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Abstract: In the realm of smart agriculture technology’s rapid advancement, the integration of various
sensors and Internet of Things (IoT) devices has become prevalent in the agricultural sector. Within
this context, the precise identification of pests and diseases using unmanned robotic systems assumes
a crucial role in ensuring food security, advancing agricultural production, and maintaining food
reserves. Nevertheless, existing recognition models encounter inherent limitations such as suboptimal
accuracy and excessive computational efforts when dealing with similar pests and diseases in real
agricultural scenarios. Consequently, this research introduces the lightweight cross-layer aggregation
neural network (LCA-Net). To address the intricate challenge of fine-grained pest identification in
agricultural environments, our approach initially enhances the high-performance large-scale network
through lightweight adaptation, concurrently incorporating a channel space attention mechanism.
This enhancement culminates in the development of a cross-layer feature aggregation (CFA) module,
meticulously engineered for seamless mobile deployment while upholding performance integrity.
Furthermore, we devised the Cut-Max module, which optimizes the accuracy of crop pest and disease
recognition via maximum response region pruning. Thorough experimentation on comprehensive
pests and disease datasets substantiated the exceptional fine-grained performance of LCA-Net,
achieving an impressive accuracy rate of 83.8%. Additional ablation experiments validated the
proposed approach, showcasing a harmonious balance between performance and model parameters,
rendering it suitable for practical applications in smart agricultural supervision.

Keywords: smart agricultural management; crop pest and disease; fine-grained image identification;
lightweight deep learning; cross-stage aggregation fusion

1. Introduction

Smart agriculture has opened a new era in the field of agricultural management, trans-
forming traditional planting practices into a technologically advanced and efficient system.
In the context of modern and information technology’s rapid development, smart agricul-
ture has become an important means to improve agricultural productivity and ensure crop
quality. Various agronomy operations have been widely supported by various information
equipment and intelligent technologies, such as unmanned robots/drones, multi-typed
high-precision sensors, intelligent edge computing nodes, and powerful cloud analysis
computing, which has the potential to completely change the way crops are grown [1].
Taking the important task in agricultural production, that is, pest and disease prevention, as
an example, these sensors and equipment play a crucial role in field monitoring. They can
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cover vast farmland and quickly detect traces of pests and diseases using various advanced
technologies such as high-definition imaging, thermal infrared scanning, and multispectral
analysis. By utilizing advanced image recognition algorithms to analyze captured images,
different types of pests and diseases can be automatically identified and classified, provid-
ing valuable information to farmers and agronomists, and enabling timely interventions in
the production environment of crops. By quickly identifying infected areas or concentrated
areas of pests and diseases, farmers can take targeted control measures, such as localized
application of insecticides or isolation of affected plants, to contain the spread of pests
and diseases and protect the robust growth of crops. This timely intervention improves
crop yield and quality and reduces reliance on broad-spectrum insecticides, contributing to
environmental protection and sustainable agricultural practices [2].

To solve this vital issue, image analysis and machine learning techniques have suc-
cessfully maximized efficiency and sustainability in crop pest and disease recognition.
Image recognition for agricultural pests and diseases utilizes advanced computer vision
and machine learning techniques to automatically identify and classify various types of
pests and diseases in agricultural images, as well as evaluate their severity. Due to its
strong potential in pest and disease management in agriculture, the development of this
emerging field is rapidly advancing. Some traditional approaches including logistic regres-
sion, decision tree, ensemble learning, shallow neural network, etc., have been introduced
to address all aspects of agricultural production. Although these algorithms can alleviate
the current application difficulties to a certain extent, there is still a long way to go before
it is easy to automatically use [3]. On the one hand, too many manual feature design and
extraction processes are time-consuming and labor-intensive, with low accuracy, which
is not conducive to actual intelligent application deployment. On the other hand, these
traditional methods can only handle small-scale laboratory scene images but are often
helpless when facing real, large-scale complex data.

In the past ten years, deep transfer learning has taken the lead and made significant
progress in various fields, such as visual recognition, timing prediction, text analysis, etc.
Related technologies are also widely used in smart agricultural pest and disease identifi-
cation [4]. The main deep learning models used in this field include convolutional neural
networks (CNNs) and some Transformer series models, demonstrating high effectiveness
in extracting and utilizing complex spatial patterns and features from image data. By
utilizing large-scale datasets covering diverse instances of pests and diseases, these models
are trained to acquire discriminative features. Subsequently, through rigorous testing using
dedicated test datasets, these trained models’ performance and generalization ability are
comprehensively evaluated and validated. In particular, with the introduction of various
lightweight optimization techniques and efficient decoupling structures, deep learning
methods have recently refreshed application records and performance results in various
agricultural tasks [5].

However, despite significant progress to date, the field of pest and disease image
recognition still faces urgent technical challenges that require further exploration by re-
searchers. One key challenge is to achieve an optimal balance between recognition speed
and accuracy, as this directly impacts the practical applicability of these recognition systems.
Fundamentally, in complex agricultural scenarios, pest and disease identification is a typical
fine-grained identification problem, which is more difficult than image classification tasks
in general scenarios [6]. Take tomato leaf mold as an example. It occurs everywhere and
can easily damage leaves, stems, flowers, and fruits, resulting in a yield reduction of 20%
to 30%. However, many types of fungi and pathogenic bacteria cause the disease. Even
different lesions of Cladosporium fulvum have distinguishable visual states depending on
the degree of disease. How to distinguish each subcategory of the same crop disease is still
a major challenge for existing deep learning technology. Additionally, with massive cam-
eras and IoT devices, extensive practical images of crops are captured. However, samples
belonging to the same category may exhibit distinct variations in terms of poses, scales,
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rotations, viewpoints, and locations. Therefore, it is imperative for a smart agricultural
system to improve fine-grained identification capabilities.

It can be seen that Innovative modeling architectures and learning optimizations are
needed to improve the fine-grained discriminative ability of the models, while ensuring
consistently high levels of accuracy and robustness. To effectively address this challenge,
researchers have attempted to optimize the approaches from two aspects: improving the
perceptual scale and designing lightweight structures. The former focuses on enhancing
complex network structures to obtain abundant feature vectors in the hope of mining more
useful fine-grained information. However, this often leads to a surge in model size and
parameter volume, which is unsuitable for real agricultural application needs. On the
contrary, the latter gains computational speed and lightweight scale through knowledge
refinement and parameter compression, but its fine-grained perception capability is often
insufficient [7]. Therefore, how to make the model lightweight under the premise of
guaranteeing accuracy remains a necessary means to fine-grained crop pest and disease
recognition in smart agricultural systems.

