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1 Bavarian State Research Center of Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 2,
85354 Freising, Germany

2 Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Akademicka 15,
20-950 Lublin, Poland; sylwia.sowa@up.lublin.pl

* Correspondence: volker.mohler@lfl.bayern.de (V.M.); edyta.paczos@up.lublin.pl (E.P.-G.)
† These authors contributed equally to this work.

Abstract: Cereal production is of strategic importance to the world economy. Although the primary
aim of breeding programs is to develop cultivars with improved agronomic performance, including
high grain yield and grain quality, as well as disease and lodging resistance, nowadays the adaptability
to changing environmental conditions seems to be an extremely important feature. The achievement
of these breeding objectives in diploid cereal species such as rice, barley, or maize is straightforward.
The genetic improvement of polyploid crops such as hexaploid wheat and oats for increased crop
production is highly demanding. Progenitor species and wild relatives, including taxa at lower ploidy
levels, have preserved a high degree of useful genetic variation. The world’s genebank collections
of wheat and oat germplasm provide extremely rich resources for future breeding and utilization.
This review highlights the immense potential of cultivated wild relatives as donors of genes for a
wide range of biotic and abiotic traits and their impact on wheat and oat breeding. This review
covers methods allowing access to these genetic resources, and it highlights the most (and most
recently)-exploited related species for gene introgression in wheat and oats. Further, it will also deal
with the impact of genomics and cloned genes on the advanced discovery, characterization, and
utilization of genetic resources in these two cereals.

Keywords: crop wild relatives; wheat; oat; introgression breeding; pre-breeding; discovery breeding;
wide crosses

1. Introduction

As major cereal crops cover a significant proportion of arable land [1], their continuous
genetic improvement, particularly in terms of disease resistance and nitrogen-use efficiency,
substantially supports, by the renunciation of pesticides and the saving on fertilizers, the
movement to sustainable agriculture. Elite germplasm becomes short of useful genetic
variation over time. This decrease periodically encourages breeders to remember the
great allele diversity of crop wild relatives (CWR) and landraces that are stored globally
in seed banks and intensify pre-breeding activities for elite germplasm enhancement.
Although more challenging to explore, crop ancestors and widely related species meet
great expectations as they reveal new alleles not only for traits such as resistance to diseases
and tolerance to abiotic growth constraints, e.g., water deficits and heat, but also for yield
and quality improvement.

The early work with alien germplasm was driven by common wheat (Triticum aestivum,
2n = 6x = 42, AABBDD genomes) and rapeseed (Brassica napus, 2n = 4x = 38, AACC)
through attempts to unravel the wild relatives involved in polyploid formation [2,3]. A
major success of introgression breeding was already reported in 1930, when the recessive
and durable, race-non-specific adult plant stem rust-resistance gene Sr2 was transferred
from cultivated emmer (T. dicoccum syn. T. dicoccon, 2n = 4x = 28, AABB) into common
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wheat [4]. The Sr2 locus was later recognized also to confer partial resistance to leaf rust,
stripe rust and powdery mildew [5], and a role for it was suggested in controlling cell
death in response to stress [6]. The expansion of the gene pool concept by Harlan and
de Wet [7], who proposed groupings of a crop and related species based on successful
introgressions among them, paved the way for breeders to choose appropriate plant
materials from CWR for successful introgression breeding. Along with the establishment of
advanced molecular marker technologies, methods and resources, particularly noteworthy
advanced backcross QTL analysis [8] and introgression libraries [9], were developed in
the 1990s for coping with alien genes that determine quantitative traits. Finally, pan-
genomics (reviewed, e.g., in [10]) guided in genotyping arrays the assembly of signatures
for the variable gene fraction recognized through the comparison of the genome sequences
from multiple, both closely and distantly related, individuals. These molecular tools use
thousands of single nucleotide variants (SNV syn. SNP, single nucleotide polymorphism)
markers and provide useful data for convoying introgression breeding. Genotyping-by-
sequencing [11], another high-volume marker approach combining SNV discovery and
scoring, was added to the molecular marker toolbox and shown to be highly useful for
plant species for which whole genome sequence information is scarce. It appears that the
potential of molecular marker technologies, 15 years ago identified as a shortcoming for
assisting introgression breeding and gene deployment in breeding programs [12], can now
be fully realized to produce new cultivars carrying genes from CWR. The shortening of
the generation time through speed breeding [13], a technique employing easy protocols,
can be seen as another milestone on the way to the exploration of CWR in a reasonable
time. Complementing conventional breeding approaches, de novo domestication through
genome editing was recently developed for several crops [14–17]. The conversion of wild
into cultivated variants of cloned domestication and improvement genes makes CWR
directly amenable for breeding, while retaining all other trait variation.

In this review, we present the contributions of wild relatives to the genetic enhance-
ment of the two most important hexaploid temperate cereals, wheat and oats.

2. Wheat
2.1. Wheat, An Outstanding Grass Species

Wheat is one of the most consumed cereal species. This crop shows high adaptability
to diverse environments as a result of genome plasticity, and thus has become the most
widely cultivated species: it is grown on 221 million hectares with a production quantity
of 771 million tons [18]. Sixty-six percent of global wheat production is used for food [19],
and nutritional end-uses include different types of bread, noodles, cakes, pastries, cookies,
crackers, bulgur, and even patties (from green spelt). Wheat trading, with 25% of the
production in 2021 being exported [20], plays a major role in food security. As only
several countries are central for the international wheat trade [21], supply shortages, such
as experienced in the COVID-19 pandemic and now in the Ukraine war, have a severe
impact on food availability. Wheat belongs to the Triticeae tribe within the Poaceae family.
This genus group consists of nearly 500 species, most of which are perennials [22]. The
embedding of common wheat, the most important representative of the Triticum species,
into such a vast community of relatives has provided the basis for its successful continuous
genetic improvement over the last century. Several of the many successful studies on
the use of Triticeae members for the enhancement of cultivated wheat are reported in the
following subsections.

2.2. Synthetic Hexaploid Wheat and Examples of Re-Synthesized Polyploids from Other Crops

Allopolyploids such as common wheat that have not recurrently formed suffer from a
narrow genetic base [23]. However, this evolutionary constraint can be easily countered
by using artificial polyploids for gene transfer. These important genetic resources are
produced as chromosomally doubled hybrids (induced by treatment with colchicine or
other antimitotic agents) from their progenitors, with interploid crosses requiring additional
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embryo rescue and in vitro culture due to endosperm-development failure and embryo
abortion [24,25]. Natural and artificial polyploids can be readily hybridized as they fully
share the same genomes. Indeed, recurrent backcrossing (usually two rounds) to cultivated
genetic backgrounds is needed to counter the low vigor of these primary polyploids, but,
concurrently, homologous recombination-based introgressions are obtained.

