, C.P.; Stevens, W.F.; Paul, S. Development of a vibrating cassava root harvester. Agric. Mech. Asia Afr. Lat. Am. 1999, 30,
51–55.

10. Akhir, H.M.; Sukra, A.B. Mechanization possibilities for cassava production in Malaysia. In Cassava Research and Development in
Asia: Exploring New Opportunities for an Ancient Crop, Proceedings of the 7th Asian Cassavaresearch Workshop, Bangkok, Thailand, 28
October—1 November 2002; International Center for Tropical Agriculture (CIAT): Bangkok, Thailand, 2002; pp. 271–276.

11. Li, G.J.; Deng, G.R.; Wu, H.Z.; Zheng, S.; Cui, Z.D.; Huang, J. Design and experiment of 4UMZ—1400 rear-collected type cassava
combined harvester. J. Chin. Agric. Mech. 2022, 43, 1–8.

12. Mo, Q.G.; Huang, M.A. Development and application of 4UM-160 cassava harvester. Guang Xi Agric. Mech. 2012, 25, 20–22.
13. Amponsah, S.K.; Addo, A.; Gangadharan, B. Review of various harvesting options for cassava. In Cassava; Waisundara, V.Y., Ed.;

IntechOpen: London, UK, 2018; pp. 291–304.
14. Liao, Y.L.; Sun, Y.P.; Liu, S.H.; Cheng, D.P.; Wang, G.P. Development and prototype trial of digging-pulling style cassava harvester.

Trans. Chin. Soc. Agric. Eng. 2012, 28, 29–35.
15. Yang, W.; Yang, R.; Li, J.; Wei, L.; Yang, J. Optimized tuber-lifting velocity model for cassava harvester design. Adv. Mech. Eng.

2018, 10, 2072049174. [CrossRef]
16. Zheng, X. Virtual Design and Simulation for Pulling Speed Controlled Cassava Harvest Machine. Master’s Thesis, Guangxi

University, Nanning, China, 2012.
17. Park, Y.; Son, H.I. A Sensor Fusion-Based Cutting Device Attitude Control to Improve the Accuracy of Korean Cabbage Harvesting.

J. ASABE 2022, 65, 1387–1396. [CrossRef]
18. Montoya-Cavero, L.; Díaz De León Torres, R.; Gómez-Espinosa, A.; Escobedo Cabello, J.A. Vision systems for harvesting robots:

Produce detection and localization. Comput. Electron. Agric. 2022, 192, 106562. [CrossRef]
19. Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks.

Sensors 2016, 16, 1222. [CrossRef]
20. Song, Z.; Fu, L.; Wu, J.; Liu, Z.; Li, R.; Cui, Y. Kiwifruit detection in field images using Faster R-CNN with VGG16. IFAC-

PapersOnLine 2019, 52, 76–81. [CrossRef]
21. Wan, S.; Goudos, S. Faster R-CNN for multi-class fruit detection using a robotic vision system. Comput. Netw. 2020, 168, 107036.

[CrossRef]
22. Peng, H.X.; Huang, B.; Shao, Y.Y.; Li, Z.S.; Zhang, C.W.; Chen, Y.; Xiong, J.T. General improved SSD model for picking object

recognition of multiple fruits in natural environment. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2018, 34, 155–162.
23. Gai, R.; Chen, N.; Yuan, H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model. Neural Comput. Appl.

2023, 35, 13895–13906. [CrossRef]
24. Quan, L.; Feng, H.; Lv, Y.; Wang, Q.; Zhang, C.; Liu, J.; Yuan, Z. Maize seedling detection under different growth stages and

complex field environments based on an improved Faster R–CNN. Biosyst. Eng. 2019, 184, 1–23. [CrossRef]
25. Junos, M.H.; Mohd Khairuddin, A.S.; Thannirmalai, S.; Dahari, M. Automatic detection of oil palm fruits from UAV images using

an improved YOLO model. Vis. Comput. 2022, 38, 2341–2355. [CrossRef]
26. Zhang, Y.; Yu, J.; Chen, Y.; Yang, W.; Zhang, W.; He, Y. Real-time strawberry detection using deep neural networks on embedded

system (rtsd-net): An edge AI application. Comput. Electron. Agric. 2022, 192, 106586. [CrossRef]
27. Fu, L.; Yang, Z.; Wu, F.; Zou, X.; Lin, J.; Cao, Y.; Duan, J. Yolo-Banana: A lightweight neural network for rapid detection of banana

bunches and stalks in the natural environment. Agronomy 2022, 12, 391. [CrossRef]
28. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
29. Sandler, M.; Howard, A.; Zhu, M.L.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted residuals and linear bottlenecks. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18 June
2018; pp. 4510–4520.

30. Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of
Korea, 27 October–2 November 2019; pp. 1314–1324.

31. Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; Sun, J. Light-Head R-CNN: In defense of two-stage object detector. arXiv 2017,
arXiv:1711.07264.

32. Wong, A.; Shafiee, M.J.; Li, F.; Chwyl, B. Tiny SSD: A tiny single-shot detection deep convolutional neural network for real-time
embedded object detection. In Proceedings of the 2018 15th Conference on Computer and Robot Vision (CRV), Toronto, ON,
Canada, 8 May 2018; pp. 95–101.

33. García-Santillán, I.D.; Montalvo, M.; Guerrero, J.M.; Pajares, G. Automatic detection of curved and straight crop rows from
images in maize fields. Biosyst. Eng. 2017, 156, 61–79. [CrossRef]

34. Marx, C.; Pastrana, J.C.; Hustedt, M.; Kaierle, S.; Walter, J.; Haferkamp, H.; Rath, T. Entwicklung und Aufbau eines Lasersystem-
prototyps auf Bildanalysebasis zur Unkrautbekämpfung. In Proceedings of the 17 und 18 Workshop Computer-Bildanalyse in
der Landwirtschaft Computerised Image Analysis in Agriculture, Osnabrück, Germany, 9 May 2012; p. 102.

https://doi.org/10.1177/1687814018800863
https://doi.org/10.13031/ja.14851
https://doi.org/10.1016/j.compag.2021.106562
https://doi.org/10.3390/s16081222
https://doi.org/10.1016/j.ifacol.2019.12.500
https://doi.org/10.1016/j.comnet.2019.107036
https://doi.org/10.1007/s00521-021-06029-z
https://doi.org/10.1016/j.biosystemseng.2019.05.002
https://doi.org/10.1007/s00371-021-02116-3
https://doi.org/10.1016/j.compag.2021.106586
https://doi.org/10.3390/agronomy12020391
https://doi.org/10.1016/j.biosystemseng.2017.01.013


Agriculture 2023, 13, 2144 20 of 20

35. Zhang, B.H.; Huang, W.Q.; Li, J.B.; Zhao, C.J.; Liu, C.L.; Huang, D.F. On-line Identification of Defect on Apples Using Lightness
Correction and AdaBoost Methods. Trans. Chin. Soc. Agric. Mach. 2014, 45, 221–226.

36. Bochkovskiy, A.; Wang, C.; Liao, H.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
37. Misra, D. Mish: A self regularized non-monotonic activation function. arXiv 2019, arXiv:1908.08681.
38. Choi, J.; Chun, D.; Kim, H.; Lee, H. Gaussian YOLOv3: An accurate and fast object detector using localization uncertainty

for autonomous driving. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,
Republic of Korea, 27 October 2019; pp. 502–511.

39. Liang, R. Research and Application of Driverless Oriented Traffic Signal Detection and Recognition Method. Master’s Thesis,
University of Electronic Science and Technology of China, Chengdu, China, 2021.

40. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20 January 2021; pp. 13708–13717.

41. Donahue, J.; Jia, Y.Q.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A deep convolutional activation feature
for generic visual recognition. Int. Conf. Mach. Learn. 2014, 32, 647–655.

42. Song, G.H. Image Annotation Method Based on Transfer Learning and Deep Convolutional Feature. Ph.D. Thesis, Zhejiang
University, Hangzhou, China, 2017.

43. Burford, A.; Calder, A.C.; Carlson, D.; Chapman, B.; Coskun, F.; Curtis, T.; Feldman, C.; Harrison, R.J.; Kang, Y.; Michalow-Icz, B.;
et al. Ookami: Deployment and initial experiences. In Practice and Experience in Advanced Research Computing; Cornell University
Library: Ithaca, NY, USA, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Materials and Methods 
	Dataset Production 
	Image Acquisition 
	Data Pre-Processing 

	Classical Model 
	YOLOv4 
	Evaluation Metrics 

	Proposed Model 
	Anchor Box Clustering Analysis Based on the K-Means Algorithm 
	Multi-Scale Scaling 
	Network Lightweighting 

	Training Platform and Environment 
	Training Strategy 
	Training Strategy for K-Means Clustering 
	Training Strategy for Lightweight Networks 

	Ablation Study and Comparison Test 
	Model Deployment 

	Experiment Results and Discussion 
	Analysis of Training Results 
	Representation of Multi-Scale Anchor Boxes 
	Representation of Improved Network 
	Validation of the Network Model 

	Field Validation Trials 

	Conclusions 
	References

