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Abstract: Legged agricultural transportation robots are efficient tools that can autonomously trans-
port goods over agricultural terrain, and their introduction helps to improve the efficiency and quality
of agricultural production. Their effectiveness depends on their adaptability to different environmen-
tal conditions, which is especially true for heavy-duty robots that exert ground forces. Therefore, this
study proposes a motion-control strategy for a heavy-duty transport hexapod robot. Two critical
tasks were accomplished in this paper: (1) estimating the support surface angle based on the robot’s
foot position and body posture, and accordingly determining the motion constraint conditions on
this support surface and the body posture based on energy optimization; (2) proposing an adaptive
fuzzy impedance algorithm for real-time force–position composite control for adjusting foot position,
in order to reduce the steady-state force tracking error caused by terrain stiffness, thus ensuring body
stability through tracking of variable foot-end forces. An element of hardware in the loop control
platform for a 3.55-ton device was designed and compared with the current popular force-control
methods under different external contact terrains. The results show that the proposed control method
can effectively reduce force errors, establish support forces faster on less-stiff environments, and
reduce the torso tilt during phase switching.

Keywords: agricultural robot; environmental adaptation; adaptive impedance control; unstructured
terrain

1. Introduction

As robots continue to expand their role within agricultural settings, there has been
extensive research on agricultural robots [1]. The primary research focus has largely been
on wheeled and tracked mobile robots [2]. These robots accomplish various tasks through
the integration of multiple sensor technologies such as computer vision, radar, GPS, and
audio signals [3,4]. In agricultural activities, most of which are on unstructured terrain
often accompanied by rugged and steep road surfaces, compared with other types of robots,
the main advantage of legged robots given the unstructured terrain is their excellent terrain
adaptability, together with the corresponding top-loading platforms, which can play a good
role in the development of agricultural production [5]. On an unstructured terrain, studying
the posture of legged robots is crucial for their adaptation to the environment. Adjusting
their posture to suit the terrain can improve their adaptation ability. To achieve this, Song
et al. [6] proposed a quasi-static climbing gait that enhances the movement of a robot on
complex terrain. This gait enables the robot to climb steps that are 3.9 times the length
of its legs. Lee [7] conducted a study on a hexapod adaptive suspension vehicle (ASV)
by analyzing the robot’s body posture on various inclines. A hexapod robot can traverse
surfaces at different inclination levels by adjusting its torso height and posture. However,
owing to the inherent variability in the end position of the foot and the susceptibility of
legged robots to external environmental factors, controlling their motion on unstructured
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terrain has become a subject of extensive research [8,9]. A hexapod robot can traverse
surfaces at different inclination levels by adjusting its torso height and posture. Boston
Dynamics [10] developed the Little Dog, a four-legged robot that optimizes its stance to
maximize the movement space while ensuring that its torso does not collide with the
ground. However, achieving energy efficiency is challenging for legged robots with high
loads [11]. A poor distribution of foot forces can lead to energy wastage, out-of-range
joint moments, and even mechanical structural damage. Therefore, rational movement is
necessary to reduce energy consumption.

Impedance control [12] is a widely used robotic control technique that adjusts the
force-feedback error based on the relationship between the contact force and the robot’s
foot-end position. Zhu [13,14] proposed a hybrid sliding film control algorithm for a
hydraulic quadrupedal robot based on impedance control which resulted in improved
control accuracy. Subsequently, Wang [15] developed a whole-body control architecture
that included impedance control to reduce the impact of contact between the legs of a
six-legged robot and the environment, thus enabling smoother contact. However, conven-
tional impedance control models are prone to steady-state errors during force tracking
owing to uncertainties associated with the environmental parameters of the terrain [16].
Several approaches have been explored to mitigate such errors, with some focusing on
controlling the model reference [17–21]. For instance, Roveda [17] proposed a method
to estimate the environmental stiffness and adjust the controller gain to compensate for
unknown environmental stiffness, whereas Deng [18] employed an extended Kalman
filter to estimate force-tracking errors. Wang [20] introduced an impedance-estimation
method for estimating contact in an uncalibrated environment. However, none of these
methods demonstrated satisfactory force-tracking performance under time-varying forces.
Furthermore, because the aforementioned methods rely on the estimation of environmen-
tal impedance parameters, they inevitably incur errors when addressing complex and
variable environments.

Researchers have explored the use of variable impedance control methods based on
reinforcement learning and optimization-based approaches. Chao and Yang estimated
human stiffness dynamics using a dynamic motion primitive (DMP) [22] and a Markov
model with Gaussian mixed regression [23], respectively. Zhang, et al. [24] proposed a
convolutional neural network (CNN) supervised-learning method to calibrate the force
estimation algorithm. Modares [25] transformed the optimal parameter search problem
for impedance models into a linear quadratic regulator (LQR) problem. However, these
methods require extensive data collection or calculations that negatively affect the real-time
tracking of the time-varying forces of a robot.

In conclusion, the current impedance-control techniques for legged robots face diffi-
culties in achieving the desired tracking of time-varying forces in complex environments,
particularly when considering real-time performance. Previous studies have demonstrated
that adaptive architectures provide high robustness in uncertain dynamic systems [26–28].
Therefore, an adaptive motion strategy was proposed for complex terrains by adapting a
robot torso pose to the instant terrain considering motion constraints and energy-optimal
conditions under the support surface of the terrain. Subsequently, positional maintenance
was achieved through adaptive fuzzy impedance control as follows:

(1) A terrain-adaptive motion strategy was proposed, one which improves the stability
of the robot’s motion process by estimating the angle of the support surface on the
current terrain, setting up corresponding reaction mechanisms, and analyzing the
energy consumption of different positions on the same support surface to select the
most energy-efficient motion posture.

(2) The contact force dynamics were used to describe the influence of parameters such as
environmental stiffness on the impedance model, and an adaptive fuzzy impedance
control strategy based on force–position control was proposed to mitigate the impact
of the external environment on impedance control.
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(3) The efficacy of the proposed control strategy in complex environments was verified
through comparative experiments.

