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Abstract: Cotton (Gossypium hirsutum L.) is an economically important crop in China, and responses of
cotton yield in different regions to separate and joint changes in natural and anthropogenic factors are
the foundation for sustainable development under climate change; however, these remain uncertain.
Here, we analyzed the spatiotemporal evolution and heterogeneity of cotton cultivation in China from
1949 to 2020 and quantified the response of cotton yield variations in air temperature, precipitation,
solar radiation, disaster, and crop management factors between 1980 and 2020 by the Pettitt mutation
test and GeoDetector. Multi-site meteorological data were obtained from different cotton-growing
regions and corresponding cotton yield and phenology data were obtained from provinces. Our
findings showed that all 17 Chinese provinces experienced advancements in cotton yield. Relative to
1949–1967, China’s cotton production in 2007–2020 increased by 400% while cotton yield increased by
420%. Increases in factors such as minimum temperature (TES), average temperature (ADT), effective
accumulated temperature (EAT), precipitation (PP), daily solar radiation (SSD), non-farm employ-
ment opportunities (O), disaster area (D), geographic region (GEO) and agricultural technologies like
fertilizer usage (F), genetically modified varieties (Bt), and mechanized farming (M) have contributed
to the enhanced cotton yield. The importance of single factors influencing cotton yield of China in
descending order was as follows: F > Bt > M > GEO > EAT > O > PP > TES > ADT > SSD > D. How-
ever, the effects of different climatic and agriculture technological elements on cotton yield are
spatially heterogeneous by region, and the combined effects of those elements are higher than those
of single elements. The effects of driving factors vary across regional scales. The most significant
interaction effects were observed between chemical fertilizer use and other driving factors. Specifi-
cally, the interaction between F and TES has the greatest explanatory influence in Northwest China.
Our findings provide a reference for the development of more accurate adaptation strategies and
management measures in different regions. We recommend that policymakers prioritize measures
such as improving climate-resilient cotton varieties, encouraging technological advancements, and
implementing policies that support equitable distribution of cultivation.

Keywords: climate change; cotton phenology; technological advancement; minimum temperature;
GeoDetector

1. Introduction

Cotton is a vital economic crop for many developing countries. Cotton connects
the two fields of agriculture and textiles and is a source of livelihood for millions of
smallholders, workers, and their families. The cotton business contributes significantly
to the economies of many developing countries. In 1986, the top three cotton-consuming
countries globally were China, the Soviet Union, and India, with cotton consumption
accounting for 23.7%, 11.4%, and 9.6% of the global total, respectively. By 2016, China,
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India, and Pakistan had cotton consumption rates of 33.1%, 20.9%, and 9.1% [1]. In 2021,
China’s cotton production, imports, and exports accounted for about 22%, 2.5%, and less
than 1% of the world’s total, respectively [2]. China has remained the world’s largest
cotton-consuming nation since 1986.

Genetic improvements in cotton varieties contributed strongly to increases in cotton
yield in China [3]. Bacillus thuringiensis (Bt) cotton, which is the most successful commer-
cialization of a GM crop, was first planted in China in 1997 [4]. By 2014, the planting area of
Bt cotton was 3.9 million hectares, which was 93% of the total cotton production in China,
and was planted by 7.1 million small-scale farmers [5]. Moreover, studies show that India’s
genetically modified (GM) crop produces higher yields and has expanded agricultural
land in certain circumstances. In 2019, there was a renewed increase in the average adop-
tion rate of biotechnology crops, with India leading at a remarkable 95% acceptance rate.
Moreover, the reduced reliance on pesticides in GM crop cultivation holds the potential
to reduce the emission of gases into the environment [6,7]. Over the past few decades,
China has undergone rapid changes in land use and significant shifts in crop management
approaches [8]. Natural resources and anthropogenic activities are fundamentally altering
the global spatial distribution of crop cultivation [9]. Crop growth is influenced by various
factors, including global warming [10,11], soil nutrients [12,13], and the development and
utilization of water resources [14]. Simultaneously, cultivation management practices are
shaped by combinations of natural- and anthropogenic-induced elements [15–17].

China’s cotton cultivation currently faces severe challenges of water and soil resource
constraints and market competition. Due to factors such as climate change, urbaniza-
tion, an aging rural population, increasing production costs, and declining comparative
efficiency [3,18–20], 85% of the former cotton area has been converted to other uses, and its
production centers have rapidly shifted to new farmland in Xinjiang [21]. Amid challenges
like water and soil resource constraints and climate change, achieving high and stable
cotton production in China is a pressing concern. It is thus crucial to uncover the primary
drivers of regional variability in anthropogenic–natural impacts on cotton to achieve high
and stable yields in China.

This study explores how various factors, such as climate, agricultural practices, and
disaster elements, interact and influence cotton yield across diverse geographic regions. The
objectives of this study are to (i) characterize the trends in China’s cotton cultivation areas
and yields between 1949 and 2020; (ii) identify shifts in the temporal–spatial variations in
cotton yields in 17 Chinese provinces during different time periods; and (iii) examine the
influences of single human–natural factors and their interactions on variations in cotton
yield across various regional scales between 1980 and 2020.