To this end, this paper proposes a lightweight cross-stage aggregation neural network,
referred to as LCA-Net, through an ingenious modular structure and cross-attention fusion,
which is dedicated to the problem of protecting crops and improving the efficiency of
agronomists by deploying it for a full range of pest and disease identification and catego-
rization tasks in smart greenhouse greenhouses possessing a warm and humid environment
and containing multiple types of crops. The main work and innovations are as follows:

(1) In order to address the practical deployment challenges posed by the excessive number
of model parameters and the inadequate real-time performance for mobile applica-
tions, we propose a lightweight optimization scheme to rebuild the CSPNet-based
backbone network [8]. This scheme involves enhancing the efficiency of large-scale
networks and introducing cross-level aggregation modules.

(2) To overcome the limitations in mining fine-grained features and the subpar identifica-
tion accuracy in real-world scenarios, we focus on enhancing the network’s feature
extraction capability. Our approach includes constructing a pyramid structure with a
maximum area response, incorporating a channel spatial attention mechanism, and ef-
fective data augmentation preprocessing. Finally, with the supervision of the adjusted
loss function, the entire model improves the fine-grained identification accuracy and
achieves a good balance between efficiency and parameter scale.

The subsequent sections of this paper are structured as follows: Section 2 provides
an introduction to the existing research approaches and their limitations. In Section 3,
we elucidate our proposed model’s design principles and implementation procedures.
Subsequently, Section 4 showcases compelling empirical findings and an assessment of
its performance, accompanied by a comprehensive analytical discourse. Lastly, Section 5
culminates this endeavor by offering a concise conclusion and shedding light on potential
avenues for future research endeavors.

2. Related Works
2.1. Deep Learning Image Identification Technologies

With the development of artificial intelligence technologies [9], deep learning algo-
rithms [10] stand out due to their superior ability in handling large datasets and hold great
promise in the field of agricultural intelligence [11]. Accurate identification of pests and dis-
eases is crucial when using IoT devices to monitor crop growth in greenhouse environments.
This identification process includes not only the detection of pests and diseases [12] but
also the automated implementation of necessary treatments and the provision of targeted
control recommendations. This multifaceted approach [13] greatly improves the efficiency
and effectiveness of agricultural practices.

Image classification represents a pivotal application within computer vision, gaining
particular prominence amidst artificial intelligence’s rapid evolution and image research
advancements [14]. The study of image classification can be delineated into three distinct
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phases: firstly, the preprocessing of images; secondly, the extraction of information-rich
features; and lastly, the refinement of classification methodologies. It is worth noting
that the key to this advancement lies in feature extraction, as feature extraction helps to
extract the most representative information from an image, such as texture, shape, and
color, which are critical for image classification. In the era preceding the advent of ma-
chine learning, conventional feature extraction techniques enjoyed widespread application.
These methods were followed by the employment of unsupervised work algorithms that
gathered significant attention unsupervised learning for generating feature descriptors
and supervised learning for constructing feature classifiers tailored to image classification
tasks. Nevertheless, with the integration of machine learning, neural network algorithms
garnered significant attention, catalyzing the rapid ascent of deep learning, which sup-
planted traditional methods. CNNs have garnered widespread adoption and solidified
their pivotal role in the field significantly.

In recent years, CNN network modeling has made great strides, resulting in numerous
innovative applications in the field of image classification techniques. Researchers have con-
tinued to make advances in modeling techniques. The introduction of AlexNet [15] during
the 2012 ILSVR competition was a pivotal moment in this progress, marking the rise of deep
learning in the field of image classification. Notably, its recognition accuracy was very high,
significantly outperforming traditional shallow network methods. In the following years,
deep learning has made great strides. For example, ResNet [16] became the preeminent
model for relying on higher-order feature encoding. Extracting complex features from
images and encoding them improved the discriminative power of the model, allowing
for finer differentiation of similar-looking pest species. This advancement improves the
accuracy of classification and helps in developing more precise pest management strategies.
Another noteworthy model in image classification is the MixDCNN [17]. Designed for net-
work integration, the MixDCNN combines information from multiple neural networks to
create a more comprehensive representation of pests. By fusing the outputs from different
networks, the model is able to effectively capture both low-level and high-level features,
which improves the overall performance of the pest identification system. In addition
to Tiwari [18], who utilized dense convolutional neural networks for identification and
detection of diseases on leaves, and Kang [19], who developed a Yolo convolutional neural
network-based algorithm for detection of small-targeted insect pests, researchers have
also developed many excellent models [20] to protect crops by mounting various smart
agriculture equipment [21] for remote monitoring, which have made great contributions to
the field of pest and disease image classification as well as smart agriculture.

Nevertheless, despite these remarkable achievements, the models mentioned above
deal with certain limitations, notably the burden of substantial parameter counts, suscepti-
bility to interference, and relatively lower recognition efficiency. These constraints render
them less suitable for practical deployment and limit their applicability within real-world
agricultural settings.

2.2. Fine-Grained Visual Classification

The objective of fine-grained image recognition is the precise identification of specific
targets within a broader category, which involves distinguishing among numerous sub-
classes. In the early stages of fine-grained recognition algorithms, a meticulous approach
relied on manual labeling to guide the model in identifying critical local image regions. The
DECAF model [22] serves as an illustrative example of this approach, effectively minimizing
the influence of background elements. However, it significantly emphasizes precise sample
labeling throughout model training and testing phases. In the evolutionary trajectory of this
field, Huang et al. [23] pioneered the part-stacked CNN model, which directly generates
region feature maps by leveraging full convolutional networks (FCN) [24]. Despite the
progress achieved using these approaches, challenges persist in accurately pinpointing
crucial regions and realizing end-to-end network training, thereby affecting their practical
utility. In response to these limitations, Wei et al. [25] introduced the mask-CNN model, a
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novel approach that demands only two types of information—local annotations and image
category labels—during the training process. This transformation effectively converts the
localization problem into a segmentation problem.