This paper is organized as follows: In Section 2, we present the motion model and
terrain estimation algorithm for an agricultural transportation robot with terrain adaptation
on the rugged terrains of agriculture. Section 3 presents an adaptive impedance system that
includes terrain-adaptive control and fuzzy parameter-adjustment methods. In Section 4,
we present an experimental validation of the proposed method. Finally, Section 5 concludes
the study.

2. Terrain-Adaptive Methods

The hexapod robot structure depicted in Figure 1 consists of two main components:
the torso and the legs. The legs and torso’s mounting positions are elliptically distributed,
and each leg comprises a hip joint, thigh, and shin connected by a rotating pair between two
adjacent segments, and a calf and foot-end connected by a ball hinge. An electro-hydraulic
control system was selected as the transmission system, and integrated with low-impact
motion trajectory planning to complete the trajectory planning. The robot can carry four
people and can traverse over 1 m obstacles and across 1.2 m trenches, as well as achieve
40◦ longitudinal climbing and 30◦ lateral climbing. The robot movement includes two
phases: swing and support. During the swing phase, the legs of the robot can be treated as
single-leg tandem mechanisms, whereas during the support phase, the legs and the torso
form parallel mechanisms. The position of the robot changes when it switches between
the two phases of motion. Defined based on the established coordinate system shown in
Figure 1, the coordinate transformation matrix formula for joint i can be obtained using
the D-H parameter method, and the D-H parameters of the robot’s single leg are shown in
Table 1.
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Figure 1. Structure of hexapod robot.

Table 1. D-H parameter of the leg.

Li di αi θi

Hip joint l1 0 π/2 θ1
Thigh l2 0 0 θ2
Shin l3 0 0 θ3

The transformation matrix of the foot-end of leg j of the hexapod robot relative to the
torso coordinate system is expressed as:Cxj3

Cyj3
Czj3

 =

 lj0 + l1cθ1 + l2cθ1cθ2 + l3cθ1c(θ2 + θ3)
bj0 + l1sθ1 + l2sθ1cθ2 + l3sθ1c(θ2 + θ3)

zj0 − l2sθ2 − l3s(θ2 + θ3)

 (1)
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2.1. Terrain Estimation

The overall terrain-perception process of the robot is as depicted in Figure 2. Initially,
the controller detects the force signal from the foot-end force sensor, determining whether
the foot-end has reached the support state based on whether the force exceeds the stable
force threshold for foot grounding. Subsequently, the position of the foot-end in the support
state relative to the body coordinate system is calculated through the displacement sensor
of the hydraulic cylinder. The position of the supporting leg end relative to the body
coordinate system is then recorded and, based on the body posture angle gathered by
the IMU, the position information of the foot-end under the body coordinate system is
transformed into the world coordinate system. Lastly, using the foot-end information
under the world coordinate system, a plane fitting method is applied to fit the terrain
information, thereby estimating the local terrain information where the hexapod robot is
currently situated.
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Figure 2. Flowchart of terrain awareness strategy.

To simplify the calculation of terrain estimates, a reference coordinate system, denoted
by OB-XBYBZB, was established to quantitatively convert the foot-end position information
when characterizing the local terrain. As illustrated in Figure 3, Origin B of the reference
coordinate system c coincides with Origin C of the torso coordinate system OC-XCYCZC,
whereas its x-, y-, and z-axis directions align with those of the reference coordinate system
OW-XWYWZW. The positional transformation of the torso is referenced to the world
coordinate system OB-XBYBZB, and the transformation matrix of the torso coordinate
system with respect to the world coordinate system is given by Equation (2).

B AC =


cγcα cγsαsβ− sγcβ cγsαcβ + sγsβ 0
sγcα sγsαsβ + cγcβ sγsαcβ− cγsβ 0
−sα cαsβ cαcβ 0

0 0 0 1

 (2)

where γ, α, and β denote the yaw, pitch, and roll angles, respectively, of the torso coor-
dinate system in the world coordinate system, as measured by the inertial measurement
unit (IMU).
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Figure 3. Diagram of reference coordinate system.

For any leg of the six-legged robot, the coordinates of the foot-end position relative to
the world coordinate system can be derived using Equation (3).

Bxj3
Byj3
Bzj3

1

 = B AC


Cxj3
Cyj3
Czj3

1

 (3)

The location information of the support foot was regarded as the terrain location
feature point in the terrain information, and a single-plane fitting method was employed to
fit these terrain location feature points. The primary plane-fitting equation was as follows:

z = f (x, y) = a0 + a1x + a2y (4)

where a0, a1, and a2 represent the coefficients of the plane equation.
The coefficients of the primary plane expression were determined using the least-

squares method based on the coordinates of the foot-end position of the hexapod robot in
the support phase. The solution equation is as follows: a0

a1
a2

 = (AT A)ATZ (5)

where A = [1 Bxsj3
Bysj3], Z = [Bzsj3], sj3 is the number of legs in a supported state, and the

number of legs in different gaits varies, and is obtained based on trajectory planning.
By segmenting the terrain slope based on the ground-pitch and side-inclination angles,

an equation for estimating the slope of an unexplored terrain was obtained:{
ϕx = arctan(a2)
ϕy = arctan(a1)

(6)

2.2. Attitude Adaptive Adjustment
2.2.1. Torso Safety Dimension Constraints

The robot must avoid collisions between its torso and the environment when traversing
complex terrain. Thus, when the terrain slope varies significantly, it is necessary to establish
a geometric constraint between the robot torso safety zone dimensions and the terrain
slope. The solid box in Figure 3 represents the torso profile of the robot, while the dashed
line represents the minimum allowable torso safety zone dimensions for a six-legged robot
with torso length l height w, and width h. The ground-pitch and ground-side-tilt angles, ϕx
and ϕy, were estimated.

To ensure that the torso is not interfered with by the terrain, point D must remain above
the slope throughout the motion. The torso attitude angle and geometric constraints facili-
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tated the determination of the coordinates of point D relative to the reference coordinate
system OW-XWYWZW. 