2. Materials and Methods
2.1. Research Data and Region

The data used in this study mainly included cotton data, agriculture technical data,
climatic data, disaster data, spatial data, and cotton phenology data. Data sources include
statistical yearbooks, statistical websites, and the literature. Cotton data include cotton area,
yield, and production in mainly cotton planting regions from 1949 to 2020, which were from
China Cotton Statistics Compilation, China Rural Statistical Yearbook, and China Statistical
Yearbook [https://data.cnki.net/] on 1 August 2022. The cotton phenology data, which
record different stages of cotton occurrence, were derived from the dataset for crop growth
and development status in China, provided by the National Meteorological Information
Center of the China Meteorological Administration [https://cdc.cma.gov.cn/] on 1 August
2021. This dataset includes information from 64 agricultural meteorological observation
stations located in the main cotton-planting regions. Climatic data were obtained from
the National Meteorological Information Center [https://cdc.cma.gov.cn/] on 1 August
2021 and encompassed daily averages, maximum and minimum air temperatures, solar
radiation, and precipitation recorded at 389 meteorological observation stations between
1980 and 2020 (Figure 1).

https://data.cnki.net/
https://cdc.cma.gov.cn/
https://cdc.cma.gov.cn/
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Figure 1. Study area, showing the location of meteorological stations (dots) and agricultural mete-
orological observation stations of cotton cultivation (triangles) in the study area. There are 139, 185, 
and 65 meteorological stations in YERB, YARB, and NC, respectively. There are 64 agricultural me-
teorological stations for cotton cultivation in China. The base map was applied without endorsement 

Figure 1. Study area, showing the location of meteorological stations (dots) and agricultural meteoro-
logical observation stations of cotton cultivation (triangles) in the study area. There are 139, 185, and
65 meteorological stations in YERB, YARB, and NC, respectively. There are 64 agricultural meteo-
rological stations for cotton cultivation in China. The base map was applied without endorsement
using data from the National Geomatics Center of China [NGCC; http://www.ngcc.cn/ngcc/] and
the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural
Sciences [IARRP; https://iarrp.caas.cn/] on 1 August 2022.

Disaster data, including droughts and floods that led to reductions of over 10% in
cotton production area, primarily originated from the China Statistical Yearbook [https:
//data.cnki.net/] on 1 August 2022. Agricultural technical data, encompassing information
on chemical fertilizer usage, total power of agricultural machinery, and Bt transgenic
insect-resistant cotton, spanning from 1980 to 2020, were mainly sourced from the China
Statistical Yearbook and the National Compilation of Information on the Costs and Benefits
of Agricultural Products [https://data.cnki.net/] on 1 October 2022, as well as the Ministry
of Agriculture and Rural Affairs of the People’s Republic of China [http://www.gov.cn/
fuwu/bm/nyncb/index.htm] on 1 October 2022.

The spatial data are divided into three regions, Northwest China (NC, 32–50◦ N,
75–108◦ E), the Yellow River Basin (YERB, 31–43◦ N, 105–125◦ E), and the Yangtze River
Basin (YARB, 24–35◦ N, 97–122◦ E), from 1980 to 2020. These data allow us to analyze how
human–natural factors affect the spatial pattern of cotton cultivation. The three regions
accounted for more than 99% of cotton production on a national scale over this time
period [18] and have diverse climatic conditions [22]. NC and YERB share a middle and
warm temperate temperature zone, while YARB features a subtropical climate. In terms of
wet/dry climatic regions, NC falls under the arid category, YERB experiences a semi-arid
climate, and YARB enjoys a humid climate. Sunshine duration varies across these regions,
with NC receiving 2600 to 3400 h of annual sunshine, YERB ranging from 1900 to 3000 h,
and YARB having 1200 to 2500 h. Precipitation patterns show diversity, with NC receiving
15–380 mm annually, YERB receiving 400–1000 mm, and YARB experiencing 1000–1600 mm.
The accumulation of temperature above 10 ◦C indicates 3000 to 5399 ◦C·d for NC, 2600 to
4899 ◦C·d for YERB, and 4600 to 5999 ◦C·d for YARB. Finally, annual temperature ranges
for NC, YERB, and YARB are 30.8–43.4 ◦C, 21.3–39.8 ◦C, and 21.4–26.6 ◦C, respectively.

http://www.ngcc.cn/ngcc/
https://iarrp.caas.cn/
https://data.cnki.net/
https://data.cnki.net/
https://data.cnki.net/
http://www.gov.cn/fuwu/bm/nyncb/index.htm
http://www.gov.cn/fuwu/bm/nyncb/index.htm
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2.2. Conceptual Framework: Determinants of Cotton Yield

Crop production at the field level is commonly represented as a technical relationship
between yield and yield-affecting factors, including climate, input utilization, soil quality,
and agricultural management practices. While climate and soil fertility are determined
externally for crop growth, farmers have control over input usage and agricultural manage-
ment practices [23]. Cotton growth are under the comprehensive influence of internal and
external conditions, including the effects of other changes [24].

The natural factors included geographic region (GEO), average daily temperature
(ADT), sum of the daily precipitation (PP), sum of the daily solar radiation (SSD), sum
of the daily temperature between 12 ◦C and 36 ◦C (EAT), average of the minimum daily
temperature (TES/TFB), average of the maximum daily temperature (MAT), and the
proportion of natural disasters (D), which related to geographic location, climate, and
disasters, determining the stability and fluctuation of cotton production directly [25,26].
Rising temperatures have a significant impact on cotton seed germination rates. An increase
in daytime maximum temperatures accelerates cotton photosynthesis, leading to increased
yields [18,19]. Furthermore, higher daytime minimum temperatures expand the suitable
climate range for cotton cultivation in the region [27]. Precipitation also affects cotton,
influencing both seed rot rates and boll counts [28,29].