The results of these approaches underscore their potential to enhance the classification
accuracy of fine-grained recognition by incorporating extensive annotation data. Neverthe-
less, the substantial cost associated with dense region annotation and the challenge of man-
aging vast data volumes presents significant obstacles. These limitations severely restrict
the scalability and applicability of strongly supervised fine-grained recognition techniques
in real agricultural contexts. Consequently, researchers have turned to weakly supervised
learning. For instance, DVAN [26] aims to diversify visual attention for optimal feature
extraction. Similarly, RA-CNN [27] progressively refines regional attention, transitioning
from coarse to fine by training attention subnetworks. MA-CNN [28] takes a step further
by simultaneously localizing multiple regions via feature channels, while MAMC [29] in-
troduces multi-attention multicategory constraints for precise region delineation. DFL [30]
introduces a discriminative filter for end-to-end learning of intermediate-level features,
eliminating the need for additional attention or boundary annotations. NTS-NET [31]
employs a self-supervised mechanism to extract the most informative regions from the
original image and integrate them with overall image features. Liang et al. [32] integrated a
clustering mechanism to leverage the recognizable portion of the intermediate feature map
of convolutional neural networks. They also proposed a Gaussian hybrid layer model for
efficiently modeling the distribution of selected features, considered data points, ultimately
generating output feature cluster centers through merging. Zhuang et al. [33] designed the
attention pairing interaction network (APIN) to capture contrast differences via pairwise
interactions between two images. These multifaceted approaches synergistically combine
attention mechanisms for autonomous region recognition, higher-order feature encoding
for mining complex features, and network integration to enhance model performance. It
is worth noting that some network integration approaches increase parameters due to
the utilization of multiple parallel CNNs, rendering them less suitable for device-centric
agricultural environments.

2.3. Lightweight Modeling Optimization

CNN models have demonstrated significant success in many computer vision (CV)
tasks, encompassing image classification, object detection, and image segmentation. How-
ever, due to the inherently complex architecture and resource-intensive computation of
CNNs, the number of parameters of traditional network models is extremely large. How-
ever, the implementation of such huge CNN models is hampered by the limitations of
storage capacity and device power consumption. Researchers have designed lightweight
CNN architectures specifically for mobile deployment to address the need for mobile real-
time interaction. The limitation of this design approach is the streamlining of the model by
reducing its parameter count and complexity while upholding the intrinsic accuracy of the
CNN model. By integrating these considerations, the objective is to enhance the operational
efficiency of CNNs and ensure their compliance with real-time usage on mobile platforms.

SqueezeNet [34], introduced by Forrest et al., played a pioneering role in developing
lightweight network architecture design methods, significantly influencing subsequent
research. It served as a catalyst, offering valuable design insights to researchers exploring
lightweight network architecture schemas. Shortly after, Google presented MobileNet [35],
which replaced traditional convolution with depth-separated convolution, substantially
reducing parameters and computational complexity. Building upon this foundation, later
researchers made further advancements. In 2019, MobileNet-v3 [36] introduced an in-
verted residual structure, incorporating dimensionality augmentation, channel-by-channel
convolution, subsequent dimensionality reduction, and a linear bottleneck layer. In 2017,
Kuangyi’s Face++ team proposed ShuffleNet [37], introducing innovative grouped convo-
lution in its model. Subsequently, the team extended this paradigm with ShuffleNet-v2 [38],
notable for its use of direct metrics over indirect evaluation metrics. The authors strongly
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advocated for a comprehensive understanding of network performance beyond relying
solely on FLOPs, emphasizing the multifaceted nature underlying differences in FLOPs
and processing speeds. ChannelNets [39] introduced the concept of sparse connectivity in
input and output dimensions, departing from traditional packet convolution. PeleeNet [40]
draws inspiration from DenseNet [41], devising a series of network structure optimization
schemes to create a lightweight network well-suited for mobile environments.

Based on the preceding analysis, the deep separable convolution technique has gar-
nered significant attention in designing lightweight network structures. Two predominant
modes of network design have emerged [42]. First, efforts to enhance lightweight properties
are executed through two distinct strategies. One strategy involves upgrading an existing
model using lightweight characteristics. This involves the replacement of the cumbersome
convolutional structures in the original network with lightweight modules [43,44]. The
second strategy leverages architecture search techniques to construct superior network
structures. The limitation of this approach lies in searching for optimal parameters across
the integrated network structure and building upon established lightweight modules.
Consequently, the exhaustive parameter exploration facilitated by this search forms the
foundation for the pursuing of enhanced lightweight models [45]. Additionally, in order to
bolster the performance of lightweight networks, certain design approaches incorporate
attention mechanisms into the network structure [46].

3. Materials and Methods

This paper is dedicated to addressing the challenges and complexities encountered
in fine-grained image recognition methods for agricultural pests and diseases in a smart
greenhouse environment. To this end, we synergize cutting-edge deep learning techniques
to construct a lightweight cross-level aggregation image recognition model. The structure of
the overall framework is shown in Figure 1. The proposed LCA-Net combines a lightweight
architecture with the prowess of a high-performance large network, supplemented by
integrating a streamlined attention module to uphold its performance and facilitate its
adaptability for mobile deployment. Additionally, a feature pyramid module rooted in
maximum response region cropping is introduced as a pivotal enhancement strategy,
aiming to heighten the accuracy of fine-grained image recognition within the context of
crop pests and diseases.

3.1. Lightweight Backbone Network Architecture

CSPNet has demonstrated its capacity as a classical convolutional network model
across a spectrum of computer vision tasks. This is attributed to its innovative approach,
involving splitting and fusion strategies, which effectively doubles the number of gradient
paths. Additionally, it manages to reduce the count of parameters and computations,
thereby ameliorating memory usage. By embracing cross-level connectivity strategies, CSP-
Net integrates seamlessly with various CNN architectures, ultimately elevating network
performance. Despite its merits, CSPNet does not deal with certain challenges. The serial
residual block structure inherent in the backbone branch of CSPNet enriches the network’s
perceptual field gradually. However, the sequential nature of this structure results in sub-
optimal utilization of model parameters. Furthermore, the element-level “add operation”
introduces a certain degree of memory access cost (MAC) occupation. To surmount these
limitations, this paper innovatively refines the backbone structure. It introduces a novel
lightweight cross-level aggregation image recognition model (LCA-Net) to optimize pa-
rameter utilization. Importantly, this optimization is achieved without causing significant
augmentation in parameter count or computational complexity. The core objective is to
harness the untapped potential of network performance and enhance accuracy levels.
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In this paper, the feature aggregation (FA) module is designed to replace the serial
residual block structure of CSPNet to enhance the utilization of the mid-level features and
reduce the extra MAC occupation caused by the element-level “add operation”. The output
of multiple residual blocks is stitched together with the input, and the shortcuts in the
residual blocks are removed. And since the convolution of 1 × 1 in the original residual
block is mainly used to change the feature dimension and expand or contract the number
of channels, and the number of channels in the backbone branches of CSPNet is all the
same, the convolution of 1 × 1 is removed. As a result, only the 3 × 3 convolution remains
in the residual block to contrast the new FA structure.