Species re-synthesis was applied early in common wheat [26] and rapeseed [27], in the
latter of which hybridization can be performed both sexually and somatically [28]. Since
then, many primary synthetics and derivatives thereof, which provide new allele diversity
from accessions of the lower ploidy level species T. durum (pasta wheat; 2n = 4x = 28,
AABB), T. dicoccum, T. dicoccoides (wild emmer; 2n = 4x = 28, AABB) and Aegilops tauschii
(2n = 2x = 14, DD), were developed and characterized in wheat [29]. A data survey on
pre-breeding activities by the International Maize and Wheat Improvement Center revealed
that at least 86 varieties have been selected from synthetic hexaploid wheat derivatives and
released in 21 countries [30]. Of the released varieties, cultivar Largo and its derivatives
were found to carry new major genes conferring resistance to insects [31–34] and stem
rust [35]. Recently, Molero et al. [36] identified a locus of possibly dominant inheritance on
chromosome 6D within an Ae. tauschii introgression that contributes to heat tolerance with
no yield penalty in high-yield potential environments. An overview of documented genes
captured in synthetic wheat from Ae. tauschii is presented in [37].

Recent work in the cultivated allotetraploid peanut (Arachis hypogaea, 2n = 4x = 40,
AABB) reported neotetraploids that were obtained from crosses with accessions of A. ipaënsis
(2n = 2x = 20, BB) and A. duranensis (2n = 2x = 20, AA), the two genome donors of the culti-
vated peanut, and other related wild diploid species, including A. batizocoi (BB), A. magna
(BB), A. valida (BB), A. correntina (AA), and A. stenosperma (AA) [38,39]. The authors state
that these synthetics are being used in breeding programs and carry alleles for traits includ-
ing resistance to major diseases and adaptation to environmental stresses that frequently
do not show genetic variation in cultivated peanut. These recent studies from the peanut
clearly show that the creation of artificial polyploids through interspecific crosses is still a
valid approach for accessing the genetic diversity of wild species.

2.3. Direct and Bridge Crosses

Gene introgression from wheat relatives can be achieved by direct hybridization with
common wheat, which is used as female parent in the initial cross (Figure 1). Other methods
that have been established for the exploitation of wheat species of lower ploidy level use
bridge crosses with durum wheat.

2.3.1. Waiting for Rare Gametes: The Challenge Associated with the Exploitation of Lower
Ploidy Level Species That Share Genomes with Common Wheat

The F1 hybrids between common wheat and diploid and tetraploid species that
carry the haploid genomes of the species involved in the crosses are tetraploids and
pentaploids, respectively. As fertile hybrids possessing gametes that are equipped with
a full triploid chromosome complement are rare, many initial crosses must be made to
obtain sufficient working material. Alternatively, embryo rescue of the hybrids can be
employed [40]. Forty-two-chromosome wheat lines are recognized through chromosome
counts in self-pollinated or backcross-derived progenies, while specific introgression lines
are identified by phenotypic and/or genotypic assessments. Many designated genes
conferring resistance to major diseases, such as powdery mildew and rusts, were directly
transferred from compatible lower ploidy level species into common wheat (Table 1), and
there was also a gene for increased protein and micronutrient (iron and zinc) content from
wild emmer [41,42].
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cloned gene Pm69 were transferred by this method (Table 1). Furthermore, tetraploid du-
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common wheat. The triploid F1 hybrids, similar as mentioned above, can then be either 
directly used for backcrossing with common wheat or, after establishment of an artificial 
hexaploid, through chemically induced genome doubling. This approach was followed 
for resistance genes Sr22b and Sr60 from T. monococcum, and Pm60 and Pm60b from T. 
urartu (2n = 2x = 14, AuAu) (Table 1). Notably, these genes were cloned in the diploid spe-
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mon wheat, Sr21 and Sr22 were also made available using the triploid hybrid bridge, 
whereas Yr15 was additionally introgressed by durum wheat-assisted three-way crosses 
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Gene Origin Introgression Method Reference 
Pm1b T. monococcum Direct cross [44,45] 
Pm4a T. dicoccum Direct cross [46,47] 
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Figure 1. The gene pools of common wheat (Triticum aestivum L.) grouped based on the feasibility of
gene transfer among species. Not all species are shown.

For gene transfer from wild emmer, three-way crosses using durum wheat as a bridge
and hexaploid wheat as a pollinator (T. dicoccoides/T. durum//T. aestivum) were established,
as the fertility of the F1 pentaploid hybrids of these three-way crosses was increased
compared to that of the direct crosses [43]. Recently, PmG16 and the map-based cloned gene
Pm69 were transferred by this method (Table 1). Furthermore, tetraploid durum wheat
can also be used to bridge the transfer of useful alleles from diploid species to common
wheat. The triploid F1 hybrids, similar as mentioned above, can then be either directly
used for backcrossing with common wheat or, after establishment of an artificial hexaploid,
through chemically induced genome doubling. This approach was followed for resistance
genes Sr22b and Sr60 from T. monococcum, and Pm60 and Pm60b from T. urartu (2n = 2x = 14,
AuAu) (Table 1). Notably, these genes were cloned in the diploid species before being
transferred into common wheat. Besides using direct crosses with common wheat, Sr21
and Sr22 were also made available using the triploid hybrid bridge, whereas Yr15 was
additionally introgressed by durum wheat-assisted three-way crosses (Table 1).

Table 1. Gene transfers from fully compatible diploid and tetraploid wheat species (progenitors) into
common wheat.

Gene Origin Introgression Method Reference

Pm1b T. monococcum Direct cross [44,45]

Pm4a T. dicoccum Direct cross [46,47]

Pm4d T. monococcum Direct cross [48]

Pm16 = Pm30 T. dicoccoides Direct cross [49,50]

Pm26 T. dicoccoides Direct cross [51]

Pm31 T. dicoccoides Direct cross [52]

Pm34 Ae. tauschii Direct cross [53,54]
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Table 1. Cont.