Human factors related to technological advancements indirectly influence agricultural
production by altering land configuration, agricultural machinery, and genetic structures.
These changes subsequently impact cotton cultivation processes and yield. Technological
advancements in cotton cultivation encompass three primary indicators: chemical fertilizer
(F) usage, total power of agricultural machinery (M), and the adoption of Bt transgenic
insect-resistant cotton (Bt).

Increased application of chemical fertilizers correlates with higher cotton yields, mak-
ing the cost of chemical fertilizer per unit area a useful gauge of fertilizer development
levels. The total power of agricultural machinery indicates the level of mechanization
in cotton production. The utilization of genetically modified Bt cotton enhances yield;
considerable evidence suggests that Bt cotton has brought economic benefits to farmers
in numerous countries [30]. Starting from the successful development of domestically
produced anti-insect cotton (GK) in China in 1994, which effectively eradicates cotton
bollworms, the commercial cultivation of insect-resistant cotton was approved by the
Ministry of Agriculture in 1997. Pilot programs were initiated in Anhui, Shandong, and
Shaanxi in 1998, expanding the following year to include provinces such as Jiangsu, Hubei,
Hunan, Henan, Jiangxi, and Xinjiang. Over the past two decades, anti-insect cotton has
been widely promoted and applied across China. Given the variable approval times for
the regional adoption of genetically modified insect-resistant cotton, the year of the first
biosafety certificate approval for Bt transgenic insect-resistant cotton in each region was
selected as the reference point.

From the perspective of natural and human factors, thirteen driving factors were
selected based on previous studies [18,31–33]. Additional information can be found in
Table 1.

Table 1. Definition of influence factors.

Type Variables Codes Meaning and Assignment of Variables

Dependent variables Cotton yield — Total cotton production/the area of cotton
cultivation (kg/hm2)

Spatial indicators Geographic region GEO The cotton-growing geographic regions in which
the province is located (categorical variables)

Dependent variables Cotton yield — Total cotton production/the area of cotton
cultivation (kg/hm2)

Spatial indicators Geographic region GEO The cotton-growing geographic regions in which
the province is located (categorical variables)
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Table 1. Cont.

Type Variables Codes Meaning and Assignment of Variables

Climatic indicators Average daily temperature
from Sow to Squ ADT Average of the daily temperature from Sow to

Squ in the growth period (◦C)

Precipitation PP Sum of the daily precipitation from Squ to Bol in
the growth period (mm)

Solar radiation SSD Sum of the daily sunshine duration from Sow to
Mat in the growth period (hours)

Effective accumulated
temperature EAT

Sum of the daily temperature between 12 ◦C and
36 ◦C from Sow to Mat in the growth

period (◦C·d)

Minimum temperature from
Eme to Squ TES Average of the minimum daily temperature from

Eme to Squ in the growth period (◦C)

Minimum temperature from
Flo to Bol TFB Average of the minimum daily temperature from

Flo to Bol in the growth period (◦C)

Maximum temperature from
Flo to Bol MAT Average of the maximum daily temperature

from Flo to Bol in the growth period (◦C)

Disaster indicators Disaster area D
Natural disasters such as drought and floods
have reduced cotton production by more than

10% (hm2)

Technical indicators Chemical fertilizer use F Cost of chemical fertilizer per mu (mu yuan−1) *

Total power of agricultural
machinery M Total power of agricultural machinery/crop

sown area (kWh hm−2)

Bt transgenic insect-resistant
cotton Bt

The year of first approval of the biosafety
certificate for Bt transgenic insect-resistant cotton

in the region; Bt = 1, otherwise, Bt = 0

Social indicators Non-farm employment
opportunities O Value-added by secondary and tertiary

industry/gross regional product (%)

* Note: 1 mu = 667 m2.

2.3. Methods
2.3.1. Climate Factor Calculations by Cotton Phenology

Cotton cultivation in China involves a series of vital phenological stages, each integral
to the cotton plant’s growth. These stages encompass sowing (Sow), emergence (Eme),
squaring (Squ), flowing (Flo), boll opening (Bol), and maturity (Mat), with precise water and
temperature conditions steering their progression [18,26]. In order to dissect the impact
of climatic factors on cotton yield variation across distinct regions, this study computes
temperature, precipitation, and solar radiation based on cotton phenology.

The primary cotton phenological stages within the major cotton cultivation regions
were analyzed through descriptive statistics, and the outcomes are presented in Table S1.
Within this study, we focused on three significant cotton-producing areas and defined
specific dates for evaluating climatic factors. In Northwest China (NC), sowing typically
occurs around 15 April, followed by emergence around 30 April, squaring around 20 June,
flowering around 10 July, boll opening by 5 September, and maturity around 20 October. In
the Yellow River Basin (YERB), the corresponding dates are 10 April for sowing, 25 April
for emergence, 20 June for squaring, 15 July for flowering, 1 September for boll opening,
and 30 October for maturity. In the Yangtze River Basin (YARB), sowing starts around
5 April, with emergence occurring by 30 April, squaring by 10 June, flowering by 10 July,
boll opening by 1 September, and maturity by 20 October. Notably, these regions showcase
diverse geographical and climatic traits in China. Northwest China (NC) witnesses a
delayed sowing period, whereas the Yellow River Basin (YERB) and the Yangtze River
Basin (YARB) feature earlier sowing dates.
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2.3.2. Pettitt Mutation Test

The Pettitt mutation test was used to divide the period of cotton production into
smaller time periods that correspond to the five stages. The results are shown in Figure 2.
This is a nonparametric test used to test mutation points and identify the mutation points
of a sequence distribution and thereby determine the time of mutation [34]. With the help
of the BreakPoints packages in R (v.4.1.0, R Core Team) [35], we used the Pettitt mutation
test method to divide China’s cotton production from 1949 to 2020 into five periods (i.e.,
1949–1967, 1967–1981, 1981–1992, 1992–2006, and 2006–2020).
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(kg hm−2).