BxD = l
2 cos α− w

2 sin α
ByD = h

2
BzD = l

2 sin α− w
2 cos α

(7)

Substituting the coordinates from Equation (7) into Equation (4) yields the constraint
equation for a safe torso zone size.

a0 + (
l
2

cα− w
2

sα) tan ϕy +
a2h
2
− (

l
2

sα− w
2

cα) tan ϕx < 0 (8)

a0 =
H√

a1
2 + a22 + 1

(9)

Thus, when the torso-pitch, cross-roll, ground-pitch, and ground-side-tilt angles are β,
α, ϕx, and ϕy, respectively, the constraint relationship between the torso position and the
terrain environment can be obtained by combining Equations (6) and (9) as follows:

(
l
2

cα +
w
2

sαsβ +
h
2

sαcβ) tan ϕy −
l
2

sα− h
2

cαsβ +
H√

(tan ϕy)
2 + (tan ϕx)

2 + 1
+ (

w
2

cβ− h
2

cβ) tan ϕx < 0 (10)

The robot needs to adjust its torso posture to change its direction of motion when
there are obstacles in the motion’s path. An RGB-D camera is installed directly in front
of the robot’s centroid in the x direction. The distance between the obstacle and the robot
is calculated based on depth information when the target obstacle is detected. Then, by
adjusting the posture of the torso, obstacle avoidance actions are performed in advance,
as shown in Figure 4a. R is the safe distance to adjust the yaw angle of the torso. The
calculation formula for torso deflection angle δ is as follows:

δ= arccos
br/2 + w2/2√

xdr
2 + ydr

2
− arctan

ydr
xdr + l

(11)

where xdr and ydr are the positions of obstacles relative to camera coordinates, and their
border dimensions are br and hr; w2 is the safe size of the robot’s zone, and l2 is the distance
from the camera to the centroid.
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2.2.2. Stability Constraints on Inclined Terrain

This study proposes a normalized energy stability margin (NESM) as a criterion for
assessing the stability of a robot on an inclined terrain. The NESM method considers
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the center of mass of the robot, the locations of the support feet’s ends, and the slope of
the terrain.

As shown in Figure 4b, the center-of-mass location in the reference coordinate system
is denoted by BOG (BxG, ByG, BzG). The adjacent foot-end points of the robot for leg-
end positions leg1 and leg3 are denoted as A1 (Bx13, By13, Bz13) and A3 (Bx33, By33, Bz33),
respectively. The point SOG is the projection of the center-of-mass on the slope surface
S, and BOG forms a vertical line with Line A1A3. The intersection point of BOG and the
vertical line is N (BxN, ByN, BzN). Point BOGh is the highest point that BOG can reach by
rotating around the support edge A1A3. The angle between BOGh and the horizontal
plane is denoted as θ. The angle between the support boundary c and the horizontal
plane is denoted as α, and M is the intersection point of the perpendicular line from the
center-of-mass BOG to the straight line BOGhN.

The expression for the line A1A3 can be found from the following linear formula:

x− Bx13
Bx33 − Bx13

=
y− By13

By33 − By13
=

z− Bz13
Bz33 − Bz13

(12)

The distance from point BOG to line A1A3 was calculated using the following formula:

Di =

√
P + K + W√

Q
(13)

where W =

∣∣∣∣BzG − Bz13
BxG − Bx13

Bz33 − Bz13
Bx33 − Bz13

∣∣∣∣; K =

∣∣∣∣ByG − By13
BzG − Bz13

By33 − By13
Bz33 − Bz13

∣∣∣∣;
and P =

∣∣∣∣BxG − Bx13
ByG − By13

Bx33 − Bx13
By33 − By13

∣∣∣∣.
The normal vector of the vertical plane A1A3

BOGh passing through the straight-line c
is as follows:

nA1A3
BOGh

=

 i j k
BxG − Bx13

ByG − By13
BzG − Bz13

0 0 1

 (14)

The vector of line BOGN can be found when the coordinates of N and BOG are known.

lBOGN = (BxN − BxBOG
, ByN − ByBOG

, BzN − BzBOG
) (15)

ζi = arcsin(
lBOGN · nA1A3

BOGh∣∣∣lBOG N

∣∣∣ · ∣∣∣nA1A3
BOGh

∣∣∣ ) (16)

The angle between A1A3 and the horizontal plane ξi can be determined similarly.
The degree of stability with A1A3 as the boundary condition can be calculated from the
definition of NESM, as follows:

Ei = Di(1− cos ζi) cos ξi (17)

Based on the definition of NESM, the minimum value of the degree of stability for
each adjacent support boundary was considered. Thus, the stability margin is defined as:

E =
n

min
i

Ei = Di(1− cos ζi) cos ξi (18)

The robot was considered stable when E > 0, with a larger E indicating greater stability.
Therefore, when optimizing the poses of the robot, a stability margin threshold Emin should
be set, and the stability margin at any moment of the motion should be greater than Emin.
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2.2.3. Adaptive Attitude in Terms of Energy Consumption

The hydraulic driving force of the legs of the hexapod robot was calculated, with
Legs 1, 3, and 5 serving as support legs. Based on the leg structure and the planned foot
force trajectory, the position of the foot-end relative to the base joint and the magnitudes
of the large and small leg drive forces were analyzed for a constant foot-end force; the
results for Leg 5 are shown in Figure 5a,b. Because the hexapod robot leg is hydraulically
driven, the driving force of the hydraulic system is determined by the maximum load,
which is given by the force on the side with the higher force. The relationships between
the hydraulic-system drive force F and the geometric parameters H0 and B0 are shown in
Figure 5c. It was observed that when B0 is greater than 0.65 m and less than 1.75 m, the
hydraulic system driving force F changes uniformly; with an increase in H0, it initially
decreases and subsequently increases, and it gradually increases with an increase in B0.
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In this study, we analyzed the impact of the center-to-ground height H of the hexapod
robot torso form, torso-pitch angle α, and roll angle β on the energy consumption during a
four-legged support movement (Leg 1, Leg 2, Leg 4, and Leg 5) across different terrains.
Three terrain scenarios (ϕx = 5◦, ϕy =30◦; ϕx = 10◦, ϕy =20◦; and ϕx = 10◦, ϕy =10◦)
were investigated.