As shown in Figure 2, the input xi ∈ Rc×h×w is stitched together with the input after
n times 3 × 3 convolution operation to obtain a set of features of x′ ∈ R(n+1)×c×h×w, and
then the set of features is aggregated and downscaled using 1 × 1 convolution to obtain
xo ∈ Rc×h×w, the output of an FA module. In the subsequent experiments, referring to the
residual block structure design of the ResNet family, n is set to 3. During the connection
process, feature information is preserved, enabling abstract features with multiple receptive
fields to capture visual information across various scales. Preserving information from
different levels is especially important because each layer has different receptive fields,
so the improved FA module is better at preserving and accumulating feature maps with
multiple receptive fields. Therefore, the improved FA module has a better and more diverse
feature representation for retaining and accumulating feature maps of multiple receptive
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fields. Moreover, the number of network parameters and computational effort are reduced
because the convolution of 1 × 1 of the network structure is optimally removed.
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Based on the FA module design scheme, combined with the CSPNet cross-layer
connected network structure, we constructed a novel backbone network called LCA-Net
in this study. By increasing the output channels at different stages, LCA-Net improves
the ratio between deep-level and shallow-level features. This results in a more effective
feature representation achieved with fewer overall layers. Furthermore, the network’s
performance is enhanced by implementing the CSPNet cross-layer connected structure.
To solve the feature redundancy problem, we change the regular convolution 3 × 3 to
group convolution 3 × 3 in each FA module and set the number of groups to 16. We add
a channel shuffling module after each 3 × 3 group convolution to disrupt the features so
that they are evenly distributed in each group of channels. Secondly, in this paper, the
number of channels is reoptimized to 256, 384, 512, 1024 for four different perceptual field
stages, retaining more channels in the shallow layer to maintain the model’s ability to mine
information in the shallow layer, and reducing the number of channels in the deeper layer
to avoid overfitting and redundancy caused by feature redundancy.

The resulting LCA-Net outperforms CSPNet in terms of both accuracy and speed.
However, it is essential to acknowledge that the decrease in channel count, parameter
quantity, and computational complexity can potentially impact the model’s performance.
To counterbalance this inherent tradeoff, this paper introduces a convolutional attention
module into the network. This augmentation intends to sustain the model’s performance
by addressing the performance degradation concerns associated with these reductions.

3.2. Channel–Spatial Cross-Attention Module

The convolutional attention module serves as a mechanism for region weighting,
enabling the accentuation of crucial regions while disregarding extraneous information,
thus facilitating a targeted focus on pertinent data. This is achieved by integrating an
additional attention weight into feature regions, subsequently multiplied with the original
feature map. The outcome is an elevated network emphasis on regions of interest. The
convolutional attention module can be seamlessly incorporated anywhere within the
network architecture without incurring substantial computational overhead. This module
comprises two integral components: the channel attention module and the spatial attention
module. The channel attention facet empowers the network to discern the most information-
rich channel ensemble autonomously, attributing higher weights to amplify significant
channel features while dampening the influence of less relevant ones. Conversely, the
spatial attention component intuitively prioritizes informative spatial regions, enhancing
the network’s capacity to focus on the most salient areas.
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This paper introduces a streamlined channel–spatial attention (CSA) module subse-
quent to the feature aggregation within the backbone branch to anticipate any potential
decline in model performance stemming from channel count reduction. The conventional
approach often employs global pooling to encode spatial data for channel attention compre-
hensively. However, this method has the drawback of compromising location information,
as it condenses broad spatial information into channel descriptors. In order to encourage
the attention module to capture distant spatial interactions without sacrificing precise
location information, the (CSA) mechanism decomposes global pooling into two separate
operations: horizontal pooling and vertical pooling. These operations aggregate features
along their respective spatial axes, culminating in direction-sensitive feature maps. This
strategy empowers the attention module to preserve significant spatial correlations along
one axis while retaining meticulous location information along the other. This synergistic
approach enhances the network’s ability to identify points of interest precisely.

Following the generation of two feature encoding sets, this paper fuses the two
sets and captures the intricate interplay among diverse channels using a sequence of
convolution–normalization–activation operations. Subsequently, the features are separated
into two encodings, each sharing the original encodings’ dimensions. Further convolution–
activation operations are executed to derive the weight coefficients governing the two sets
of attention. Ultimately, this yields reweighted feature sets, aligning the original features
with spatial and channel attention weighting. The following equations outlines the specific
operational sequence.

xh = Ph(xi), xw = Pw(xi)
f ′ = δ(Fc([xh, xw]))
x′ = (σ(Fh( fh)) + σ(Fw( fw)))⊗ xi

(1)

Ph and Pw represent the pooling operation to obtain two spatially oriented feature
codes, Fc represents the convolution and normalization operation after stitching two sets
of feature codes, δ represents the activation function, [ fw, fh] = f ′ represents the feature
obtained by splitting the feature, Fw and Fh represent the convolution operation of two sets
of feature codes, and δ represents the Sigmoid activation function.

The final LCA-Net proposed in this paper is obtained by lightening the structure and
adding the convolutional attention module, which can extract multilevel perceptual field
features to improve network performance and meet the efficient network structure design
scheme to satisfy the MAC optimum and achieve the lightening improvement to avoid
the redundancy of network features, and also add the convolutional attention module to
explore the performance further; the network structure of each stage is shown in Figure 3.

The input samples undergo initial encoding via two distinct convolutional sets. Sub-
sequently, one set of features is employed for cross-level concatenation, while the other
set serves for feature extraction within the FA module of the primary branch. Multiple FA
modules can be introduced into the network series for a more potent feature extraction
capacity. Following the feature extraction phase in the FA module and subsequent cross-
level feature merging, downsampling is executed. The input samples traverse through a
4-stage sequential feature extraction structure, with the number of FA modules in each stage
being 1, 2, 3, and 1, respectively. After this, the global average pooling layer is employed
to compact the features, which are further learned through the fully connected layer to
produce outputs, incorporating a nonlinear amalgamation.

