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Abstract: Guaranteeing an increase in ecologically sustainable food production is a sufficient pre-
requisite for the long-term development of national food security. This study’s primary goal is to
determine strategies for improving the nation’s green total factor productivity (GTFP) of food. We
begin by measuring the GTFP of food with the Global Malmquist–Luenberger (GML) index. Second,
the food production comparative advantage is determined using the entropy-weighted Technique for
Order Preference by Similarity to the Ideal Solution (TOPSIS) method. The food production compara-
tive advantage is then used as a leaping point to experimentally study the pathway to enhancing the
GTFP of food. The 510 sample statistics for this study come from 30 provinces in China from 2003 to
2019. The study’s findings indicate that (i.) China’s “food production comparative advantage” and
“GTFP of Food” have shown an ascending pattern. China’s Northeast and Huang–Huai–Hai regions
have the greatest comparative advantages in food production. The regions with the highest food
GTFP are the Northeast and Middle and Lower reaches of the Yangtze River. (ii.) Food production
comparative advantage can effectively contribute to green total factor productivity, but there is a time
lag. (iii.) As food production’s comparative advantage rises, its contribution to GTFP becomes more
apparent. (iv.) Environmental regulation moderates the influence of food production comparative
advantage on GTFP. In addition, environmental regulations exert a greater moderating effect in
regions with lower green total factor production rates than in regions with higher green total factor
production rates. (v.) The food production comparative advantage improves the GTFP through
both structural and technological effects. This study not only expands the research horizon of GTFP
of food but also offers planning recommendations for technological advancement and structural
adjustment in food production.

Keywords: food production comparative advantage; green total factor productivity of food;
environmental regulations; structural effects; technological effects

1. Introduction

Food security is a crucial pillar for supporting the growth of the global economy and
the stability of the international community, as well as a crucial pillar for the establishment
of national independence. Currently, China’s expanding food production capability is
coupled with an increase in negative environmental externalities [1]. Due to massive
inputs of pesticides, fertilizers, and mulch, arable land has lost the capacity to restore its
natural biological cycle. Between 2012 and 2021, China’s total grain output grew from
612.22 million tons to 682.85 million tons, an increase of more than 11%. Simultaneously,
the sown area of grain crops in China increased from 114,368 kilo hectares to 117,631 kilo
hectares, an increase of 2.85%. Moreover, China’s grain yield increased from 5353.12 kg per
hectare to 5805 kg per hectare, an increase of 7.8%. The green total factor productivity
of China’s grain production, meanwhile, increased by 6.5%. In this environment, the
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government has given green food production a higher priority to preserve sustainable
food production and provide food security [2]. In 2022, the Chinese government’s “Central
No. 1” document on boosting rural ecological rehabilitation recommended enhancing the
complete control of agricultural surface pollution and promoting the decrease of chemical
fertilizers and pesticides in food production. Improving the GTFP of food in response to
China’s policy calling for positive degrees is not only an important assurance for stable
and sustainable food production at this time but also a crucial means of implementing the
ecological civilization concept.

The key to optimizing ecological and economic advantages and increasing GTFP
of food is maximizing food production while decreasing production factor inputs, par-
ticularly agricultural surface source pollution factors such as pesticides, fertilizers, and
mulch [3]. The most important criteria for maximizing ecological and economic benefits
are technological development and technical efficiency improvement, which is driven by
technological innovation and dependent on scale expansion and enhanced field manage-
ment efficiency [4]. The food production comparative advantage (including arable land
advantage, labor advantage, capital advantage, and water advantage) has three effects on
food production: scale growth, investment substitution, and structural optimization [5].
These effects are advantageous for both the enhancement of the environment in which food
is grown and the optimization of the input structure of food production factors, taking
into consideration the reduction of polluting production factors [6]. Moreover, environ-
mental regulation is progressively becoming an important supplement to ecological food
production management [7]. In light of this, the Chinese government has been enhanc-
ing the comparative advantages of regional food production while increasing the level
of environmental regulation to construct a modernized system of resource-efficient and
environmentally friendly food production and promote the harmonious development of
resources, environment, and food production [8]. Consequently, does food production
comparative advantage contribute efficiently to GTFP? Is there heterogeneity in the degree
of impact across regions? What is the transmission mechanism of the impact? The answers
to the aforementioned issues pertain not only to the ecologically sustainable production of
food in China but also to the improvement of regional food production planning policies.
Therefore, the purpose of this study is to explore the path of green total factor productivity
improvement of food by taking the comparative advantage of food production as an entry
point. On this basis, we further explore the moderating role of environmental regulation.