The results shown in Figure 6 indicate that when the pitch angle ϕy of the terrain
is small, and the α and β values are close to the terrain slope, the robot consumes less
energy during one gait cycle. As the terrain slope decreases, the torso of the robot becomes
parallel to the incline, resulting in an increased side-swing cylinder force and a reduced
force on the thigh and lower leg cylinders. However, the cylinder pressure remained high
at the base junction because the thigh and leg cylinders primarily supported the weight
of the robot. The output pressure of the hydraulic system depends on the maximum load,
resulting in minimal energy consumption at this stage. As per the analysis in Figure 5, the
force required to maintain system balance varies under different postures. When the torso
stance was not parallel to the support surface, a difference was observed in Czj3 between the
endpoints of the feet of the support legs in the torso coordinate system, which exacerbated
the uneven output force of the hydraulic cylinders of each support leg and increased the
energy consumption of the hydraulic system. In contrast, when the terrain slope angle
was large, the maximum output pressure of the hydraulic system depended on the output
pressure of the lateral swing cylinders, resulting in an increase in the output pressure of the
hydraulic system.
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As the center-to-ground height of the torso form increased, the energy consumption
initially decreased and then increased. This is because the maximum force of the hydraulic
system decreased and then increased with the variations in height H. Moreover, as height
H increased, the range of available torso-pitch and roll angles also increased, which were
constrained by the torso safety zone size and drive hydraulic-cylinder position limits.
When the terrain slope increased, the stability constraint became dominant, restricting the
torso’s attitude and reducing the range of selectable attitudes.

Different levels of energy consumption were observed for different terrains and body
postures. On a rough terrain, the individual support legs required unique footing points,
and legs with higher posture forces experienced smaller foot-end force distributions to min-
imize the energy usage of the overall system. Therefore, we optimized the postures, with
the objectives of reduced energy consumption and increased use of the torso’s kinematics,
and selected the appropriate torso postures so that the hydraulic drive force would be as
small as possible and the torso’s workspace would be as large as possible. The optimization
method was to collect multiple sets of simulation data as samples and use them to train
a BP neural network model. The input was the terrain angle formed by the supporting
feet and the initial height of the body, and the output was the body posture angle with the
lowest energy consumption.

3. Force–Position Adaptive Impedance Control of Legs
3.1. Attitude Adaptive Adjustment

Figure 7 presents the overall control diagram of this study, which primarily includes
terrain perception, trajectory planning, and controller components. The environment
perception component comprises the terrain perception discussed in Section 2.1, as well
as the obstacle detection based on the vision module. Following this, corresponding
trajectory planning is conducted according to the perceived environment, mainly including
safety constraints, stability control, and energy-optimal posture adjustment, as discussed in
Section 2.2. Lastly, tracking control is performed on the foot-end force and cylinder position
based on the trajectory planning.
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Figure 7. Diagram of motion strategy for heavy-duty hexapod robot.

A force–position composite control was employed to maintain body-posture stability
during motion. The control method for the leg is the integration of an outer-loop adaptive
fuzzy impedance algorithm with an inner-loop position control. The impedance controller
generates the position correction ∆X based on the difference ∆F between the contact force
F and the desired force Fr, and the motion position Xr is subsequently adjusted with the
position correction ∆X. This enables the six-legged robot to maintain its body posture on a
complex terrain by tracking the force.

In this study, the inner-loop position control utilized a neural network controller. A
neural network controller, which continuously learns through feedback errors, was selected
as the position controller; it gradually assumes the dominance of the control behavior. The
outputs of the neural network control are as follows:

u(t) = un(t) + u f (t) (19)

where uf(t) is the output of the PD control and un(t) is the output of the neural network model.
In the early stages of control, the feedback controller plays a predominant role, with

the untrained neural network controller continuously learning through feedback errors.
This is a process of simultaneous control and learning, possessing the ability to adapt
to changes in the object and the environment. In this study, a three-layer feed-forward
network has been utilized as the controller. The input–output relationship of the controller
can be described as:

un(t) = WT
OH(t) f

[
WT

HI XI(t) + θH(t)
]

(20)

where XI = {r, e(t), . . . , e(t−m + 1)} is the input vector of the network where r is the
reference input; et is the tracking error; WT

OH(t)W
T
HI(t) are the weight matrices from the

output layer to the hidden layer and the hidden layer to the input layer of the neural
network controller; and θH(t) is the input bias of the hidden layer unit. The learning rules
of the network weights can be derived according to the feedback error learning method, as:

d[w(t) ,θ(t)]T

d(t)
= η(t)|∂un(t)

∂π(t)
|TE
[
u f (t)

]
(21)

where η(t) is the learning rate; to avoid oscillations in the system, the following adaptive
adjustment of the learning rate is used:

η(t) = 2λη(t− 1) (22)



Agriculture 2023, 13, 2131 11 of 23

λ = sign[ ∂un
∂[w(t) ,θ(t)]T

∂un
∂π(t−1) ] (23)

When the output of the PD feedback controller is smaller than the set threshold,
the learning of the neural network ends temporarily, and the neural network controller
completely replaces the feedback controller, controlling the system.

3.2. Adaptive Impedance Control

The position-based impedance control model can be conceptualized as a virtual spring
model. Mathematically, the impedance control model can be expressed as a function of the
robot forces, as follows:

∆F = Md∆
..
X + Bd∆

.
X + Kd∆X (24)

where Md, Bd, and Kd are the target inertia, target damping, and target stiffness matrices
of the impedance control model for the robot, respectively; ∆F = Fr − F, ∆X = X − Xr. F
and Fr represent the actual and desired contact forces, respectively, and X and Xr represent
the actual and desired positions, respectively. When the foot-end of the robot is in contact
with the environment, the impedance outer-loop control generates a position compensation
value. This value represents an integrated control object consisting of the terrain environ-
ment and the foot-end of the robot. The contact model between the foot-end and the terrain
environment can be simplified as follows:

F = Me(
..
X−

..
Xe) + Be(

.
X−

.
Xe) + Ken(X− Xe) (25)

where the stiffness matrix (Me), damping matrix (Be), and stiffness matrix of the environ-
ment (Ken) are fundamental parameters used to describe the interaction of a legged robot
with its surrounding terrain. X and Xe indicate the terrain positions.