Gene Origin Introgression Method Reference

Pm35 Ae. tauschii Direct cross [55,56]

Pm50 T. dicoccum Direct cross [57]

Pm60 T. urartu Triploid hybrid bridge [58]

Pm60b T. urartu Triploid hybrid bridge [58]

Pm64 T. dicoccoides Direct cross [59]

Pm69 T. dicoccoides Three-way cross [60]

MlZec1 T. dicoccoides Direct cross [61]

PmG16 T. dicoccoides Three-way cross [62]

Yr15 T. dicoccoides Direct cross
Three-way cross [43,63,64]

Yr35 T. dicoccoides Direct cross [65]

YrAS2388R Ae. tauschii Direct cross [66,67]

Lr14a T. dicoccum Direct cross [4,68,69]

Lr21 1 Ae. tauschii Direct cross [70]

Lr39 Ae. tauschii Direct cross [71]

Lr42 Ae. tauschii Direct cross [72,73]

Lr53 T. dicoccoides Direct cross [65]

Sr21 T. monococcum Direct cross
Triploid hybrid bridge [74,75]

Sr22 T. boeoticum Direct cross
Triploid hybrid bridge [74,75]

Sr22b T. monococcum Triploid hybrid bridge [76]

Sr35 T. monococcum Direct cross [77,78]

Sr60 T. monococcum Triploid hybrid bridge [79]

SrTA1662 Ae. tauschii Direct cross [80]

GPC-B1 2 T. dicoccoides Direct cross [81]
1 Lr21 introgressions were also made through synthetic hexaploid wheat line RL5406 [82]. 2 Also called NAM-B1
as the gene encodes a NAC domain transcription factor [83].

2.3.2. The Induction of Homoeologous Pairing

Before methods for the targeted induction of homoeologous pairing were known, in-
trogressions from the secondary and the tertiary gene pool of wheat were achieved via both
compensating (substituting corresponding chromosome segments) and non-homoeologous
(causing genetic imbalance through the loss and addition of chromosome segments) translo-
cations that occurred spontaneously or were induced by facilitating the meiotic appearance
of two homoeologous univalents (double monosomics), radiation treatment, or high-pairing
lines (reviewed in [84]). The discovery of the genetic control of the strict pairing and re-
combination of homologous chromosomes in wheat [85,86] was essential for the conscious
induction of homoeologous recombination. The disruption of meiotic pairing regulation in
alien species-wheat F1 hybrids was achieved with either deletion mutants [87] or suppres-
sors (available from different wheat wild relatives) [88–90] for the Ph1 locus on chromosome
5B and promoters for homoeologous recombination such as found in Ae. geniculata [91].
A recent study in common wheat combined ph1b and homoeologous recombination pro-
moter factor(s) to further increase recombination, even in the proximal regions of the
chromosomes where recombination is known to be rare [92].
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Introgressions can finally also be achieved through the generation of addition and sub-
stitution lines. Single monosomic addition lines are obtained by crossing an amphidiploid
such as historical triticale (2n = 8x = 56, AABBDDRR) with common wheat. To generate sin-
gle monosomic substitution lines, single disomic addition lines, recovered after selfing, are
then used to pollinate wheat lines that are monosomic for the homoeologous chromosome
pair carried by the additions. For example, to produce hybrids of the genome constitution
20′′ + 1B′ + 1R′, the gametes to combine must either have the constitution 20′ − 1B′ + 1R′

of the disomic addition line and 20′ + 1B′ of the monosomic line or 20′ + 1B′ + 1R′ of the
disomic addition line and 20′ − 1B′ of the monosomic line. In subsequent segregating
selfing progeny, lines without the single common wheat chromosome can be identified.
Single disomic substitution lines are then used in ph1-based introgression programs.

In the secondary gene pool of wheat, consisting of Triticeae members with at least
one genome common to bread wheat, useful variation is mostly obtained through translo-
cations. Although several species belong to the secondary and tertiary gene pools, Aegilops
is the largest genus in the secondary gene pool and most closely related to common wheat:
Ae. tauschii is the direct progenitor of the wheat D genome (thus, per definition, a member
of the primary gene pool) and Ae. speltoides (2n = 2x = 14, SS) of the section Sitopsis shares
ancestry with an unknown, most likely extinct, diploid species that donated the wheat B
genome [93]. The study also found that the four remaining Sitopsis species are phyloge-
netically clustered with the D genome lineage and may have contributed to the genome
constitution of the unknown B genome progenitor. Members of the genus Aegilops have
provided nearly 50 designated resistance genes against fungal diseases and pests [37,94–96].
Among them, Ae. speltoides is the most exploited species.

Dasypyrum villosum (2n = 2x = 14, VV) is an open-pollinating annual Mediterranean
grass in the tertiary gene pool of wheat. Although known for its apparently high allele
diversity, D. villosum was just recently explored in more detail, especially in China. Five doc-
umented D. villosum accessions, with genomes designated V#1 to V#5, have been used
to develop wheat-D. villosum disomic addition, substitution, and translocation lines [97].
Of these accessions, at least three were donors of resistance genes to diverse pathogens
(Table 2).

Table 2. Gene transfers from diploid Dasypyrum villosum into common wheat.

Disease Gene Line(s) Chromosome Constitution Reference

Powdery mildew

Pm21
Several

NAU427
DvRes-1

T6AL.6V#2S
Cryptic 6V#2S introgression

not published

[98]
[99]

[100]

Pm55 NAU421 T5AL.5V#4S [101]

Pm62 NAU1823 T2BS.2V#5L [102]

Pm67 NAU1817 T1DL.1V#5S [103]

PmV

Pm97033
RIL 12401
Dv6T25
Dv6T31

T6DL.6V#4S
T6AL.6V#4S-6V#2S

short distal 6VS segment
short proximal 6VS segment

[104]
[105]
[106]
[106]

Pm5V NAU1908 T5DL.5V#5S [107]

Stripe rust YrCD-3 22-12 T3DL.3V#3S [108]

Yr5V NAU1908 T5DL.5V#5S [107]

Stem rust Sr52 Several T6AS.6V#3L [109]

Sharp eyespot - NAU2V–8 T2DS.2V#4L [110]

Cereal cyst nematode CreV NAU423 T6AS.6V#4L [111]

Wheat spindle streak mosaic virus Wss1 NAU413 T4VS.4DL [112]
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As a major disease in the wheat-growing regions of China, resistance to powdery
mildew was widely investigated and six genes have been characterized so far. Since its
description in 1995, the all-stage resistance gene Pm21 has been widely used in Chinese
wheat-breeding and many cultivars were released [113]. To allow future use of this im-
portant resistance gene, new powdery mildew resistance genes from D. villosum including
PmV, a Pm21-homolog carried by a wheat-D. villosum T6DL.6V#4S translocation for which
small segmental translocation lines were identified in a large ph1b-based population, adult
plant resistance genes Pm55 and Pm62, and more recently, all-stage resistance gene Pm67
are available for gene stacking with Pm21. In addition, the mining of 38 Pm21 gene variants
can also contribute to a longer use of the Pm21 locus once their reaction to powdery mildew
were characterized and the useful genes were transferred into common wheat [114].