The rest of the study is organized as follows. Section 2 introduces the literature review.
Section 3 introduces the theoretical hypothesis. Section 4 introduces materials and methods.
Section 5 presents and discusses the empirical results. Section 6 presents the research
conclusions and policy implications.

2. Literature Review

The evolution of the theory of comparative advantage, from Adam Smith’s theory
of absolute advantage in 1976 to David Ricardo’s theory of comparative advantage in
1981, followed by Heckscher-theory Ohlin’s of factor endowment by emphasizing that
the heterogeneity of factor endowments among countries is the primary cause of inter-
national trade. Agricultural production is highly reliant on natural endowments, and
the variation in agricultural factor endowments among nations has a significant effect on
agricultural output’s comparative advantage. Food production comparative advantage
has been defined as the difference in the opportunity cost of countries or regions in food
production and commerce due to variations in endowments such as land factor, water
factor, labor factor, and capital factor [9]. The food production comparative advantage has
been studied primarily from the viewpoints of factor inputs and outputs, production costs
and returns [10], area and yields, cropping patterns and regional layout, and agroecosystem
productivity [11]. Moreover, among the methods for measuring the food production com-
parative advantage, the comparative advantage index, international market share, product
technical complexity, domestic resource cost method, agricultural production economic
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index research method, and comprehensive comparative advantage index method are most
prominently displayed [9,12–16]. The integrated comparative advantage index approach,
consisting of scale advantage, efficiency advantage, and effectiveness advantage, is a com-
mon method for studying the comparative advantage of regional food production [17].
Existing studies on the measurement of food production comparative advantage, however,
typically only consider explicit comparative advantages such as scale advantage, efficiency
advantage, and effectiveness advantage while ignoring factor resource endowment indica-
tors such as land, labor, capital, and water resources involved in conventional comparative
advantage theory.

As the problem of agricultural surface pollution has become more apparent, experts
have steadily incorporated pollution components into the GTFP of food [18–24]. Most
anticipated outcomes of previous studies primarily examine the economic worth of food
items, thus underestimating the ecological value created by food farming. Some researchers
have gradually incorporated ecological aspects into the GTFP measurement system and
developed a GTFP measurement model based on ecological value maximization in recent
years [25]. However, there is a paucity of research on its applicability in the sector of food
production. In addition, the relationship between environmental regulation and GTFP has
been the subject of scholarly investigation. The amount of environmental regulation and
green total factor production have been computed using the entropy power method and the
green Solow model, respectively, and the spatial spillover effects have been evaluated using
the Durbin spatial model [26]. Some researchers used the SBM-GML index to evaluate
GTFP in agriculture and a threshold regression model to confirm the nonlinear relationship
between environmental regulations and GTFP in agriculture [27,28]. To examine the
“inverted U-shaped” relationship and regional spillover impact between environmental
restrictions and the GTFP of food, researchers measured the GTFP of food using the GML
index [2].