2.3.3. Geographical Detector Model

The geographic detector model (GDM) is a widely used method for exploring the
driving factors that influence spatial variation. This model may be used to explore the
relationship between explanatory and dependent variables without any restrictions or
assumptions in terms of variables. In addition, this method is immune to multiple collinear-
ities [36–38]. The GDM consists of four parts: a factor detector, an interaction detector,
an ecological detector, and a risk detector. In this study, the factor detection was used to
explore the individual effect of impact factors on cotton yield, and the interaction detection
was used to evaluate the joint effects of natural and agricultural technology factors on
cotton cultivation when they interacted.

2.3.4. Factor Detector

The factor detector, characterized by the q-value, represents the explanatory capability
of variable X for the dependent variable Y. The power of the influencing factors (q) on the
distribution of cotton cultivation can be written as follows:

q = 1−∑L
i=1 ni∂

2
i /n∂2,

where i is the number of stratifications (classes) of variable Y or factor X; ∂2
i and ∂2 are the

variance in the Y value of layer i and in the whole region, respectively; and n and ni are the
number of units in the whole region and in layer i, respectively. q is the explanatory power
of the driving force X to Y; the larger q is, the stronger the power of explanatory variables
to explain related variables. The range of q is 0–1.
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2.3.5. Interaction Detector

The interaction detector is used to identify the interaction between natural and
agricultural technological factors. Specifically, it evaluates the impact of factors x1 and
x2 on the explanatory power of dependent variable cotton yield. It computes the in-
teraction value q(x1∩x2) for the two explanatory variables x1 and x2 and compares it
with the original q value of two explanatory powers to determine the type of inter-
action. There are three distinct interaction types as follows: superlinear interaction
[q(x1∩x2) > q(x1) + q(x2)], dual-factor interaction [q(x1∩x2) > Max(q(x1) q(x2))], and uni-
weaken interaction [q(x1∩x2) < Min(q(x1) q(x2))].

We apply the GDM to analyze the influence of driving factors on cotton yield. Here,
the cotton yield is considered the dependent variable, and the independent variables
contain both anthropogenic and natural factors. It is important to note that the explanatory
variables must be categorical variables. To address this, the explanatory variables are
discretized by using the “optidisc” function via the GD package in R (v.4.1.0, R Core Team).
The continuous independent variables are discretized into three to seven levels by using
the optimal discretization method.

While applying the influencing factors analysis from 1980 to 2020, we removed rows
with missing values. The data for analyzing how human–natural factors affect cotton
cultivation consist of an original array of 680 records (i.e., 17 provinces × 40 years) and a
validated array of 561 records (82.50%).

3. Results
3.1. Inter-Annual Variation of Cotton Cultivation

China’s cotton production showed an overall fluctuating upward trend from 1949
to 2020 (CV = 56.44%, p < 0.001). From 1977 to 1985, the production growth rate reached
453.02 × 104 t (10 a)−1 (p < 0.01). The fastest yield growth rate was 458.49 × 104 t (10 a)−1

from 2002 to 2008 (p < 0.01). The mean cotton production in these five periods was
124.38 × 104, 217.46 × 104, 445.65 × 104, 487.74 × 104, and 627.23 × 104 t, respectively
(Figure 2a). In comparison, mean cotton production in period III increased by 104.94%
compared with period II, and mean cotton production in period V increased by 403.30%
compared with period I. Cotton area as a fraction of total sown area of crops in China
from 1949 to 2020 is basically consistent with the variation in cotton area, with both
increasing and then decreasing (Figure 2a,b). Specifically, the overall fluctuation of the
cotton area is not significant (CV = 17.72%), with a peak of 683.5× 104 hm2 in 1992. The area
variation in the period 1949–1992 is more moderate (CV = 17.57%, p < 0.1), with an average
area of 470.71 × 104 hm2. The area variation from 2007 to 2020 decreases significantly
(CV = 22.11%, p < 0.001), with a mean area of 428.36 × 104 hm2, a decrease of 9 percentage
points compared with the previous period. According to the results of the five phases,
the average cotton yield in the five periods is 436.09 × 104, 448.26 × 104, 550.42 × 104,
493.47 × 104, and 443.13 × 104 hm2, respectively. Cotton area is at a maximum in period III,
with an increase of 26.21% compared with period I. On the contrary, cotton area decreased
in period V by 19.49% compared with period III. Cotton yield in China increased from 1949
to 2020 (CV = 59.59%, p < 0.001), with a stable variation in the early stages and a significant
increase in the later stage (Figure 2b). The average cotton yield for each of the five periods
is 279.41, 473.53, 774.04, 978.65, and 1459.85 kg hm−2, respectively. Cotton yields increased
by 422.47% in period V compared with period I.