Commencing at the attention level, this paper undertakes a comprehensive exploration
to mitigate the model accuracy decline attributed to its lightweight nature. Subsequently,
this study delves into an extensive analysis of deep, middle, and shallow features, aiming to
elevate the model’s classification accuracy further. The intricate agricultural environment,
compounded by excessive background interference noise and the inherent resemblance in
features across diverse categories, such as shape and color, constitutes the primary factors
contributing to the suboptimal accuracy in image recognition tasks pertaining to crop dis-
eases and insect pests. Consequently, building upon the LCA-Net framework introduced
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earlier, this paper presents a feature pyramid module predicated on maximum response
area clipping. This strategic enhancement seeks to tackle the intricate challenge of clas-
sifying amidst complex agricultural backgrounds, addressing the difficulty conventional
models encounter in discerning subtle variations.
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3.3. Maximum Cropping Feature Pyramid Module

Many contemporary networks rely on a single high-level feature for classifying subse-
quent objects in image classification tasks. However, this approach poses a risk of obscuring
small objects with limited pixel information during the downsampling process. In the
context of image recognition concerning crop pests and diseases, the intricate background
noise inherent in the subjects renders conventional networks inadequate in extracting
discriminative image features. To harness the collective benefits of shallow, mid-level, and
deep features, this paper embraces the feature pyramid network architecture to extract in-
herent features from the samples. The feature pyramid structure adeptly retrieves features
from images of varying scales, thereby generating multiscale feature representations. This
methodology minimizes computational demands while enriching the feature map with
substantial spatial information by fusing feature maps with robust low-resolution seman-
tic information and delicate high-resolution semantic information. The feature pyramid
module proposed herein is illustrated in Figure 4.

The feature pyramid module proposed in this paper is shown in Figure 4. Since the
perceptual field in Stage 1 is too small and the information utilization is low, it is not used
in the construction of the feature pyramid, and the rest of the layers are used to construct
the feature pyramid. After the input sample pairs pass through Stage 1 and Stage 2 of the
dual-stream network, the feature maps fU2 and with a perceptual field of 8 are obtained,
and after Stage 3, the feature maps fU3 and with a perceptual field of 16 are obtained, and
then the samples pass through Stage 4 and the feature maps fU4 with a perceptual field
of 32 are obtained. In this paper, fU4 are summed up and used as the feature expression
of the uniform deep layer extracted using the model M4. Subsequently, M4 is upsampled
and combined with fU3, which is convolved with 1 × 1 for feature encoding to obtain
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M3, and the features are fused, as shown on the left in Figure 4. The shallow features are
accumulated with the processed deep features. This is carried out because the shallow
features provide more accurate location information, while the multiple downsampling and
upsampling operations make the localization information of the deep network inaccurate,
so they are combined and used. Repeating the above operations, the aggregated network
deep features M4, middle features M3, and shallow features M2 are finally obtained so that
a deeper feature pyramid is constructed, and more feature information is fused.
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During the Cut-Max operation, each feature map retains only the part of the highest
response region. After the Cut-Max processing of features, only the region with the highest
response is retained for each channel. This part contains the most discriminative part or
feature relative to the original map. The improved feature map is filtered using the Cut-Max
module for background information. Then, the convolution of all channels using 1 × 1
the upsampling method is chosen as the nearest neighbor interpolation method, and the
up-sampled features are combined with the previous layer of features as spatial attention.
The traditional feature pyramid unifies all information into aggregated features without
other processing, which contains richer semantic information but cannot explore the image
features of the samples. In contrast, Cut-Max can be regarded as attaching more weight
to the high response region spatially so that the model is not scattered in the region of
interest and can be accurate to the discriminable part of the sample. All steps of Cut-Max
are operated in the form of a matrix, which does not bring additional performance loss.

3.4. Data Enhancement Preprocessing

In order to prevent network underfitting and avoid network overfitting, this paper
uses data enhancement and augmentation techniques in training on all data to improve the
quality of the dataset samples and increase network generalization. In the image recognition
task, the following six measures are taken in this paper for dataset sample enhancement:

(1) First, all the sample images are resized to the square to fit the input size of the deep
learning network;
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(2) Randomly flip the sample image horizontally and vertically with a probability of
0.5 to increase the diversity of the image and enhance the translation invariance of
the image;

(3) The sample image is cropped into a square image with a randomized region during
the training phase. Conversely, during the testing phase, the sample image is cropped
into a square image with the center region;

(4) Randomly rotate all sample images within the range [−15◦, 15◦] to improve the
distortion adaptation of the images;

(5) The sample image undergoes adjustments in the HSV color space, specifically in
the hue H, saturation S, and luminance V parameters. These adjustments are made
based on a predetermined offset of 0.3. In other words, the values of H, S, and V are
randomly set within the range of [70%, 130%] of the original image. This process aims
to generate variations of the sample image under different lighting conditions;

(6) For data regularization, the sample images undergo additional processing through
the utilization of the CutMix method. CutMix involves cropping out a specific region
from the image, but instead of replacing it with zero pixels, it is randomly filled
with pixel values from the corresponding areas in other training data. The classifica-
tion results are then distributed based on a predefined ratio. CutMix offers several
advantages, including improved training efficiency by eliminating noninformative
pixels, enhanced spatial localization ability of the model, and no extra computational
overhead during the training and testing processes.

3.5. Loss Function Design

During training, the cross-entropy loss function is employed to minimize the discrep-
ancy between the predicted value and the true value. The formula for this loss function is
used as follows:

ỹ
′
k = (1−ε)ỹk + εu (2)

Loss = −
n

∑
k=1

ỹ
′
kso f tmax(yk) (3)

where ỹ
′
k represents the sample label, ε represents the smoothing factor that signifies the

weight ratio, and u corresponds to the fraction expression of each category.
The incorporation of label smoothing operation aims to encourage the probability

output obtained from the SoftMax function to align with the correct labels of diverse
categories closely. This is achieved by constraining the output discrepancy between positive
and negative samples. As a result, the smooth loss function employed within the network
enhances its overall generalization capability.