In conclusion, it is evident from the available literature that food production compara-
tive advantage and GTFP of food have been the subject of much investigation. Existing
studies on the measurement of food production comparative advantage typically only
consider explicit comparative advantages, such as scale advantage, efficiency advantage,
and effectiveness advantage, while ignoring the factor resource endowment indicators
such as land, labor, capital, and water resources involved in the traditional comparative
advantage theory. In addition, most studies concentrate on the measurement of agricultural
total factor productivity and its influencing factors, whereas studies on the measurement
of GTFP of food with the inclusion of non-desired outputs are just emerging, and there
are relatively few studies on GTFP of food that also consider the ecological value of food
cultivation. Even little literature investigates the GTFP of food by beginning with the food
production comparative advantage. The possible contributions of this study are: First,
in terms of measuring key indicators, this study improves the comprehensive compar-
ative advantage index method, selects 16 indicators from the advantages of land, labor,
capital, and water resources, taking into account the dominant comparative advantage
and potential comparative advantage, and employs the entropy-weighted Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS) method to make a more scientific
and reasonable evaluation of the food production comparative advantage in each region.
Second, as predicted outcomes in the measurement of food GTFP, food production and
ecological value indicators of food cultivation are added to indicate both the ecological and
economic values of food GTFP. Our study used the GML index method, which has been
utilized extensively by previous researchers, to measure and assess the GTFP of food in
30 provincial administrative regions of China from 2003 to 2019. Third, based on the theory
of comparative advantage, this study uses the food production comparative advantage as a
starting point to explore the path of enhancing the GTFP of food. Additionally, the study
investigates the moderating role of environmental regulation to provide a reference basis for
enhancing the GTFP of food and the comparative advantage of regional food production.
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3. Theoretical Hypothesis
3.1. Food Production Comparative Advantage and Green Total Factor Productivity

According to most academics, food production comparative advantage has a catalytic
effect on food production for the four reasons listed below. First, there is no doubt that
arable land quality influences food production and operation [29,30]. A definite geographi-
cal coupling exists between the amount of agricultural work and the area sown for food,
and the human capital of agricultural labor (e.g., the level of education of agricultural
labor), age, and feminization all have significant effects on food productivity [31,32]. In
addition, the effect of capital element inputs on food cultivation is gaining prominence,
with the degree of agricultural mechanization having a spatial spillover effect and making
a substantial contribution to food production in nearby regions [33]. Finally, the function of
water resource issues in food production, which also has a significant restricting effect on
food production and so impacts food production, should not be undervalued. Comparative
advantages in food production (arable land, labor, capital, and water resources advantages)
increase farmers’ income by reducing the cost of food production, which in turn motivates
farmers to cultivate food and increases the likelihood that agricultural producers will
cultivate food [34,35]. Moreover, regions with greater comparative advantages in food
production are more likely to develop a trend of large-scale, specialized, and intense agri-
culture, hence reducing the informational and monetary costs of financing food production.
In places with stronger food production comparative advantage, agricultural production
element allocation is more logical, and farmers’ food cultivation conduct is more effective,
reducing factor input redundancy. This increases food production’s economic and ecologi-
cal value by reducing surface contamination from pesticides, fertilizers, agricultural films,
and carbon emissions [36]. Thus, the food production comparative advantage can boost
GTFP by motivating farmers to grow food and optimizing agricultural factor allocation.
Consequently, the hypothesis that follows is developed.

Hypothesis 1. Food production comparative advantage positively affects green total factor productivity.

3.2. The Moderating Role of Environmental Regulation

Porter’s famous theory, “Porter’s hypothesis”, claims that environmental legislation
can stimulate regional industrial restructuring and is a driving force to promote regional
technological innovation to eliminate backward producers [37]. When a territory’s environ-
mental regulatory intensity exceeds a particular threshold, polluting producers will shift to
a location with less stringent environmental regulations; the transferred region’s industrial
structure will then undergo adjustment and eventual rationalization [38]. Similarly, when
environmental regulation reaches a suitable frequency, it encourages producers to partic-
ipate in green technology innovation, thus improving their productivity while reducing
pollutant emissions [39]. The aforementioned “innovation compensation effect” provides
substantial benefits to producers that will equal or even surpass the “compliance cost
effect” of environmental restrictions. Long-term, environmental legislation fosters green
technology innovation and displaces otherwise less productive and polluting producers,
therefore enhancing national competitiveness [40,41]. Thus, by increasing the environmen-
tal cost of food production, environmental regulation drives producers in regions with
low food production comparative advantage to gradually lose their capacity to operate
sustainably and, ultimately, be driven off the market. In contrast, farmers in regions with a
greater food production comparative advantage benefit from higher GTFP to live. More-
over, regions with stricter environmental regulations can compel producers to adopt green
production technologies, such as water-fertilizer integration, which facilitates the use of
high-fertility fertilizers such as water-soluble fertilizers, effectively reducing the number
of total chemical fertilizers applied, therefore reducing agricultural surface pollution and
carbon emissions while enhancing their ecological benefits [42]. The government’s efforts
to lower the marginal “compliance costs” of food producers and regions with comparative
advantages in food production can reduce the marginal “compliance costs” of food pro-
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ducers and raise the GTFP of food [43]. The food production comparative advantage can,
therefore, play a greater role in increasing GTFP as the level of environmental regulation
rises. Based on the analysis presented above, we formulate our Hypothesis 2.