When the foot-end maintains stable contact with the terrain, the small acceleration
and velocity terms in the equation do not significantly affect the foot-end force (F) and can
therefore be disregarded.

To simplify the contact model between the foot-end and the terrain environment, this
study proposes using a spring model that considers the environmental stiffness (Ke), which
is equivalent to the leg stiffness (Kl) and terrain environment stiffness (Ken) in series.

F = Ke(X− Xe) (26)

In this study, we focused on the force in the z-direction, and the following equations
were obtained from Equation (25): 

.
x =

.
f

ke
+

.
x

..
x =

..
f

ke
+

..
xe

(27)

After substituting Equation (27) into Equation (24), the following equation is obtained:

mz
d

..
e f + bz

d
.
e f + (kz

d + kz
e)e f = mz

d
..
q + bz

d
.
q + kz

dq (28)

where q = f z
r + kz

e xe − kz
e xr and owing to the uncertainty of the terrain location, an esti-

mation of environmental position x̂e is utilized. By setting the desired trajectory xr = e,
q = f z

r + kz
eηxe.

The error function of the force is obtained according to Equation (28):

E(s) =
(mz

ds2 + bz
ds + kz

d)q(s)
mz

ds2 + bz
ds + kz

d + kz
e

(29)
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Subsequently, the error equation for the steady-state force is:

ess = lim
s→0

sE(s) = lim
s→0

s(mz
ds2 + bz

ds + kz
d)q(s)

mz
ds2 + bz

ds + kz
d + kz

e
(30)

When fr is a constant force, the steady-state force error is:

ess =
kz

d( f z
r + kz

eηxe)

kz
d + kz

e
(31)

Equation (31) shows that to achieve zero steady-state force error in impedance control,
either condition kz

d = 0 or f z
r = kz

eηxe must be satisfied. However, for a hexapod robot
navigating a complex environment, it is challenging to measure the exact equivalent
environmental stiffness (ke) and position (xe), which makes it difficult to satisfy the condition
f z
r = kz

e ηxe in practice. The center-of-gravity of the hexapod robot changed as it walked,
resulting in a time-varying force at the foot-end. When fr is a time-varying force, the steady-
state force error still exists, even if kz

d = 0 is set. To mitigate this error, this study proposes
an adaptive compensation algorithm to enhance the foot-end tracking performance against
time-varying expected forces in the face of environmental uncertainty. Specifically, an
adaptive compensation term is introduced into the control scheme.

Γ(t) = Γ(t− k) + ς( f z
r (t− k)− f z(t− k)) = Γ(t− k) + ςez

f (t− k) (32)

where ς is the adaptive learning rate and k is the sampling period of the controller.
Assuming kz

d = 0 and incorporating the adaptive compensation term, the impedance
model can be reformulated as follows:

mz
d(

..
x(t)− ..

xr(t)) + bz
d(

.
x(t)− .

xr(t)) = ez
f (t) + Γ(t) (33)

The steady-state force error equation can be re-derived as follows:

mz
d

..
ez

f (t) + bz
d

.
ez

f (t) + kz
eez

f (t) + kz
eΓ(t) = mz

d
..
q(t) + bz

d
.
q(t) (34)

Expanding the Γ(t), the first term of the expansion is set to zero, after which the
expansion is applied to Equations (33) and (34).

mz
d

..
ez

f (t) + bz
d

.
ez

f (t) + kz
eez

f (t) + ςkz
e(e

z
f (t− (n + 1)k) + · · ·+ ez

f (t− k)) = mz
d

..
q(t) + bz

d
.
q(t) (35)

This equation can be transformed using Laplace to obtain the transfer function for the
steady-state force error.

e f (s) =
mz

ds2 + bz
ds

mz
ds2 + bz

ds + kz
e + ςkz

e(e−(n+1)ks + · · ·+ eks)
q(s) (36)

The stability condition of the system can be determined using the Rouse stability criterion.

0 < ς <
kbz

d
mz

d + kbz
d

(37)

By substituting the constant force expectation and variable expectation force into the
steady-state force error function as input signals, the corresponding table for the steady-
state force error can be obtained, as shown in Table 2. The proposed adaptive strategy
enables force tracking to achieve convergence and eliminate steady-state errors.
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Table 2. Steady-state error table for force tracking.

fr = A fr = Bt2 fr = ct2

IC kd A/(ke + kd) ∞ ∞
Kd

Z = 0 0 bdB/ke ∞
AD 0 0 mdc/σke

Figure 8 depicts the joint simulation system constructed using MATLAB/Simulink and
Adams to analyze the influence of md, bd, and ke on the control performance of the system.
Figure 8c shows that as the target impedance inertia parameter md decreases, the response
speed increases, while the regulation time and overshoot decrease. However, when the
overshoot approaches a zero value, md decreases again, leading to a decrease in the response
speed and an increase in the time required to reach a steady state. Figure 8b indicates
that increasing bd results in a decrease in the response speed and regulation time, whereas
the absence of an overshoot leads to a decline in the response speed. However, when an
overshoot is absent, increasing bd leads to a decrease in the response speed. Figure 8a reveals
that changes in the environmental stiffness parameters result in significant variations in
the force-tracking performance. Therefore, we proposed a real-time self-adaptive fuzzy
algorithm to adjust the impedance model parameters based on the error information
determined between the expected and actual contact forces. This approach enhances the
force-tracking performance of the impedance controller under different environmental
parameters, thereby improving the adaptability of a six-legged robot to its surroundings.
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The primary challenge in creating an impedance control system involves the selection
of appropriate impedance control parameters to improve adaptability to varying environ-
ments. Therefore, we proposed a real-time self-adaptive fuzzy algorithm [29] to adjust
the impedance model parameters based on the error information determined between the
expected and actual contact forces.