Further overviews of wheat-alien translocations are presented in [84,115,116].

2.4. Impact of Genomics and Cloned Genes on the Advanced Utilization of Genetic Resources
in Wheat

Developments in marker technologies over the last ten years have contributed, and
still do contribute, to the systematic and large-scale exploration of species from the third
gene pool of wheat. Molecular markers basically have the potential to identify chromatin of
any wild relative in the common wheat background and are rapid when compared to cyto-
logical methods. Kompetitive allele-specific PCR (KASP) assays for single-copy SNPs that
differentiate common wheat from wild relatives, and thus relatively easy heterozygous from
homozygous hybrid lines in backcross populations, were recently developed for 10 wheat
wild relatives ranging between 114 for T. urartu and 322 for Thinopyrum intermedium
(2n = 6x = 42; StStJrJrJvsJvs) [117]. This flexible molecular marker format was used at the
Nottingham BBSRC Wheat Research Centre to study hundreds of homoeologous introgres-
sions from Ae. caudata (2n = 2x = 14, CC) [118] and Amblyopyrum muticum (2n = 2x = 14,
TT) [119] into wheat. Whole-genome sequencing of Am. muticum introgression lines
has shown that KASP markers, despite an even genome coverage, have limited power
for determining the precise size of incorporated segments and will likely overlook small
segments [120]. Still, these and other resources [121,122] will make the species from the
third gene pool of wheat among the most extensively exploited in future wheat breeding.

Linkage drag of detrimental alleles has regularly thwarted alien gene use in agriculture.
For example, the introgression in common wheat of Sr22 from T. boeoticum (2n = 2x = 14,
AbAb) was burdened by a yield penalty [123]. After it was recognized that the gene was
effective against Ug99 stem rust, efforts were undertaken to develop lines with reduced
introgression fragments. Here, the availability of dense genetic maps was enough for the
controlled targeting of the closely related chromosome fragment and the identification of
recombinant lines in segregating populations [124]. The cloning of Sr22 from a hexaploid
introgression line [75] has allowed further allele-mining from diploid species, and the
validation of predicted functional and nonfunctional alleles using transgenic assays in
hexaploid wheat [125] enables the future transfer of effective alleles only. The Th. ponticum
(2n = 10x = 70, JJJJJJJsJsJsJs)-derived genes Lr19 and Fhb7, conferring a broad resistance
without yield penalty to leaf rust [126,127] and Fusarium species [128,129], respectively, are
closely linked to the yellow flour gene Psy-E1 [130], which limits their use in wheat breeding.
Three studies developed new small segment translocation lines based on ph1b-induced
homoeologous recombination along with molecular marker enrichment for these segments
to resolve this linkage drag effect: Li et al. 2023 [131] shortened the alien segment on wheat
chromosome 7DL using wheat line SDAU 2028, whereas Zhang et al. 2022 [132] transferred
a new Fhb7 allele derived from diploid Th. elongatum (2n = 2x = 14, EE) and available
in a Chinese Spring-Th. elongatum disomic substitution line 7E(7B) into chromosome 7B.
Similarly, Xu et al. 2023 [133] obtained a smaller Th. ponticum chromosome segment on
chromosome 7DL that retained Lr19 but not Psy-E1, using translocation line K11695 [134].
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Regarding the transfer of disease-resistance genes, the loss or reduced effectiveness of
resistance (especially to the three wheat rust pathogens) from the progenitors was regularly
observed in synthetic wheat. Thus, suppression was mediated by genes located either on
the A and/or B genome chromosomes of some tetraploid genetic backgrounds such as
Langdon durum [135] or on the D genome chromosomes of Ae. tauschii [136]. The stem rust
suppressor SuSr-D1 identified in Canthatch common wheat was cloned [137], allowing now
for the targeted removal of the suppression allele by molecular markers or its inactivation
by genome editing.

When cloned genes are available, the relationship of genes located in the target regions
can be clearly answered as shown for the powdery mildew resistance loci Pm3 [138],
Pm4 [47], Pm5 [139], and Pm24 [140]. Therefore, true allelism must also be questioned for
T. monococcum-derived Pm1b [141], despite the fact that a genetic allelism test was carried
out and a specific host response to powdery mildew isolates compared to other Pm1 alleles
was found [45]. The knowledge of whether genes are allelic or tightly linked is mandatory
for creating virtually permanent gene stacks.

Among the genes that have been successfully cloned, the broad-spectrum all-stage
resistance gene Yr15 [64] and its allelic variants YrG303 and YrH52 [142] possibly have a
high potential for longer use in agriculture, as they encode a tandem kinase-pseudokinase
protein, like the barley stem rust-resistance gene Rpg1 [143], a gene that has remained
effective against most isolates in North America since its deployment in cultivar Kindred
in 1942 [144]. Yr15 has been now distributed in European commercial cultivars such as in
the German spring wheat cultivar Kapitol and advanced breeding lines [145].

3. Oat
3.1. Oat—Common and Unique

Oat is a versatile crop with a wide range of applications, including human food, ani-
mal feed, and industrial materials. The primary aim of breeding programs is to develop
cultivars with improved agronomic performance, including high grain yield and grain
quality, disease and lodging resistance, as well as adaptability to changing environmen-
tal conditions.

It is significantly easier to achieve breeding objectives in diploid cereal species such as
rice, barley or maize. It is much more difficult to conduct targeted breeding in polyploid
crops such as wheat and oats. Despite the similarities in genome size between these
hexaploids, wheat has immense significance in human nutrition, and substantial resources
are allocated to research for this species. As a result, CWR utilization is more common
in wheat than oats. Hordeum, Secale, and Triticum belong to the tribe Triticeae, Avena to
the tribe Aveneae, and because of this the polyploid structure oat and wheat are not fully
comparable [146]. Moreover, Avena has proven to be more recalcitrant to interspecies
gene transfer compared to species from the tribe Triticeae due to postzygotic sterility
barriers [147].

The main source of diversity for improving the cultivated oat has been the wild
relatives of oats. Many genes providing desirable traits, especially disease-resistance genes,
have been found in wild and weedy oat species as well as in landraces, breeding lines, or
cultivars. However, it is mainly hexaploid taxa that have been utilized in oat breeding [148].
The main obstacle that is hindering oat improvement using wild or cultivated diploid
and tetraploid species is the lack of chromosome pairing in hybrids [149]. Nonetheless,
many oat cultivars now possess genes derived from wild relatives, and their contribution
to global oat production is significant. This review highlights the immense potential of
cultivated wild relatives as donors of genes for a wide range of biotic and abiotic traits and
their impact on oat breeding.