Throughout the training process, distinctive learning rates are assigned to individual
modules. The uniform sampling branch is fine-tuned using a learning rate of 0.001, whereas
the negative sampling branch’s tail structure, the Cut-Max-based feature pyramid structure,
the higher-order feature encoding module, the discriminant filter structure, and each mod-
ule’s classifier are trained from scratch with a learning rate of 0.1. All network parameters
are optimized using an SGD optimizer with corresponding momentum and weight decay
values set to 0.9 and 0.005. The training duration spans 100 epochs, employing a cosine
annealing learning rate reduction algorithm with restarts. The learning rate is adjusted to
50% of its initial value from the preceding cycle after each restart. The cosine annealing
step is defined as 2, and each stage’s base cycle length is set to 10 cycles. Consequently, the
learning rate is reset at the 41st and 61st cycles for improved optimization.

3.6. LCA-Net Process Illustration

In order to make the reader understand the algorithm flow more intuitively, we drew
a simple flowchart of the LCA-Net process, as shown in Figure 5.
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The first step of LCA-Net is to obtain the dataset images as input. Next, to improve the
image quality and enhance the information contained in it, we introduce a data enhance-
ment step. This step includes processes such as rotation, brightness adjustment, blurring,
etc., to extend the diversity and usability of the input images. This helps in model training
and improve robustness. After that, the data-enhanced image enters the backbone network
to extract multilevel image features, which continues through the backbone and branching
and enters the Cut-Max module to crop the regions with high response values of the target
features, and only the part of the region with the highest response value is retained in each
feature map, which is then fused with the shallow, medium, and deep features for the
final inference classification of the target. In addition to this, we provided the LCA-Net
pseudo-code, as shown in Algorithm 1.

Algorithm 1: LCA-Net Process

1: input: X, G, C, τ

X # Input feature atlas
G # CFA
C # Cut-max
τ # Response Score Threshold

2: Xen←X # Data Enhancement
3: for bk in Xen do # Extract features
4: F←G(bk)
5: return F
6: for fk in F do # Find the region of maximum response for each feature map
7: Ck←C( fk)
8: for d in Ck do #Judging Response Scores
9: if d.score>τ then
10: Chigh ← C ∩ {d}
11: Fcut ← F ∩ Chigh # Weighting of areas of key concern.
12: end
13: end
14: return Fcut
15: end
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4. Results and Discussion
4.1. Experimental Dataset and Settings

This paper focuses on images describing agricultural pests and diseases. In deep
learning, the quality and scope of the dataset are important prerequisites for building
robust experimental models. This is especially important for complex, fine-grained pest
and disease scenarios, so obtaining a suitable dataset is imperative. We obtained the “List
of Crop Grade I Pests and Diseases” developed by the Ministry of Agriculture and Rural
Affairs of China and the “List of Crop Grade II Pests and Diseases” developed by Beijing
Municipality by means of web crawling, and at the same time, combined with the actual
scenarios for modeling, we actually captured the data of pests and diseases in greenhouse
environments, and acquired challenging images from the IP102 dataset [47]. Through
the above methods, 16 pests and 11 diseases, totaling 28 different categories, such as fall
armyworm, ricc blast, etc., were finally captured and 36,556 sample images were compiled.
In this study, we divided the dataset into two parts, which accounted for 80% and 20% of
the training and test sets, respectively, to fulfill the training and inference requirements. We
divided the dataset carefully to facilitate the training and inference process. The dataset
portion of the presentation is shown in Figure 6.
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This study harnesses Ubuntu 20.04 LTS as the foundational system to construct a
server platform encompassing dual-core Intel Xeon E5-2690 V3@2.6 GHz × 48-core pro-
cessors, 128 GB of RAM, and 2 × 2 TB SSDs, alongside 7 NVIDIA Tesla P40 GPUs, and a
computational cache of 168 GB. All code presented herein relies upon the PyTorch 1.7.1
deep learning framework. The uniform sampling branch employs the pretrained LCA-Net
model, initially trained on the ImageNet dataset, while the remaining modules employ the
“He” initialization method to initialize model parameters.
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4.2. Comparative Experimental Results

To validate the classification efficacy of the introduced LCA-Net in the context of the
pest dataset, a series of pertinent experiments were conducted. The assessment criterion
for model performance was established as accuracy. The following sections detail the
experimental results of various lightweight models and traditional methods and compare
them with the methods presented in this study. Table 1 presents a comparative overview of
accuracy among all the methods employed for a more comprehensible illustration.

Table 1. Performance contrast of different models.

Models Accuracy Rate (%) Number of Parameters (M) Time (ms)