Based on the coefficient of variation (CV) analysis, the CVs of cotton production for the
five stages are 40.43%, 13.67%, 20.47%, 17.58%, and 10.51% (CV1 > CV3 > CV4 > CV2 > CV5),
respectively. The CVs of cotton yield are 16.11%, 3.80%, 13.99%, 15.55%, and 21.98% for the
five phases (CV5 > CV1 > CV4 > CV3 > CV2). The CVs of cotton yield for the five phases are
34.69%, 10.39%, 13.02%, 16.96%, and 14.94% (CV1 > CV4 > CV5 > CV3 > CV2), respectively.



Agriculture 2023, 13, 2132 8 of 16

3.2. Cotton Yield Variation

Spatial coefficients of variation of cotton yields from time period I to V were observed
as 0.30, 0.38, 0.30, 0.32, and 0.24, respectively. This implies a declining trend in cotton
yield dispersion, indicating a gradual convergence of cotton yield among various regions.
Specifically, in time period I, high-yield cotton regions were >480 kg/hm2, mainly in Zhe-
jiang and Shanghai. In time period II, high-yield regions were >700 kg/hm2, mainly in
Zhejiang, Jiangsu, and Shanghai in the eastern coastal region. In time period III, high-yield
regions were >900 kg/hm2, mainly in Zhejiang, Hubei, and Gansu, of which Gansu reached
1077.69 kg/hm2. In time period IV, high-yield regions were >1300 kg/hm2, in areas mainly
including Xinjiang and Gansu, with 1399.48 kg/hm2 and 1527.24 kg/hm2, respectively.
In time period V, high-yield regions were >1700 kg/hm2, mainly including Gansu, Liaon-
ing, and Xinjiang, with yields of 1718.06 kg/hm2, 1725.15 kg/hm2, and 1949.58 kg/hm2,
respectively (Figure S1).

From 1949 to 2020, the cotton yield across Chinese provinces witnessed an upward
trend. The Yellow River Basin displayed a gradual increase in growth rates, while the
Yangtze River Basin exhibited a fluctuating pattern of decrease and increase. Meanwhile,
growth rates in the northwest showcased consistent improvements.

To elaborate further, in time periods I to II, six provinces (Yunnan, Shaanxi, Tianjin,
Liaoning, Xinjiang, and Hebei) had cotton yield increases of between 10 and ~100 kg/hm2.
Five provinces (Beijing, Jiangxi, Shandong, Gansu, and Anhui) increased by between
100 and ~200 kg/hm2. Five provinces (Zhejiang, Henan, Hunan, Sichuan, and Hubei)
increased between 200 and ~300 kg/hm2. In addition, the cotton yield in Shanxi decreased
slightly, while Jiangsu and Shanghai had the largest increases of 386.46 kg/hm2 and
403.80 kg/hm2, respectively (Figure 3a). In time periods II to III, five provinces (Jiangsu,
Zhejiang, Shaanxi, Henan, and Anhui) had cotton yield increases of between 100 and
~300 kg/hm2, six provinces (Liaoning, Hubei, Sichuan, Hebei, Shanxi, and Hunan) had
increases of between 300 and ~400 kg/hm2, and four provinces (Beijing, Jiangxi, Xinjiang,
and Shandong) had increases of between 400 and ~500 kg/hm2. In addition, cotton yield
decreased slightly in Yunnan and Shanghai, while Tianjin and Gansu had the largest in-
creases of 511.20 kg/hm2 and 654.18 kg/hm2, respectively (Figure 3b). In time periods III to
IV, three provinces (Guizhou, Hubei, and Shandong) had cotton yield increases of between
10 and ~100 kg/hm2, seven provinces (Anhui, Hebei, Henan, Jiangsu, Zhejiang, Yunnan,
and Shaanxi) had increases of between 100 and ~200 kg/hm2, five provinces (Liaoning,
Shanxi, Beijing, Guangxi, and Jiangxi) had increases of between 200 and ~300 kg/hm2,
and four provinces (Tianjin, Hunan, Shanghai, and Gansu) had increases of between
300 and ~450 kg/hm2. In addition, cotton yield in Sichuan decreased by 99.21 kg/hm2,
while Xinjiang had the largest increase of 590.41 kg/hm2 (Figure 3c). In time periods
IV to V, there were two provinces (Hubei and Hunan) with cotton yield increases of be-
tween 20 and ~30 kg/hm2, two provinces (Beijing and Gansu) with increases of between
100 and ~200 kg/hm2, eight provinces (Sichuan, Jiangsu, Anhui, Shandong, Henan, Tian-
jin, Hebei, and Shanghai) with increases of between 200 and ~300 kg/hm2, and three
provinces (Zhejiang, Guizhou, and Shanxi) with cotton yield increases of between 300 and
~400 kg/hm2. The increase of cotton yield was between 300 and ~400 kg/hm2 in three
provinces (Zhejiang, Guizhou, and Shanxi) and between 450 and ~600 kg/hm2 in four
provinces (Jiangxi, Guangxi, Xinjiang, and Shaanxi). In addition, Liaoning and Yunnan had
the largest increases of 865.59 kg/hm2 and 959.34 kg/hm2, respectively (Figure 3d).
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Figure 3. Maps for spatial distribution of cotton yield varied across China from 1949 to 2020. (a) Time
periods I to II; (b) time periods II to III; (c) time periods III to IV; (d) time periods IV to V. Provinces
with a triangle symbol represent wide range of variations, ‘N’ denotes positive change, and ‘H’
denotes negative change.