3.2. Introduction to the Genus Avena

Understanding the relationships between species within the genus Avena is essential
for genetics and breeding efforts, as well as for the efficient transfer of genes to the cultivated



Agriculture 2023, 13, 2060 9 of 26

oat. The genus Avena L. belongs to the tribe Aveneae, family Gramineae. It is divided into
three karyological groups with 14, 28, and 42 chromosomes, and includes both wild and
cultivated species [150]. Attempts to classify species within the genus Avena have been
made many times [148,150–154]. Currently, most authors use the taxonomy based on
Baum’s numerical system [151] updated by Leggett [152], Zeller [154], and Loscutov and
Rines [155]. According to this taxonomy, the genus Avena comprises 30 species, including
16 diploids (2n = 2x = 14), 8 tetraploids (2n = 4x = 28), and 6 hexaploids (2n = 6x = 42)
(Table 3). Individual species were assigned to seven sections: Ventricosa, Agraria, Ethiopica,
Pachycarpa, Avenotrichon, Tenuicarpa, and Avena. All species of the genus Avena are annual
and self-pollinating, with the exception of A. macrostachya, which is a perennial and cross-
pollinating species [156].

Table 3. Current classification of the genus Avena L.

Section/Species Chromosome Number Genomic Constitution

Section: Avenotrichon

A. macrostachya Bal. ex Coss. et Dur. 2n = 4x = 28 CmCmCmCm

Section: Ventricosa

A. clauda Dur. 2n = 2x = 14 CpCp
A. eriantha Dur. 2n = 2x = 14 CpCp
A. ventricosa Bal. ex Coss. 2n = 2x = 14 CvCv

Section: Agraria

A. brevis Roth. 2n = 2x = 14 AsAs
A. hispanica Lag. 2n = 2x = 14 AsAs
A. nuda L. 2n = 2x = 14 AsAs
A. strigosa Schreb. 2n = 2x = 14 AsAs

Section: Tenuicarpa

A. atlantica Baum et Fedak 2n = 2x = 14 AsAs
A. canariensis Baum Rajhathy et Sampson 2n = 2x = 14 AcAc
A. damascena Rajhathy et Baum 2n = 2x = 14 AdAd
A. hirtula Lag. 2n = 2x = 14 AsAs
A. longiglumis Dur. 2n = 2x = 14 AlAl
A. lusitanica (Table Mar.) Baum Comb et Stat. 2n = 2x = 14 AsAs
A. matritensis Baum Sp. Nov 2n = 2x = 14 AA?
A. prostrata Ladiz. 2n = 2x = 14 ApAp
A. wiestii Steud 2n = 2x = 14 AsAs
A. agadiriana Baum et Fedak 2n = 4x = 28 AABB (DDDD)
A. barbata Pott. ex Link. 2n = 4x = 28 AABB

Section: Ethiopica

A. abyssinica Hochst 2n = 4x = 28 AABB
A. vaviloviana (Malz.) Mordv. 2n = 4x = 28 AABB

Section: Pachycarpa

A. magna Murphy et Terrell 2n = 4x = 28 CCDD
A. murphyi Ladiz. 2n = 4x = 28 CCDD
A. insularis Ladiz. 2n = 4x = 28 CCDD

Section: Avena

A. byzantina Koch. 2n = 6x = 42 AACCDD
A. fatua L. 2n = 6x = 42 AACCDD
A. ludoviciana Dur. 2n = 6x = 42 AACCDD
A. occidentalis Dur. 2n = 6x = 42 AACCDD
A. sativa L. 2n = 6x = 42 AACCDD
A. sterilis L. 2n = 6x = 42 AACCDD
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Most species in the genus Avena are wild forms. Among cultivated forms, the following
hexaploid species are of the greatest economic importance: A. sativa L. (common oat) and
A. byzantina C. Koch. (red oat), and to a lesser extent diploid species A. strigosa Schreb.
(grey oat). Diploid species A. nuda L., A. brevis Rotch., and A. hispanica Lag. [151] are of
marginal economic importance among cultivated forms, similarly to tetraploid A. barbata
Pott. ex Link and A. abyssinica Hochst (Ethiopian oat) [152].

Four primary genomes (A, B, C, and D) have been identified in the genus Avena based
on the combined data from karyotype analysis, FISH, GISH, C-banding, and interspecific
hybrid chromosome pairing experiments [154,157]. In diploid species, only the A or
C genomes are present; in tetraploid species, the A, B, C, or D genomes can be found;
and in hexaploid species, the A, C, and D genomes have been described. The A and C
genomes are present in all karyological groups; the D genome is found in tetraploids and
hexaploids, while the B genome is only present in certain tetraploids [158–160]. The B or
D genomes have not been identified in any of the currently known diploid species [161].
Taking into account the structural differences in chromosomes, five subgenomes have
been distinguished within the A genome of diploids: Ac, Ad, Al, Ap, and As. Similarly,
two subgenomes have been identified within the C genome, i.e., Cp and Cv [149,150].
Diploid species belong to three sections, including Ventricosa, which comprises three species
with the C genome, and sections Agraria and Tenuicarpa, which include four and nine
diploids with the A genome, respectively.

Baum [151] has divided tetraploid species into three groups. The first group includes
A. macrostachya, an autotetraploid, whose genome is a specific form of the C genome
designated as Cm [162,163]. The second group, known as the “barbata group”, includes
species with an AABB genomic composition: A. barbata, A. vaviloviana, and A. abyssinica.
The third group is composed of species with a CCDD genomic composition. The species
belonging to the third group are A. magna, A. murphyi [160], and the relatively recently
discovered (by Ladizinsky [164]) A. insularis. The genome composition of the tetraploid
species A. agadiriana has not been definitively determined. However, research conducted
by Tomaszewska et al. [165] has suggested that the genomic composition of this species
may be DDDD, and not AABB as previously reported [166].