The fuzzy control rules for the proposed method are as follows. When the error
and error-change rate between the desired force at the foot-end and the contact force are



Agriculture 2023, 13, 2131 14 of 23

significant, the target damping parameter should be small to enhance the system response.
Conversely, when the error and error change rate between the desired force at the foot-
end and contact force are negligible, the target damping parameter should be large to
minimize the overshoot of the system and suppress its oscillation. Because the target
inertia parameter md is sensitive to the dynamic response, and the effects of md and bd on
the control system are relatively similar, we adjusted the target damping parameter bd to
reduce the complexity of the control system. The input of the fuzzy controller is the error Ef
between the expected force fr at the foot-end and the contact force F, and the rate of change
Ecf of the force error is calculated using Equation (38). The output of the fuzzy controller is
an increment in the target damping parameter of the impedance controller.{

E f = (Fr − F)

Ec f =
E f
κ

(38)

where κ represents the sampling period.
The theoretical domain of the input and output quantities of the fuzzy controller is con-

sidered as [−1, 1], and the corresponding normalization coefficients transform the ranges of
the input and output quantities into the theoretical domain interval. The output of the fuzzy
controller is an increment in the target damping parameter of the impedance controller.

Ẽ f =
2

E f max−E f min
· (E f −

E f max+E f min
2 )

Ẽc f =
2

Ec f max−Ec f min
· (Ec f −

Ec f max+Ec f min
2 )

∆b = ∆b̃(∆bmax−∆bmin)
2 + ∆bmax+∆bmin

2 )

(39)

where Efmax, Efmin, Ecfmax, Ecfmin, ∆bmax, and ∆bmin are the maximum and minimum values
of Ef, Ecf and ∆b, respectively.

The fuzzy inference process, as shown in Figure 9, involves dividing the various input
and output quantities of the fuzzy controller into seven fuzzy levels [NB, NM, NS, ZE,
PS, PM, PB], which increase in order from NB to PB. The Gaussian-type subordination
function was selected as the subordination function. The fuzzy control rules and image
of the affiliation function for the target damping parameter adjustment were established
according to the principle of target damping parameter adjustment. The parallel method
was used for fuzzy inference, and the center-of-gravity method was used for defuzzification.
The increment of the normalized target damping parameter ∆b̃ was obtained.
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3.3. Force Tracking Experiment

To validate the ability of the force-tracking algorithm to operate on real robots on
different terrains, this study conducted experimental investigations on terrain obstacles of
varying environmental stiffness. The torso height of the robot was set to 0.4 m above the
ground, the gait period was 2 s. The experimental setup involved using the five legs of the
hexapod robot as supports while moving the remainder leg within three different terrain
environments: hard ground, soft foam ground, and soil. The movements included swing,
contact, and foot force tracking. The inertia parameter was set to md = 100 kg, and the input
quantity ranges of the fuzzy controllers Ef and Ecf were [−5000, −5000] and [−1000, 1000],
respectively. The initial value of the damping parameter was bd = 2000 N/(m/s), and
the output damping parameter adjustment range was [−5000, 5000]. Figure 10 illustrates
the experimental results of the robot on different terrains by comparing different force-
tracking algorithms.
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Figure 10. Performance of force tracking for different environmental stiffnesses. (a) Slope force
tracking in soft soil terrain. (b) Slope force tracking in soft foam terrain. (c) Slope force tracking in
hard terrain. (d) Acceleration force tracking in soft soil terrain. (e) Acceleration force tracking in soft
foam terrain. (f) Acceleration force tracking in hard terrain.

The force-tracking curves in different terrain environments displayed different re-
sponses, as shown by the experimental results. In hard-terrain environments, where the
landing impact was greater, both foot force tracking algorithms exhibited faster responses,
as shown in Figure 10e,f. The adaptive compensation algorithm (AD) for force tracking
showed a response process similar to that of the traditional impedance control (IC), ow-
ing to the large equivalent terrain stiffness of the hard terrain, which resulted in a small
steady-state error. On the soft-foam terrain (Figure 10c,d), where the impact force when the
foot-end falls to the ground is low, the IC algorithm tracking of the desired acceleration
force showed a state of nonconvergence of the force steady-state error. However, as the
leg was compressed, the equivalent environmental stiffness gradually increased, and the
steady-state error decreased. The AD algorithm improved the response speed and exhibited
a relatively small steady-state force error. As shown in Figure 10a,b, the impact force on
the foot-end hitting the ground is negligible on the soil. Owing to the lower equivalent
stiffness of the soil terrain environment, the response of the IC algorithm becomes slower,
and the steady-state force error in force tracking increases. The steady-state error decreases
as the soil is compressed, and the equivalent environmental stiffness increases.
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The AD algorithm tracks the slope expectation force with a faster response rate and
convergence in the steady-state error of force for tracking the acceleration expectation
force. The performance of the force-tracking effect is better than that of the IC, which not
only improves the response speed, but also results in a relatively small force–steady-state
error. However, the adaptive fuzzy (AF) algorithm demonstrated improved performance
in force tracking, resulting in a better response speed and reduced force overshoot. Overall,
the introduction of the response process increased the amount of overshoot in the system
response compared with that without the AD. The introduction of the AF algorithm resulted
in relatively better tracking of slope forces at the foot-end of the leg.

4. Experimental Studies and Discussion

The experimental platform utilized for the study of the six-legged robot discussed in
this study is depicted in Figure 11. The hexapod had a total mass of 3.55 metric tons, with
an electrohydraulic servo mechanism based on hydraulic propulsion. Once the desired
trajectory was established, the corresponding current value was input to the servo valve
to regulate the movement of the hydraulic cylinder associated with the valve, which was
equipped with a built-in displacement sensor to provide feedback regarding its position. A
hydraulic pump supplied by Danfoss offered a maximum output pressure of 31 MPa.
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Figure 11. Experimental platform for heavy-duty transport robot.