3.3. Analysis of Factors That Influence Cotton Yield in Different Regions
3.3.1. Factor Detection Analysis

Each individual anthropogenic and natural factor significantly influences cotton yield,
with technological factors demonstrating the highest explanatory potency. Moreover,
the interaction between technological factors and other variables yields considerable effects,
all of which exhibit dual-factor enhancement or superlinear impacts.

In terms of temporal trends, climate factors remained relatively stable. However,
significant variations were observed in technological, socioeconomic, and natural disaster
factors (Figure S2). Bt transgenic insect-resistant cotton technology (Bt) adoption began in
1999, achieving widespread implementation in major cotton-planting provinces by 2001.
Non-agricultural employment opportunities (O) and the cumulative power of agricultural
machinery (M) showed a substantial increase in numerical values, with corresponding
growth rates of 0.066/10 years (R2 = 0.87) and 0.168/10 years (R2 = 0.95), respectively. Mean-
while, natural disasters (D) demonstrated significant fluctuations, trending downwards
with an index change rate of 1.531 (R2 = 0.42). Table 2 shows the results for single-factor
detection. Across China, all variables have successfully passed the 0.001 significance thresh-
old, indicating that each variable significantly influences cotton yield. The explanatory
power attributed to the cotton yield index drivers greater than 0.1 are, in descending order,
F (0.503) > Bt (0.322) > M (0.248) > GEO (0.225) > EAT (0.196) > O (0.190) > PP (0.168) >
TES (0.158) > ADT (0.143) > SSD (0.114) > D (0.080). This hierarchy signifies that technical
indicators hold paramount importance as explanatory factors for China’s cotton yield.
Notably, the variables with the most substantial influence are fertilizer usage, Bt transgenic
technology, and the total power of agricultural machinery. Subsequently, geographical
positioning, non-agricultural employment prospects, and climatic indicators follow suit.
Finally, the impact of disaster-affected area assumes the lowest priority.
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Table 2. Correlating coefficients of single factors for cotton yield.

Factor
China Yellow River Basin Yangtze River Basin Northwest Inland

q Value Sig. q Value Sig. q Value Sig. q Value Sig.

EAT 0.196 <0.001 0.238 <0.001 0.344 <0.001 0.536 <0.001
PP 0.168 <0.001 0.069 0.182 0.062 0.013 0.148 0.015

SSD 0.114 <0.001 0.114 0.010 0.062 0.107 0.193 0.019
ADT 0.143 <0.001 0.100 0.003 0.269 <0.001 0.460 <0.001
TES 0.158 <0.001 0.144 0.000 0.288 <0.001 0.421 <0.001
TFB 0.098 <0.001 0.078 0.009 0.212 <0.001 0.496 <0.001
MAT 0.069 <0.001 0.158 <0.001 0.188 <0.001 0.103 0.003

D 0.080 <0.001 0.153 <0.001 0.073 0.017 0.269 0.073
O 0.190 <0.001 0.459 <0.001 0.290 <0.001 0.729 <0.001
M 0.248 <0.001 0.438 <0.001 0.321 <0.001 0.817 <0.001
F 0.503 <0.001 0.557 <0.001 0.461 <0.001 0.831 <0.001
Bt 0.322 <0.001 0.492 <0.001 0.266 <0.001 0.590 <0.001

GEO 0.225 <0.001 - - - - - -

Both the Yellow River Basin region and the Yangtze River Basin region exhibit 11
factors that pass the 0.05 significance test, with 10 and 9 of these factors contributing >0.1
to the cotton area index, respectively. The highest q values, 0.557 for the Yellow River Basin
region and 0.461 for the Yangtze River Basin region, are both associated with chemical
fertilizer usage. In addition, all factors passed the 0.05 significance test in the northwest
inland region, and the top three q values are for F (0.831), M (0.817), and O (0.729).

To delve into specifics, within the Yellow River Basin region, cotton yield is signifi-
cantly influenced by factors such as fertilizer usage (0.557), transgenic technology (0.492),
non-agricultural employment opportunities (0.459), and agricultural machinery power
(0.438). The impact of maximum temperature (0.158) and disaster area (0.153) also remains
pronounced (p < 0.001). Similarly, in the Yangtze River Basin region, cotton yield is notably
affected by chemical fertilizer usage (0.461), agricultural machinery power (0.321), and
effective accumulated temperature (0.344). Non-agricultural employment opportunities
(0.290), average temperature (0.269), minimum temperature (TES = 0.288; TFB = 0.212), and
maximum temperature (0.188) also exert significant influence on cotton yield in YARB.
In Northwest China, cotton yield is heavily influenced by factors such as fertilizer usage
(0.831), agricultural machinery power (0.817), and non-agricultural employment oppor-
tunities (0.729), surpassing the influence of other factors. Following these, transgenic
technology and temperature factors play secondary roles. All these factors exhibit sig-
nificant impact (p < 0.001). This reveals that rising temperatures and advancements in
agricultural technology significantly contribute to increased cotton yield.

From a comparative perspective, it is evident that both agricultural technological ad-
vancements and climate factors significantly impact cotton yield, regardless of geographical
or temporal scales. Furthermore, in the NC, fertilizer usage, agricultural machinery power,
and non-agricultural employment opportunities possess a more profound influence on
cotton production. Additionally, at a national level, temperature, precipitation, and solar
radiation hold significant sway over cotton yield; however, within specific regions, cotton
yield is primarily driven by changes in temperature.