Based on the structural similarity of chromosomes and chromosomal pairing in hy-
brids, the genome composition of all hexaploids has been described by Rajhathy and
Thomas [150] as AACCDD, which has been confirmed by whole-genome sequencing anal-
yses [167]. There is much controversy regarding the distinctiveness of species among
hexaploids, especially as intertaxa hybrids are fertile. Ladizinsky and Zohary [168], based
on the identical genomic composition and fertility of hybrids, have suggested that all
hexaploids belong to one species, A. sativa. Rajhathy [169] distinguishes four hexaploid
species: A. sativa, A. byzantina, A. fatua and A. sterilis. Baum [151] and Zeller [154] in turn
distinguish seven hexaploid species: A. atheranta, A. fatua, A. hybrida, A. occidentalis, A. sativa,
A. sterilis, and A. trichophylla, while Jellen et al. [147] argue that there are eight hexaploid
taxa and add A. byzantina to the seven mentioned above. On the other hand, Loscutov
and Rines [155] identify six hexaploid taxa: A. sativa, A. byzantina, A. fatua, A. sterilis,
A. occidentalis, and A. ludoviciana. Therefore, the taxonomic status of Avena hexaploids is
ambiguous; however, Loscutow and Rines’ [155] taxonomy seems to fit best in the context
of contemporary research [159].

3.3. Use of Wild Relatives in Oat Improvement

Numerous studies have highlighted the common oat as a classic example of a culti-
vated species with a relatively narrow gene pool [170–172]. Historically, improvements
since the end of the 19th century have focused on small but consistent increases in grain
yield. A significant breakthrough occurred in the mid-twentieth century when researchers
uncovered the potential of related wild oat species as valuable sources of genetic variability
for cultivars [173–175]. As a result, breeders and researchers began exploring genebank
resources to identify accessions carrying desirable genes.



Agriculture 2023, 13, 2060 11 of 26

Various genes have been identified in the oat species collected in global genebanks,
including disease- and pest-resistance genes, genes enabling adaptation to specific or
changing environmental conditions, genes conditioning high content and quality of protein,
fat, or β-glucans in grains, tolerance to low and high temperatures, drought resistance,
lodging resistance, early maturation, rapid vegetative growth, high yielding potential or
insensitivity to day length [156,173,176–189]. A detailed characterization of gene resources
and traits identified in various common oat relatives is discussed in reviews by Loscutow
and Rines [155] and Boczkowska et al. [190].

3.4. Limitations in the Use of Wild Relatives of the Oat

Wild species variability is not always equally accessible to breeders and depends
on the degree of genetic barriers separating some of these species [149]. The larger the
phylogenetic distance between the crossed taxa, the greater the difficulty in obtaining fertile
hybrid offspring. Interspecific crossing barriers result from the different levels of ploidy
or lack of genome homology. They cause sterility in the obtained hybrids and constitute a
significant limitation in the direct utilization of genes determining beneficial traits [150].
Understanding the genetic relationship between individual species at different ploidy levels
is a prerequisite for effective selection of parental components for crossbreeding in order to
obtain interspecific hybrids that carry desirable traits and could be the initial material for
new cultivars [173,191–193].

An obstacle in expanding the oat gene pool is the presence of numerous translocations
in the genome. The most common are translocations from the C to D genome; less common
are those from A to C or from D to C [159,194]. However, rare translocations from A to D
and from D to A genomes have also been identified [165]. Reconstruction of the ancestral
state of oat chromosomes revealed the loss of at least 226 Mb of gene-rich regions from the
C genome in favor of the A and D genomes [167]. The presence of large and fairly common
intergenomic translocations 7C-17A (1C/1A) [163,195] and 3C-14D (6C/5D) [196] was
detected within the cultivated hexaploid gene pool itself [197,198]. Kianian et al. [199] pro-
posed describing the genomic organization of hexaploids as segmental homoeology, rather
than whole-chromosome homoeology, due to the significant involvement of chromosomal
rearrangements, such as translocations, inversions or duplications, in their evolution. Very
frequent rearrangements of oat chromosomes result in pseudo-linkage and suppression
of recombination and limit the improvement of cultivated oat forms [200]. The segmental
chromosomes’ homoeology affects segregation, localization, and deployment of QTLs in
breeding programs [199].

Harlan and de Wet [7] presented a classification of wild species based on their cross-
ing potential with cultivated forms. They distinguished three gene pools (Figure 2). A
similar classification of wild species in the genus Avena was presented by Leggett and
Thomas [148]. The first gene pool includes all wild hexaploid species. The free transfer
of genes to cultivated forms occurs through conventional crossing, backcrossing, and re-
current selection [156]. The second gene pool includes tetraploids with a CCDD genomic
composition, i.e., A. magna, A. murphyi, and A. insularis. The transfer of genes from this
gene pool to hexaploid cultivated forms is partially limited. F1 hybrids can be relatively
easily obtained; they are self-sterile but partially female-fertile and their fertility can be
restored through backcrossing [154,156]. The third gene pool comprises tetraploids with an
AABB genomic composition, i.e., A. barbata, A. abyssinica, A. vavilovonia, and A. agadiriana
as well as all diploids. The transfer of genes from these species to cultivated forms is
limited and requires overcoming the crossing barriers through the use of in vitro cultures
and polyploidization.
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3.5. Cultivar Enhancement through Direct Crosses with Hexaploid Species

In the common oat breeding programs involving interspecific crosses, hexaploid
species, which belong to the first gene pool, are most often used as the source of desirable
genes [155,194]. Oat breeders have a broad spectrum of hexaploid species represented
not only by wild or weedy species but also A. sativa and A. byzantina landraces. As a
result, there are many examples of introgressions from these easily available resources.
Nevertheless, Frey [173] considered the wild species A. sterilis as the most promising source
of new genes available to breeders. Among the genotypes of this species, genes for BYDV
tolerance and resistance to powdery mildew, crown rust, or nematodes have been identified.
Additionally, this species is a source of genes that determine high protein and oil content
in grains, as well as traits related to early maturity, rapid vegetative growth, and high
yield [154,177,183,184,188,201–204]. Therefore, A. sterilis can be found in the pedigrees of
many American cultivars, e.g., Starter, where this wild species contributed to increased
grain protein content, Ozark (with improved winter hardiness [205]), or Sheldon (with high
yielding potential [206]). However, most commonly, A. sterilis accessions have been used
as a source of qualitatively inherited major disease-resistance genes, particularly against
crown rust. The latter disease, caused by the fungus Puccinia coronata f. sp. avenae Eriks.
(Pc), is one of the most widespread diseases of oats [207–209]. Crown rust infection causes
a reduction in yield, decreases grain quality, and reduces plant resistance to lodging [208].
Genes determining resistance to specific races of this pathogen were initially identified in
the cultivars of A. sativa and A. byzantina, and the first research in this field was conducted
by Parker [210]. In subsequent years of breeding for resistance, alternative sources of
Pc genes were sought, which turned out to be genotypes of A. sterilis, A. strigosa, and
A. abyssinica [211]. Among over 100 identified genes conferring resistance to crown rust,
approximately 50 originated from A. sterilis, 22 from A. strigosa, 1 from A. abyssinica, 1 from
A. magna, and the remaining genes from cultivated forms [211–214]. The development of
cultivars resistant to crown rust mainly utilized A. sterilis genes (Pc38, Pc39, Pc48, Pc58,
Pc59, Pc60, Pc61 and Pc68) [215,216]. An exception is the A. magna-derived Pc91 gene,
currently providing the most effective resistance to crown rust found in HiFi, Stainless
or CDC Morrison cultivars. Genes conferring resistance to powdery mildew (Pm1, Pm3,
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Pm11, Pm12, and QPm.18) [217–220], as well as stem rust (Pg13, Pg15, and Pg17) [221], also
originated from A. sterilis. Among the aforementioned genes, Pm1, Pm3, QPm.18, and Pg13
have been introduced into cultivars.