The robot features a force sensor and an attitude and heading reference system to
enable monitoring of the vehicle’s status. The distributed visual perception system was
set up using the Nvidia Jetson Nano processor and the PyTorch framework. The YOLOv5
algorithm [30] was used as a neural network algorithm. The categories of obstacles were
set as tree trunks, people, cars, and boulder. The samples of relevant detection results
are shown in Figure 10, and the information of obstacles was transmitted to the motion
controller through serial communication. Following calibration, the error between the
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obstacle coordinates obtained from the vision module and the actual coordinates was found
to be less than 8 mm. This level of precision enables the supply of obstacle information for
the obstacle-avoidance strategy outlined in Section 2.2.1. The control approach involves
a hardware-in-the-loop system that utilizes an embedded control host powered by the
VxWorks operating system with a control cycle of 1 ms and real-time data transmission
facilitated through UDP communication to the host computer. The multi-sensor data type
and driver configurations were established on the PCI board, and the program’s real-time
simulation model and driver were developed using MATLAB/Simulink. The simulation
program was coded using Microsoft Visual Studio. The structure of the neural model in this
experiment was set as 3× 8× 1, the initial weights of the neural network were randomly
selected within [−0.1, 0.1], the learning rate was set as 0.07, and the value range of the
neuron selection sigmoid activation function was [−1, 1]. The parameters of the adaptive
fuzzy impedance were set to be the same as the experimental parameters in Section 3.3.

First, the effect of the force–position composite control algorithm on the posture of the
torso during motion was compared. The experimental scenario is shown in Figure 12. The
full cycle consisted of three steps, with two legs for swing in each step and the remaining
four legs for support. This gait style is more suitable for complex terrain, because it has
higher stability than three-legged support. The base junction foot-end phase began at an
initial height of −0.4 m, and the motion step length was 0.8 m. Each step took 3 s, with
a 0.3 m lift in the z-direction when swinging. The motion trajectory of the robot used
a low-impact foot-end trajectory method that facilitated the initial position and velocity
constraints by employing acceleration as a sinusoidal function.
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Figure 12. The motion process of the hexapod robot in complex terrain.

The trajectory of the leg on one side of the hexapod robot during position-based control
relative to its initial stance in the forward Y-direction and vertical Z-direction is shown
in Figure 13a. Each side of the robot has two support-legs and one swing-leg involved
in each gait cycle, and the force on each leg is shown in Figure 13b, where the right front
(RF) leg and right middle (RM) leg step on the obstacle at 2.73 s and 5.45 s, respectively.
The larger force generated when the obstacle is stepped on also affects the forces on the
other legs, which has a greater impact on the torso stance of the body. During the support
process, owing to the uncertainty of the terrain, the position of the center-of-mass changes
accordingly at different slopes, leading to a large deviation in the force of each leg from the
expected force, when the posture of the robot torso is influenced by the environment. The
robot’s torso posture is shown in Figure 13c, and due to the irregular terrain of the landing
point, the robot’s roll and pitch angles have undergone significant changes. Figure 13d,e
show the z-direction coordinates of the legs in the force–position control situation and the
forces acting on the legs; it can be seen that when the obstacles are encountered during
the swing phase at 2.65 s and 5.68 s, the sensor detects the changes in force and avoids the
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obstacles by adjusting the displacement in the z-direction, which is adjusted to avoid the
movement of the entire vehicle. In the support phase, the change in the displacement in
the z-direction is adjusted according to the change in the support force, thus ensuring that
the desired force of the leg to the torso support agrees better, and that the foot-end force
can fluctuate around the desired force to achieve dynamic equilibrium. The posture of the
robot’s trunk is shown in Figure 13f, and it can be seen that the robot can maintain stability
of the trunk after a brief adjustment during phase switching. This indicates that the control
method proposed in this article can enable the robot to maintain the target attitude while
moving in complex terrain.
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by position control. (b) Force at the end of the foot controlled by position (c) Angle of the trunk
controlled by position. (d) End-of-foot tracking via position-force control. (e) End-of-foot force
tracking via position-force control. (f) Angle of the torso via position-force control.

To validate the posture optimization method adapted for various terrains, experiments
were conducted using two types of terrains: the hillside, with a pitch angle of 10◦, and
asphalt pavements which had a pitch angle of 14◦, as shown in Figure 14. Experiments were
conducted with the hexapod robot walking on a slope at different trunk center-of-mass
heights (H) and trunk pitch angles (ϕy). The robot’s total energy consumption for each
stride was determined through the pressure and flow of the hydraulic system. The system’s
working pressure was obtained through a pressure sensor, and the working flow was
calculated based on the cylinder displacement. As shown in Figure 15, it can be observed
that under two slope conditions, the energy consumption of the hexapod robot with the
growth of H exhibits a trend of initially decreasing and then increasing. Moreover, as the
trunk pitch angle increases, the energy consumption gradually decreases. At a terrain pitch
angle of ϕy = 10◦ and a trunk center-of-mass height of H = 400 mm, the minimum energy
consumption occurred when the trunk pitch angle was at 10◦. The theoretically calculated
result was 34.2 kJ, while the experimental result was 36.1 kJ. When the estimated slope
was at a pitch angle of ϕy = 14◦, the minimum energy consumption of the hexapod robot
occurred at a trunk center-of-mass height of H = 400 mm and a trunk pitch angle of 14◦.
The theoretical result was 33.1 kJ, and the experimental result was 35.0 kJ. The actual energy
consumption of the robot hydraulic system in each step is shown in Table 3. These results
indicate a certain discrepancy between the theoretically calculated energy consumption
and the actual values. This discrepancy is due to additional energy consumption caused
by pressure shocks and position errors during the actual motion process. However, the
trend of energy consumption changes with posture being observed in actual walking is
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consistent with the theoretically calculated energy consumption, thereby validating the
effectiveness of the posture optimization strategy proposed in this study.
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Table 3. Table of actual energy consumption.