3.3.2. Interaction Detection Analysis

Based on the interaction between the factors for cotton yield (Figure 4), chemical fertil-
izer use (F) and minimum temperature from Flo to Bol (TFB) have the highest explanatory
power of 0.68 for the cotton yield of China, followed by the interactions of F and geographic
region (GEO) with average daily temperature from Sow to Squ (ADT), which produce
explanatory powers of 0.67 and 0.66, respectively. For cotton yield, the superlinear effect
means that the synergetic effect of two factors exceeds the sum of their separate effects (e.g.,
F and MAT (0.65), M and TFB (0.53), and Bt and TFB (0.50)). The dual-factor effect means
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that the synergetic effect of two factors is stronger than that of each factor alone (e.g., PP
and F (0.63), Bt and PP (0.46), and GEO and SSD (0.27)) (see Figure 4a).
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Examining different regions within the YERB, fertilizer (F) and agricultural machinery
power (M) exhibit the highest combined explanatory power of 0.69 for cotton yield. Follow-
ing closely is the interaction between fertilizer and maximum temperature (MAT), which
results in an explanatory power of 0.67. Both effects demonstrate superlinear relationships
(Figure 4b). In contrast, the explanatory power of factor interactions for YARB ranges from
0.34 to 0.61, reflecting a relatively low impact of these factors on cotton yield (Figure 4c).
Remarkably, in NC, the explanatory power of factor interactions ranges from 0.67 to 0.93,
indicating a substantial contribution of technology and air temperature interactions to
cotton yield (Figure 4d). Zooming in, whether at a national or regional scale, the interaction
between fertilizer usage and various climate or technological factors plays a significant
role in influencing cotton yield. Notably, interactions with minimum temperature yield the
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most substantial impact. In a cross-regional comparison, NC displays the most pronounced
influence on cotton yield. The interaction between agricultural technological advancement
factors and social factors, coupled with other influencing factors, primarily drives changes
in cotton yield in this area.

4. Discussion
4.1. Impacts of Climate Change on Crop Yield

Climate change has brought about variations in crop phenology and yield that differ
by location, leading to accelerated shifts in crop spatial distribution [39]. Previous research
has indicated a gradual transition of wheat cultivation in China towards high-yield regions
like the Yellow and Huaihai Plain areas [40]. Additionally, due to increased heat-related
damage to maize, production has gravitated from the Northeast Plain to the North China
Plain and then back to the Northeast Plain over the past decade [41]. In the context
of cotton yield, cumulative temperature and minimum temperature emerge as pivotal
factors. While climate factors may not stand as the most dominant single factor, the
interaction analysis reveals that the most influential combination of factors is the interplay
between temperature and variables such as fertilizer usage (F), transgenic technology (Bt),
and agricultural machinery power (M), both at national and regional scales. Through
interregional comparisons, this study illustrates that the maximal explanatory power
for cotton yield lies in single factors [q(F) = 0.831], and the interaction between factors
[q(F∩TES) = 0.93], particularly pronounced in Northwest China. This underscores that a
single factor, although exhibiting minor regional differences, can only account for results
to a certain extent. When examined by region, the influence of climate, technology, and
socioeconomic factors on YERB, YARB, and NC regions varies (Table 2). Notably, effective
accumulated temperature (EAT) and maximum temperature (MAT) have the greatest
impact on NC, followed by YERB. Non-farm employment opportunities (O), fertilizer usage
(F), and total power of agricultural machinery (M) exhibit the highest influence on NC,
with YARB ranking second. These results diverge from those of Han et al., who found that
climate variation accounted for 54.42%, 58.10%, and 50% of cotton yield variability in YERB,
YARB, and NC, respectively [42]. This discrepancy may be attributed to their emphasis
on analyzing relative yield increase values, while our study primarily focuses on factors
driving absolute yield changes. Research indicates that elevated temperatures lengthen
the cotton growth period, facilitating increased yield by allowing for extended growth and
development time [43]. However, if temperature rises excessively, the transpiration rate of
crops accelerates, leading to heightened water loss and potential yield reduction [44]. Hence,
in climatically sensitive regions for cotton cultivation, particularly major cotton-producing
provinces like Xinjiang, the acceleration of agricultural water-saving technologies, effective
fertilizer usage, transgenic technology adoption, and the cultivation of drought-resistant
high-yield varieties should be considered [45,46]. This approach aims to curtail plant and
soil root zone water loss, enhance water utilization efficiency, and ultimately ensure stable
or elevated cotton yields.

4.2. Impact of Agricultural Technology on Spatial Pattern of Crop Cultivation

Agricultural technologies including insecticides, mulching, formula fertilization, intel-
ligent drip irrigation, automated harvesting, and disease-resistant plant varieties can not
only lower cost but also improve land productivity, capital utilization, and labor productiv-
ity. The application of agricultural technology depends on regional factors such as climate,
economy, and population, whereas background natural resource such as topography and
climatic conditions can limit the rate of technological innovation. Mismatching the two
may prevent agricultural technological innovation from being effective and may exacerbate
the waste of agricultural resources and increase costs, thereby countering agricultural
productivity in the region and leading to new crop switching. For example, the rapid
expansion of contiguous intensive crop cultivation correlates with the significant increase
in mechanical equipment such as tractors and harvesters. Thus, the geographical bound-
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ary of crop cultivation is mainly determined by human activity rather than by natural
factors [47,48].