Grain protein content is one of the agronomically important traits improved with
the use of A. sterilis genetic variation. Cox and Frey [178] identified transgressive segre-
gants with high protein content in the progeny of A. sativa × A. sterilis hybrids. Lyrene
and Shands [203] found that a higher protein proportion can be accompanied by an in-
crease in husk content. Additionally, these authors pointed out that selecting progeny of
A. sativa × A. sterilis hybrids based solely on grain protein content would also be associ-
ated with an increase in husk content in the grain, as well as a reduction in grain filling,
decreased yield, and, in some cases, spikelets-shattering and awn formation. Hence, the
authors suggested that breeding programs should prioritize maintaining a high level of
agronomic traits, even if this approach may slow down progress in increasing grain protein
content. Takeda and Frey [222], analyzing interspecific hybrids of A. sativa × A. sterilis,
found that it is necessary to conduct three to five backcrosses to obtain lines with high
grain protein content, while maintaining satisfactory levels of agronomic traits. The same
authors [223] obtained lines with a very high level of grain protein content already in early
backcross generations, but these traits were accompanied by unfavorable agronomic prop-
erties. Rossnagel and Bahtty [224] utilized American breeding lines containing A. sterilis
in their pedigree as a source of genes for high grain protein content and obtained hybrids
characterized by increased protein quantity, with retained high-yielding potential and grain
quality. The recurrent selection method was also applied to increase oil content in groat
up to 16% [206,225,226]. One of the important directions in oat breeding was to reduce
straw height and improve lodging resistance by using dwarfing genes. The Dw8 gene,
which reduces plant height, was obtained from A. fatua [227,228]. However, the resulting
dwarfism was too extreme to be used in A. sativa cultivars [229]. A. fatua germplasm was
also used to improve adaptation to arid regions of the cultivars Sierra, Mesa, or Montezuma
and introduce extreme earlines into the cultivar Rapida [230,231].

3.6. Non-Hexaploid Species as a Source of Desirable Genes

Attempts to transfer genes from di- and tetraploids to A. sativa have been carried out
using, among others, addition and substitution lines [149]. Monosomic and disomic A. sativa
addition lines were obtained by adding A. strigosa [232,233], A. hirtula [234], A. barbata [235],
and A. abyssinica [233]. chromosomes. Similarly to wheat, the addition lines were utilized
in oats for gene mapping on chromosomes and obtaining substitution lines, which are more
stable and fertile than addition lines [149]. Substitution lines of A. sativa were obtained by
replacing its chromosomes with their counterparts derived from A. barbata, A. prostrata [235],
A. strigosa [236], and A. abyssinica [233].

The transfer of extraneous genetic variation can also occur through translocation
induced by ionizing radiation. For the first time, translocation lines with resistance
genes for stem rust [237] and powdery mildew [238] from A. barbata and crown rust from
A. strigosa [239] were obtained by this means in A. sativa. The addition and substitution
lines were the starting material for inducing translocations [233,238].

Another possibility for the transfer of extraneous genetic variation is the weakening
or removal of the control mechanism for homologous pairing. The common oat (A. sativa)
is a hexaploid, but cytologically it behaves like a diploid, forming 21 bivalents during
meiosis [240]. Bivalent pairing and disomic inheritance indicate that homoeologous chro-
mosomes do not normally conjugate [150]. In wheat, the gene controlling bivalent pairing
(Ph) is located on the long arm of chromosome 5B [241]. The absence of chromosome
5B results in the formation of multivalents through homoeolog pairing. Jauhar [242] has
argued that the process of homologous pairing control is more complex in A. sativa than in
wheat, and it is likely that more genes are involved in regulating this mechanism. Gauthier
and McGinnis [243] observed a lower degree of homologous chromosome pairing in nulli
haploids of hexaploid oat compared to wheat, suggesting stronger control of bivalent
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pairing in A. sativa. To date, no chromosomes of cultivated oats have been identified that
could potentially harbor a specific gene or genes regulating bivalent pairing that would
correspond to the wheat Ph gene [148,194].

The effect of weakening the control mechanism was observed in interspecific hybrids,
when one of the crossing components was the CW57 genotype of the diploid species
A. longiglumis [240]. This genotype is a suppressor of genes controlling bivalent pairing in
interspecific hybrids, causing the induction of homoeologous conjugation and the formation
of a large number of trivalents and quadrivalents. Utilization of the A. longiglumis CW57
homoeologous pairing system is constrained by the presence of a suppressor gene in this
accession and is due to the sterility of A. longiglumis × A. sativa hybrids. Nevertheless,
genes for powdery mildew resistance from A. prostrata and A. barbata [238] were transferred
to A. sativa using this mechanism. In addition, a synthetic hexaploid, Amagalon, carrying
a major crown rust resistance gene, Pc91, was developed from A. magna × A. longiglumis
CW57 hybrids [244]. Understanding the pairing control system of Avena would make gene
transfer from the secondary and tertiary gene pools less complicated.

In summary, only Pc23 (A. strigosa), Pc91 (A. magna), and Pc94 (A. strigosa) genes
were incorporated from non-hexaploid Avena species into A. sativa [245–247] (Table 4).
Resistance to Blumeria graminis was introduced into hexaploid oat from A. hirtula (Pm2),
A. barbata (Pm4), A. macrostachya Bal. (Pm5), and A. eriantha (Pm7) [248]. The Pg16 gene,
which confers resistance to Puccinia graminis, is also derived from A. barbata, while the Pg6
and Pg7 genes originate from A. strigosa [221]. Of the genes listed, only Pc91 (HiFi, Stainless,
CDC Morrison), Pc94 (Leggett), and Pm7 (Canyon, Yukon, Klaus, Harmony, Benny) were
introduced into A. sativa cultivars.