Hypothesis 2. Environmental regulation moderates the impact of food production comparative
advantage on green total factor productivity.

3.3. Mediation Mechanism of Technology Effects and Structural Effects

In general, regions with a food production comparative advantage are more likely
to qualify for agricultural subsidies. More adequate funds allocated for research and
development of food production technologies enable the attraction of technical R&D
talent and the acquisition of technical R&D equipment, which effectively increases the
output of patented results in food production technologies and accelerates the rate of
technological advancement and production technology innovation in food production [44].
Furthermore, the scale, intensive, and specialized forms of food production in locations with
a greater food production comparative advantage are more favorable to the transformation
of technological patents in food production, hence increasing the technological efficiency
of food production [7]. The technological advancement aspect of the technology effect
can stimulate the transformation and upgrading of food production technologies, break
existing resource and usage restrictions, and make a quantum leap in the green efficiency
of food production [45]. The technical efficiency aspect of the technology effect can increase
the marginal productivity of food production element inputs while reducing economic and
ecological costs [46], consequently giving a continuing incentive for the increase of food’s
GTFP. On this basis, Hypothesis 3 is proposed.

Hypothesis 3. Food production comparative advantage positively influences green total factor
productivity of food via technological effects.

It is evident from the preceding discussion that locations with greater food production
comparative advantage (i.e., regions with greater endowments of arable land, labor, capital,
and water resources) are more likely to establish large-scale, intense, and specialized food
production. The structural effects of this study mean that, by optimizing the structure of
food cultivation, food production becomes more scaled, specialized, and intensive. In this
way, it promotes the improvement of technical efficiency, which in turn enhances the food’s
green total factor productivity. Due to the high market demand for the three staple grains
of wheat, corn, and rice, farmers’ rational behavior has led to the expansion of staple grain
cultivation in areas with high food production comparative advantage [47], adjusting the
internal structure of food cultivation and effectively forming a large-scale, intensive, and
specialized food production model that reduces factor inputs and emissions [48]. This
results in structural effects. Second, the food production comparative advantage encourages
food specialization by increasing the acreage of staple grains and the fraction of staple
grains within the structure of food production. Specialized productive service organizations
provide specialized machinery operations for the food production chain to complete the
work of food production efficiently, reduce the factor inputs required per unit of food
production, enhance the efficiency of food production, and reduce agricultural surface
source pollution emissions [49], therefore creating structural effects. Lastly, intensive
food production reduces the economic cost of food production by sharing capital, labor,
and information resources [50], optimizing the allocation efficiency of production factor
inputs, reducing information search costs, increasing the transparency of service prices, and
promoting the diffusion, diffusion, and application of technology [51], therefore creating
structural effects. The food production comparative advantage can bring the structural
effect of food cultivation into play and promote the improvement of technical efficiency to
reduce agricultural surface pollution and carbon emissions through large-scale production,
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specialized production services, and information resource-sharing mechanisms, therefore
increasing the GTFP of food. On this basis, Hypothesis 4 is proposed.

Hypothesis 4. Food production comparative advantage positively influences green total factor
productivity of food via structural effects.