The results of this study show that technological factors are the most important factors
for explaining the increase in cotton yield. The results of the single-factor analysis show
that fertilizer use, Bt transgenic insect-resistant cotton, and total mechanical power are
the three highest-ranked single factors at both national and regional scales (Table 2). In
Northwest China, the explanatory power of the interaction between the three technological
factors and other factors ranges from 0.7 to 0.93 (Figure 4d).

Technological innovation has driven the accelerated redistribution of cotton around
the world. In the United States, the invention of the saw-tooth cotton gin and a variety of
improvements have driven the cotton industry and elevated it to an impressive technologi-
cal level [49]. In Mexico, Bt cotton is widely accepted by cotton producers and has proven
to be efficient for pest control. The introduction of Bt cotton made it possible to reactivate
this crop in 1996; in previous years, it was greatly reduced due to pests, production costs,
and environmental concerns [50]. Drip irrigation under plastic mulching is widely used
in northwest China and integrates plastic film mulching with surface drip irrigation. The
water-soluble fertilizer is dissolved to form an aqueous solution. This strategy consumes
12% and 50% less water than conventional irrigation and sprinkler irrigation, respectively,
and reduces the amount of fertilizer required by 15–20% [51]. Moreover, light and sim-
plified nurseries and transplanting of cotton seedlings are new technologies destined to
replace traditional nutrition-bowl nursery and transplanting [52]. The use of transplanting
machines for cotton seedlings reduces labor intensity and improves efficiency. In addition,
the cotton agribusiness in China has recently adopted plastic film mulching, reducing
the effect of global warming on sowing time relative to crops such as wheat, maize, and
potatoes [18].

4.3. Limitations of the Study and Future Prospects

Chinese cotton production from 1949 to 2020 was divided into five periods by applying
the mutation test, and the data from each period were averaged. This treatment avoids the
random error caused by natural disasters or financial crises that plague studies based on
individual years. The years identified by the cotton production mutation test as important
mutations are designated as key event milestones for cotton cultivation in China [33]. For
example, in the 1960s, China issued a notice on good seed breeding, which motivated
farmers to grow cotton. In the 1980s, the fraction of good seeds surpassed 80%, and
the increase in the popularity of mulch led to a period of rapid development. China’s
acceptance into the World Trade Organization in the 2000s and the increase in its textile
exports led to the rapid development of cotton production. Cotton production reached
a record high of 7.60 million tons in 2007, accounting for about 30% of global cotton
production. However, since 2007, cotton production has been declining. Affected by the
financial crisis in 2008, cotton prices fluctuated widely. In addition, we study herein the
spatial and temporal variations in cotton cultivation by dividing the period from 1949 to
2020 into five time periods. The results for cotton cultivation in China obtained herein are
consistent with those of previous studies [3].

Due to limitations in data collection, this study does not consider how CO2, mulch,
or extreme weather affect cotton cultivation. However, these factors are still crucial. In
addition to these aspects, another pivotal element of agricultural practices is soil charac-
teristics [29]. Moreover, the GDM only detects the degree of impact of the impact factor,
whereas the sign of the impact (positive or negative) must be determined by the underlying
theory. Given the complex global changes of the future, safeguarding the stability of the
cotton industry despite the threat of international trade conflicts, and guaranteeing the
stable increase of cotton yields, require further study of the future spatial pattern of cotton
cultivation, which can provide a scientific basis on which government can develop the
appropriate strategies. Furthermore, it is possible to integrate satellite remote sensing
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imagery, climate data, and soil information to develop models for predicting cotton yield
across various regions in China.

5. Conclusions

A thorough investigation into the characteristics of variations in cotton cultivation
and its driving mechanism in the main cotton-planting areas of China can provide valuable
insights for decision making regarding climate change and crop management. In this study,
we have examined the spatial and temporal patterns of cotton cultivation in China and
established a five-level index system to assess factors influencing cotton yield. Employing
the Pettitt mutation test and GIS spatial analysis, utilizing a three-year moving average,
we have scrutinized the spatiotemporal dynamics of cotton cultivation in China from 1949
to 2020. Using the geographical detector model, we have quantitatively examined the
influences of 13 chosen driving factors on changes in cotton yield across various regional
scales between 1980 and 2020.

The main findings are as follows: all 17 Chinese provinces experienced advancements
in cotton yield. The timeline from 1949 to 2020 was divided into five distinct periods,
characterized by initially slow cotton yield growth, followed by a remarkable acceleration.
This approach mitigated random errors stemming from individual year-based studies
and designates them as pivotal milestones in Chinese cotton cultivation. Increases in
factors such as minimum temperature, average temperature, effective accumulated tem-
perature, and agricultural technologies like fertilizer usage, genetically modified varieties,
and mechanized farming have contributed to the enhanced cotton yield. The importance
of single factors influencing cotton yield of China in descending order was as follows:
F > Bt > M > GEO > EAT > O > PP > TES > ADT > SSD > D. However, the effects of driv-
ing factors vary across regional scales. The 13 selected driving factors have collectively
exerted amplified impacts on cotton yield variations due to interaction effects. The most
significant interaction effects were observed between chemical fertilizer use and other
driving factors. Specifically, the interaction between chemical fertilizer use (F) and mini-
mum temperature (TES) has the greatest explanatory influence in Northwest China. Our
finding emphasizes the key role of the interaction between agricultural technology and
climate change in cotton yield variations, which should be meticulously considered in
future research endeavors.
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