Table 4. Gene transfers from diploid and tetraploid oat species into the common oat.

Disease Gene Origin Introgression Method Reference

Crown rust

Pc15 A. strigosa Triploid hybrid bridge,
monosomic substitution line irradiation [239]

Pc23 A. strigosa Synthetic octoploid backcrosses [246]

Pc91 A. magna Triploid hybrid bridge [244]

Pc92 A. strigosa Autoteraploid,
Triploid hybrid bridge [247]

Pc94 A. strigosa Autoteraploid,
Triploid hybrid bridge [245]

Stem rust
Pg6 A. strigosa Direct crosses

Synthetic octoploid backcrosses [244]

Pg16 A. barbata Direct crosses
irradiation [237,249]

Powdery mildew

Pm2 A. hirtula - [248]

Pm4 A. barbata Direct crosses,
Disomic addition line irradiation [238]

Pm5 A. macrostachya Direct crosses with A. magna, backcrosses
with A. sativa [250,251]

Pm7 A. eriantha
Direct crosses with A. sativa,

embryo rescue,
backcrosses with A. sativa

[252]

The emergence of new pathogen races necessitates continuous efforts to search for
new sources of resistance, leading to the discovery of new resistance genes [253–261]. Even
though many highly effective resistance mechanisms can still be identified in hexaploid
stocks stored especially in small national genebanks, diploid and tetraploid species have
proven to be a better source, especially of adult plant resistance [190,213]. It is worth noting
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that no effort to introduce resistance from diploid or tetraploid Avena species into hexaploid
oats has been made in the last 15 years, with the most recent described by Rines et al. [262].
Furthermore, unlike in wheat, none of the Avena genes have been cloned [213].

3.7. Synthetic Polyploids

An alternative approach to breeding, based on introducing genes that determine de-
sirable traits from non-cultivated species, is the domestication of selected wild species, or
the synthesis of new artificial tetraploid, hexaploid, or octoploid forms [263,264]. Ladizin-
sky [265] presented an attempt to domesticate two wild tetraploid oat species, A. magna and
A. murphyi, and selected domesticated A. magna lines are undergoing productivity evalua-
tions in their native region of Morocco [266,267]. Domesticated tetraploids might be more
successful than the common oat in the warm climate of North Africa or the Iberian Penin-
sula. In addition, domesticated tetraploids have been used to produce synthetic hexaploids.
Although they may not be directly utilized as new cultivars, they can serve as bridging
forms enabling gene transfer between di- and tetraploids and the cultivated hexaploid
oat [264]. Amagalon, mentioned earlier, serves as an example of a synthetic hexaploid [244],
and it was used as the parental form to develop a number of cultivars, with HiFi [268]
being one of the most important among them. Another synthetic hexaploid is Strimagdo,
obtained from a cross between A. strigosa Saia and domesticated A. magna [264]. The process
of developing synthetic octoploids and hexaploids involved crossing A. macrostachya with
A. sativa. As a result, F1 hybrids were obtained through embryo rescue, vegetative cloning,
and colchicine treatment. Afterwards, these hybrids were backcrossed with A. sativa culti-
vars to achieve the desired ploidy level. They gave rise to three groups of broad hybrid
material, decaploids (2n = 10x = 70), octoploids (2n = 8x = 56), and plants with chromosome
numbers between 40 and 49, which allowed selection of stable hexaploids (2n = 6x = 42).
A. macrostachya derivatives were used as components to obtain breeding lines with im-
proved winter hardiness and resistance to various diseases and pests, as well as larger
seeds and higher protein content [269].

3.8. The Oat in the Genomic Era

For many years, research in oat genetics and breeding was severely hindered by
the lack of highly saturated genetic maps, consistent chromosome nomenclature, and
complete genome sequences. The breakthrough came initially with the publication of
Chaffin et al. [270], where a consensus map of the cultivated hexaploid oat was developed
based on 12 recombinant inbred line (RIL) populations. This facilitated the full utilization
of molecular markers to confirm the transfer of external chromatin and select appropriate
segregants in oat breeding. The next breakthrough occurred between 2020 and 2022, when
the complete genome sequence of the oat Avena sativa line OT3098 was published [271],
followed by the cultivars Sang [167] and Sanfesan [272]. The fully annotated cv. Sang
reference genome plays a special role here, as it can assist breeders and researchers in
better comprehending the segregation anomalies observed in various mapping studies and
overcoming breeding barriers.

4. Conclusions

With the advent of molecular markers in the 1980s, to their high-throughput use over
the last decade, introgression breeding in wheat has been constantly refined. Translocation
lines can now be easily converted to true introgressions by employing the long-known ph1b-
system for precisely following homoeologous recombination in segregating populations.
Concurrently, approaches for obtaining small segmental introgressions at a large scale
for individual species can be realized now to systematically assess their effects on the
phenotype prior to implementation in costly breeding programs.

The progenitor species and wild relatives, including taxa at a lower ploidy level,
are a valuable source of genes for the improvement of the cultivated oat; however, their
use is limited by crossbreeding barriers and the lack of a wheat ph1 system counterpart.
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Recent advances in oat genetics and genomics have made molecular breeding possible and
will enable the application of modern breeding strategies in future These advancements
are instrumental in developing oat cultivars that are better adapted to changes in global
climate conditions.

In recent years, the genomic selection of complex traits was successfully added to
the molecular breeding toolbox of both wheat and oats, whereas genome editing has
yet to come. It is expected that genomic selection can be more efficient than genome
editing for improving complex traits, as more genetic components are considered simulta-
neously. However, genome-editing methods that involve targeted mutagenesis will become
important for breeding both simple and complex traits because of the ease, speed, and
cost-effectiveness with which beneficial gene signatures from species of the secondary and
tertiary gene pools may be “utilized” for the fine-tuning of advanced breeding materials.
Despite the unquestionable advantages of genome editing, in comparison with other major
crops (e.g., rice or maize), the adoption of the CRISPR-Cas system for the improvement of
wheat and oats has lagged behind. Among the factors that have contributed to this delay
in the application of genome editing in these crops are the slow advances in wheat and
oat transformation methods or, until recently, the lack of high-quality reference genomes.
Nevertheless, continued progress in improving modern technologies and the allied ap-
plication of available modern breeding techniques can contribute to the transition to true
precision breeding.
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259. Paczos-Grzęda, E.; Boczkowska, M.; Sowa, S.; Koroluk, A.; Toporowska, J. Hidden Diversity of Crown Rust Resistance within
Genebank Resources of Avena sterilis L. Agronomy 2021, 11, 315. [CrossRef]
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