MobileNetV3 1.0× [36] 64.8 4.24 51.0
ShuffleNetV2 2.0× [38] 66.3 5.4 46.3

Xception [48] 68.1 5.61 50.9
SqueezeNet [34] 70.2 5.81 53.6

GhostNet 1.3× [49] 71.8 6.11 58.9
ResNet50 [16] 73.2 23.56 156.8

CSPResNet50 [8] 75.3 20.62 140.1
DenseNet169 [41] 76.9 12.53 220.7

LCA-Net 83.8 5.74 111.9

Upon inspection of the aforementioned table, it can be seen that although the lightweight
models MobileNetV3, SqueezeNet, and ShuffleNetV2 have obvious advantages in terms
of model parameters and recognition speed, their accuracies often fall short of the require-
ments of practical applications. For example, GhostNet 1.3×, which is recognized as the best
lightweight model, has an accuracy rate of only 71.8%. This highlights the great limitations
of the traditional lightweight model, which is affected by the model size and computa-
tional volume, when facing pest and disease images of complex scenes, thus hindering
the extraction of discriminative features. Among the traditional image classification net-
works, ResNet50 achieves an accuracy of 73.2%, but due to its large number of layers and
parameters, it may take longer to train compared to shallower models, which may not
be suitable for application scenarios that require fast training or iteration; DenseNet169
achieves the highest accuracy of 76.9%. However, the embedded feature reuse in the
DenseNet architecture reduces the speed of operation. Compared to CSPResNet50, the ac-
curacy is slightly improved by 1.6%, but this improvement requires an additional 57.5% of
processing time. This situation again justifies the choice of CSPResNet50 as the augmented
model in this study. The novel LCA-Net outlined in this paper refines the structure and
parameter optimization of CSPResNet50. The introduction of a lightweight convolutional
attention module can substantially improve the parameter performance without compro-
mising network performance. Compared to CSPResNet50, LCA-Net reduces the number
of parameters by 27.8%, significantly improves the time efficiency by 79.9%, and achieves
83.8% accuracy. This result highlights the ability of the deep ensemble structure to improve
model recognition accuracy. In addition, to better represent the advantages of the LCA-Net
model, we visualized the classification accuracy of the model for 28 types of pests and
diseases, as shown in Figure 7.
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As shown in the figure above, we visualize the accuracy performance of the six models
in 28 categories of pests and diseases, which are Fall-A, Cnaphalo-C-M, SchizaphisG, Aphis-
G, Citrus-Y, Leptinotarsa-D, Pergandc, Pear-F-B, Locustamigratoria, Cydia-P, Puccinia-S,
Blumeria-G, Loxostege-S, Ostrinia-F, Gibberella-S, Tomato-G-M, Mythimna-S, Sitodiplosis-
M, Ricc-B. Peronospora-P, Chilo-S, Linnaeus, Sphaero-C, Southern-R-B, Nilaparvata-l, West-
wood, Potato-L, Peronospora-M. It can be seen that in class 12 of the dataset, ShuffleNetV2’s
accuracy reaches 78.7% and MobileNetV3’s accuracy is 80. 9%, which is enough to show
that ShuffleNetV2 performs poorly when facing certain complex real-world scenarios due
to the limitations of model size and computation. CSPResNet50 introduces the cross-stage
partial structure based on ResNet50 to verify the model’s performance and representation
capability, and its accuracy reaches 88.2%, while the accuracy of LCA-Net reaches 92.3%,
which shows that the fusion technique effectively suppresses the intraclass variation of
the same subclass of different images in the sample. After adopting the fusion method
with complementary feature information, the classification accuracy of LCA-Net model
in 28 classes reaches 98.5%. Throughout the classification process, LCA-Net outperforms
the comparison models in each class of data with its powerful feature mining and gener-
alization capabilities and is the best among all models in terms of accuracy and stability.
In order to demonstrate the effectiveness of the lightweight structure, we conducted an
experimental analysis of the model’s parameters and computational speed, as shown in
Figure 8.

Illustrated in Figure 8, the LCA-Net proposed in this study attains commendable
performance across various metrics. Remarkably, while exhibiting a mere 1.8% increment
in parameter count relative to ShuffleNetV2, a notable 17.5% enhancement in accuracy is
achieved. In contrast, when compared to ResNet50, parameters are significantly reduced
by 75.6%, recognition time is trimmed by 28.6%, and accuracy experiences a commendable
14.4% uptick. The incorporation of lightweight modules, in tandem with the feature pyra-
mid module, contributes to these outcomes. Compared with MobileNet V3, although the
model witnesses a 35.3% surge in parameter volume and a 54.4% rise in time consumption,
accuracy enjoys a notable 19% boost. This substantiates the efficacy of the feature pyramid
module and the convolutional feature aggregation (CFA) module, centered around maxi-
mum response area clipping, both introduced in this study. Furthermore, the lightweight
attention module’s effectiveness is underscored. The combination of these three modules
collectively empowers the model to extract features efficiently, elevate recognition accu-
racy, and achieve parameter reduction, all while satisfying the requirements of mobile
deployment and practical applications.
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In addition, we visualized the loss curves of the model, as shown in Figure 9. The
loss function serves to gauge the correspondence between the model’s predicted output
and the actual value, manifesting as a nonnegative quantity. Typically, loss functions
incorporate L1 or L2 regularization terms. A small loss function value corresponds to a more
favorable model training outcome. Consequently, a more skillful model is characterized
by a heightened fit. Notably, a swift descent in the loss function underscores the model’s
robust learning capacity.
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Upon scrutinizing and dissecting the graphs of the loss functions, a noticeable trend
emerges in the classification model’s loss function values: a gradual descent that ultimately
stabilizes after roughly 90 epochs. During this phase, the predicted values converge more
closely to the actual values. Noteworthy patterns emerge when comparing these loss
functions. ResNet50 and DenseNet169 exhibit a gradual decline in their loss functions,
while the LCA-Net model demonstrates the swiftest rate of decrease, ultimately settling at
approximately 0.0084. In contrast, Xception and CSPResNet50 undergo a slower decrease
in loss function, ultimately plateauing around 0.0186. The LCA-Net model enhances the
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CSPNet module, combines the feature pyramid module grounded in maximum region
clipping, and leverages the capacity of the lightweight convolutional attention enhancement
model to elevate feature extraction capabilities. Consequently, this fusion model excels
in feature extraction, resulting in improved classification of crop images and heightened
accuracy. This leads to a comprehensive examination of the confusion matrix.

The background, shape, and other factors of the images contained in each category
cause the model to misclassify them into other categories, reducing the overall accuracy of
the model. To better analyze which categories the model classifies incorrectly, carry out
the confusion matrix analysis. The confusion matrix of the final test result is provided,
and the confusion matrices of LCA-Net and the five contrasting models are calculated,
respectively. The confusion matrix compares the real category with the predicted category,
which describes the individual classification accuracy for each model. The network’s
performance can be directly evaluated by analyzing the confusion matrix, which can
help analyze which similar categories the model misclassifies, to adjust the model and
optimize its classification performance. It can be seen from Figure 10 that the five models,
MobileNetV3, GhostNet, ShuffleNetV2, ResNet50, and DenseNet169, have low prediction
and real correlation, which indicates that the network is not easy to judge the similarity
category, resulting in low detection accuracy. The LCA-Net model can classify similar
objects with accurate judgment, good classification can be performed, so the prediction and
the actual correlation are relatively high, thereby improving the model recognition accuracy.
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As shown in Table 2, in order to further test the generalization ability and generaliz-
ability of the models, we divided the dataset into different ratios for training and testing
the models: Xception and SqueezeNet have 68.1% and 70.2% accuracy when the ratio of
the number of training images to the number of testing images is 8:2, and when the ratio
is adjusted to 6:4, due to the lighter model’s fewer parameters and shallower network
structure, it is unable to capture the complex data distribution when the overall proportion
of the training dataset decreases, and its accuracy decreases by 3.5% and 3.8%, respectively.
Large algorithmic models with numerous parameters and complex structures require a
large amount of data to properly tune these parameters, and when the training set is small,
the model may have difficulty in finding suitable parameters, which leads to poor model
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performance. The accuracy comparison between DenseNet169 and CSPResNet50 with a
training set to test set ratio of 6:4 decreased by 2.2% and 2.4%, respectively, compared to a
ratio of 8:2. While LCA-Net in the dataset division ratio of 7:3 and 6:4, the accuracy only de-
creased by 0.6% and 1.3%; this is enough to show that the cross-level aggregation network
maintains the lightweight structured at the same time through the attention mechanism
of the original features of the attention weighting, to complete the original features of the
recalibration, so as to make the characteristics of the object in the image is more prominent,
and to enhance the expressive ability of the network, as well as based on the Cut-Max-based
feature fusion mechanism to fuse features at different levels, so that the feature mining
and generalization ability of the model is further enhanced, which is far better than the
performance of the comparison models executed on different dataset division ratios.