Pitch Angle H = 200 mm H = 300 mm H = 400 mm H = 500 mm

ϕy = 10◦

0◦ - - 49.7 54.2
2◦ - 46.4 45.9 49.8
4◦ 43.1 44.0 43.1 46.7
6◦ 40.3 40.6 40.6 43.2
8◦ 38.7 37.9 37.5 40.8

10◦ 36.3 35.9 36.1 40.0

ϕy = 14◦

2◦ - - - 55.2
4◦ - - 50.1 50.8
6◦ - 48.6 46.9 46.6
8◦ 45.7 45.7 43.4 43.2

10◦ 42.7 41.8 39.6 39.9
12◦ 39.5 39.2 37.0 38.0
14◦ 37.9 36.5 35.0 36.6

To validate the performance of the proposed self-adaptive fuzzy impedance control
method for actual robot motion, we conducted a comparative analysis of the proposed
method with the impedance control method (ICM) used in the previous reference [15].
As shown in Figure 14, the robot fell into the hillside pavement while moving, indicating
that the hillside pavement was less stiff than the rigid asphalt pavement Because terrain
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uncertainty has a significant impact on the comparative study results, a transition phase
was added in the phase-switching process by introducing a six-legged co-supported gait
before the switching phases, and a constant force was set as the expected force of the
support leg during this phase.

The experimental results are shown in Figure 16. The right rear (RR) leg of the robot
was the focus of this study, and a three-step motion was used. The movements proceeded
as follows: 1–2 s of the swing phase, where the expected force is zero; 2–2.5 s of the
transition phase, where the RR leg serves as the support for the next phase of the gait,
and the expected force is constant at 6000 N; and 2.5–5 s of the support phase, where
the expected force is obtained through trajectory planning and foot force distribution
algorithms, resulting in a variable force at variable acceleration. As shown in Figure 16a,
both control algorithms exhibit faster responses on hard terrain. The steady-state error in
the force did not differ significantly. Figure 16b,c shows the displacement compensation
of the two control algorithms and the pitch angle of the robot body in the z-direction at
this stage. The tilt angle of the robot body is smaller during the switching phase, and the
control effects of the two algorithms are approximately the same.
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The performance of legged robots is significantly affected on hillside terrain, where
the ground stiffness is low. The experimental results depicted in Figure 16d show that,
during the transition phase, the ICM is more sensitive to the environment, causing a slower
response while tracking the constant force and resulting in force-tracking errors of constant-
force tracking during the gait time. In the support phase, the traditional impedance method
establishes the target support force in 0.43 s, while the AF control algorithm proposed in
this study establishes the target support force in 0.16 s. Both control algorithms exhibit
improved desired force-tracking effects, because the robot compressed the soil during the
motion, owing to self-weight. This improved the terrain stiffness, particularly by adding a
transition phase, thereby reducing the steady-state error. As shown in Figure 16f, in the
low-stiffness environments and during phase switching, the maximum tilt angle of the
body is 0.37◦, whereas the maximum tilt angle of the impedance control is 0.88◦. Because of
the small compensation amount of the ICM during phase switching, the body experienced
a brief tilt instability caused by the low stiffness of the ground, thereby failing to establish
support in time.

The rugged terrain and asphalt pavement are considered as soft and hard terrain,
respectively, and the experimental results are shown in Table 4. The results demonstrated
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that the AF algorithm exhibits improved performance in force tracking when the terrain
environment is relatively “soft”, whereas the performance improvement of the AF algo-
rithm is less significant when the terrain environment is “hard”. Moreover, it was observed
that the convergence process of the ICM for force tracking becomes slower as the terrain
environment becomes relatively “soft”, whereas the AF algorithm demonstrates better
performance in improving force tracking in such environments and exhibits certain adapt-
ability to the terrain. However, compared with the single-leg study, the overall tracking
performance of the robot experiment decreased and fluctuated owing to the influences of
the position-control accuracy and rigid-flexible coupling characteristics of the heavy-duty
robot itself, as well as force-tracking errors caused by uncertainties.

Table 4. Table of force-tracking performance.

Maximum Error of Pitch Angle Steady-State Time

Hard terrain
ICM 0.25◦ 0.11 s
AF 0.24◦ 0.15 s

Soft terrain
ICM 0.88◦ 0.43 s
AF 0.37◦ 0.16 s

5. Conclusions

In this paper, we propose a motion strategy for agricultural transportation robots
operating on complex terrains. The premise of the motion strategy looks to torso safety and
stability constraints based on the terrain estimation of the support surface, and a visual
recognition system to ensure the safe passage of the robot on different terrains. Moreover,
force analysis of the hydraulic leg drive was conducted to establish the correspondence
between the driving force and the motion posture. It can be concluded that adjusting the
robot’s posture can reduce the energy consumption of robot movements. A control method
combining force and position was subsequently proposed, maintaining the target posture
of the robot’s torso through force tracking. To address the problem of tracking time-varying
forces in uncertain environments, an adaptive-fuzzy impedance algorithm was developed
to eliminate steady-state errors. The proposed control strategy was validated by building a
real-time simulation system for a heavy-duty six-legged robot and comparing it with an
existing model. Experimental and simulation results showed that the robot maintained
the stability of its locomotor posture by tracking the forces on each leg, and the proposed
control strategy achieved convergence and shorter response times on various terrains. The
proposed control method is able to reduce the adjustment time of the system by 58% and
the deflection error of the structure by 62.8% when the stiffness of the external environment
is low.

Several issues remain to be resolved before the advent of the widespread use of multi-
legged hydraulic robots. These include the fact that hydraulic drive units in swing and
support states require different driving forces, but the solution provided by a single-pump
hydraulic systems fails to satisfy the differing requirements of multiple legs, leading to
energy loss. Another issue is that the flexible deformation of the legs in large-sized, heavy-
load robots makes force tracking difficult for the system. Therefore, in the near future, we
plan to modify the structure of our hydraulic system and optimize our control algorithms
to overcome these challenges.
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