Table 2. Comparison results with different data settings.

Models
Train:Test

8:2 (Acc %) 7:3 (Acc %) 6:4 (Acc %)

MobileNetV3 1.0× [36] 64.8% 63.1 61.2
ShuffleNetV2 2.0× [38] 66.3% 64.2 62.4

Xception [48] 68.1 66.9 64.6
SqueezeNet [34] 70.2 68.6 66.4

GhostNet 1.3× [49] 71.8 70.4 69.2
ResNet50 [16] 73.2 70.3 67.8

CSPResNet50 [8] 75.3 74.1 72.9
DenseNet169 [41] 76.9 75.5 74.7

LCA-Net 83.8 83.2 82.5

4.3. Experimental Analysis and Discussion

Meanwhile, this paper conducts ablation experiments on LCA-Net to prove the effec-
tiveness of each module. The experimental results are shown in Table 3. The backbone
network proposed in this paper, LCA-Net, achieves an accuracy of 83.8% on the pest and
disease dataset. When integrating the feature pyramid module alone to extract multigranu-
larity features, the model demonstrates an accuracy of 78.1%. This improvement is 1.2%
higher compared to the original unmodified network, underscoring the significance of
multilevel features in recognition. Shallow features, containing richer semantic information,
prove to be beneficial for image classification tasks. Building upon this foundation, the
efficacy of the combined Cut-Max method and feature pyramid module is validated. Ex-
perimental results highlight that the Cut-Max operation reduces the impact of background
noise, leading to an enhanced performance. In contrast to solely adding the feature pyramid
module, incorporating Cut-Max results in an increase of 2.1%, resulting in an accuracy
of 80.2%.

Table 3. LCA-Net ablation comparison experiment; “
√

” means that the module has been added.

FA CSA Feature Pyramid Cut-Max Acc (%)
√

77.2√ √
77.9√
78.1√ √
80.2√ √ √
81.5√ √ √
82.3√ √ √ √
83.8

Similarly, adding the FA module alone yields an accuracy of 77.2%. By combining
the feature pyramid, Cut-Max, and FA modules, the model attains an accuracy of 83.8%.
This attests to the potency of the proposed method, which synergizes multilayer semantic
insights from shallow, middle, and deep features to enhance feature extraction. The results
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reaffirm the rationale and effectiveness of the devised model structure. This paper also
conducts a comparative experiment to explore the optimal window size setting for the
Cut-Max module. The Cut-Max module enhances the features by cropping the maximum
response regions, effectively removing background noise interference in the feature maps.
However, when the window size is set to 2 × 2, the accuracy achieved is only 78.2%,
indicating that if the cropping window is too small, and some useful information might
be lost, leading to a decrease in performance. To address this, increasing the window size
results in improved accuracy, reaching the optimal accuracy of 83.8% when the window size
was set to 5 × 5. However, further increasing the window size leads to slightly decreased
accuracy. This suggests that when the window size becomes too large, useful information
from high-response regions and background noise is included in the window, making it
challenging to extract distinctive local features. By setting the window size to 5 × 5, the
Cut-Max operation on features at each layer, followed by convolutional aggregation of the
information within all channels, minimizes model bias caused by background factors and
enhances the model’s ability to capture relevant information.

In addition, we performed attention visualization of three insect pests and three
disease pictures to analyze the effect of the LCA-Net structure. The visualization results
are shown in Figure 11. Our model, along with fusing the different stages of the shallow
middle stage, can identify features such as a specific pest’s tail, trunk, and head. This
demonstrates that fusing different feature layers and maximum response region cropping
facilitates global object learning. In addition, the fusion of different layers of features
can compensate for neglected but effective distinguishing features in a particular stage.
These results demonstrate the model’s ability to detect targets of various scales accurately,
with particularly impressive performance in detecting fine-grained objects. It reveals the
application potential of the LCA-Net model in other research fields, such as agricultural
logistics or environmental forecast. Meanwhile, it inspires the improvement of related
technologies in smart agricultural production management.
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5. Conclusions

Smart agriculture has transformed traditional planting practices into an efficient and
technologically advanced system. It improves agricultural productivity and crop quality
using unmanned robots/drones, high-precision sensors, intelligent edge computing nodes,
and cloud analysis computing. These technologies have the potential to revolutionize crop
cultivation. Image analysis and machine learning techniques play a vital role in automatic
identification and classification of pests and diseases in agricultural images, facilitating
efficient pest and disease management in agriculture.

This paper provides insights into the challenges posed by complex model structures
and excessive parameter counts that hinder deployment feasibility. The complex agricul-
tural image classification environment leads to unsatisfactory recognition accuracy and too
many parameters. In order to address these challenges, this study utilizes the capabilities
of deep learning techniques and introduces an innovative underlying network known as
the horizontally aggregated image recognition model (LCA-Net). This network enhances
the existing CSPNet architecture by incorporating a feature aggregation (FA) module and
a lightweight convolutional attention module, as well as a feature fusion structure based
on the Cut-Max module, which improves the network’s emphasis on regions of interest
by adding additional weights to the original feature map, and also improves the ratio of
deeper and shallower features by adding different stages of the output channels in order to
connect the structure across layers, which enables the network to achieve more efficient
feature representation with fewer layers, realizing a harmonious balance between accuracy
and efficiency. In a low-error environment, LCA-Net significantly outperforms all similar
methods and becomes the best choice for real image recognition scenarios.

Although LCA-Net is good enough, it still suffers from limitations inherent to fine-
grained classification models, such as the scarcity of fine-grained classification data, which
makes it difficult for the model to adequately learn and generalize features. Going forward,
our research efforts will focus on generating rich training data through methods such as
generative adversarial networks (GANs). We will also investigate LCA-Net-based detection
algorithms to make the model capable of tasks such as target localization and bounding
box regression and extend the application of related techniques to different domains. This
commitment aims to utilize its potential to contribute to various global environments.
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