4. Materials and Methods
4.1. Methodology for Measuring the Food Production Comparative Advantage

Commonly, the food production comparative advantage is measured using the com-
plete comparative advantage technique, which selects explicit comparative advantage
indicators from three perspectives: scale advantage, efficiency advantage, and effectiveness
advantage. This method disregards natural endowment elements such as land advantage,
labor advantage, and water advantage, which are a part of the standard comparative ad-
vantage theory and does not select measurement indicators based on the potential drivers
of food production comparative advantage. This study refers to Esmaeili [12] to improve on
the comprehensive comparative advantage method and selects 16 indicators (Table 1) from
four aspects: land advantage, labor advantage, capital advantage, and water resource ad-
vantage, taking into account dominant comparative advantage and potential comparative
advantage, which is highly systematic and scientific [52,53]. Since the food production com-
parative advantage is also a multi-indicator dimensional variable, the entropy-weighted
TOPSIS is used to comprehensively evaluate the comparative advantage of regional food
production, and the comprehensive comparative advantage index is computed as a proxy
variable for the food production comparative advantage.

The measurement of the index of food production comparative advantage in this study
was calculated using the entropy weight TOPSIS method. The detailed calculation process
refers to Li et al. [54].

4.2. Measuring Green Total Factor Productivity of Food

Since the GML index can effectively balance the green development requirements of
maximizing desired output and minimizing non-desired output and input factors, this
study refers to Oh [35] and constructs a GML index model to measure the changes in
total factor productivity of food ecology in 30 provincial administrative regions of China
between 2003 and 2019. The specific formula for measuring is as follows.

GMLt,t+1(xt, yt, bt, xt+1, yt+1, bt+1) = 1+Dg(xt ,yt ,bt)
1+Dg(xt+1,yt+1,bt+1)

= 1+Dg(xt ,yt ,bt)
1+Dt(xt ,yt ,bt)

×
1+Dt+1(Xt+1,Yt+1,BT+1)

1+Dg(xt+1,yt+1,bt+1)
× 1+Dt(xt ,yt ,bt)

1+Dt+1(xt+1,yt+1,bt+1)
=

1+Dt(xt ,yt ,bt)
1+Dt+1(xt+1,yt+1,bt+1)

×

 1+Dg(xt ,yt ,bt)
1+Dt(xt ,yt ,bt)

1+Dg
t (xt+1,yt+1,bt+1)

1+Dt+1(xt+1,yt+1,bt+1)

 =

TEt+1

TEt ×
BPG

t,t+1
t+1

BPGt,t+1
t

= GECt,t+1 × GTCt,t+1

(1)

In Equation (1), xt, yt, and bt represent input factors and desired and undesirable
outputs in year t, while xt+1, yt+1, and bt+1 represent input factors, wanted, and undesirable
outputs in year t + 1. The output distance functions of the input-output vectors (x, y, b) at
periods t and t + 1 are denoted by Dt (xt, yt, bt) and Dt+1 (xt+1, yt+1, bt+1), respectively. Dg (xt,
yt, bt) is the reference set’s direction vector. TEt and TEt+1 represent the combined technical
efficiency in years t and t + 1; BPGt,t+1 and BPGt+1 represent the distance between the
technical reference set and the production frontier surface in years t and t + 1, respectively.
GECt,t+1 and GTCt,t+1 therefore represent the indicators of technical efficiency and techno-
logical advancement of food greening relative to period t + 1 produced by decomposing
the GMLt,t+1 index, respectively. When the value of GML, GEC, or GTC is greater than 1, it
indicates that food GTFP, food green technical efficiency, or food eco-technological progress
is increasing from t to t + 1, and vice versa, it is decreasing. When the value of GML, GEC, or
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GTC is equal to 1, the productivity, efficiency, or progress remains unchanged. In addition,
this analysis uses 2003 as the basic year and assigns it a total factor productivity of 1 for
food grown for the base era. In succeeding years, the cumulative food green total factor
production is computed by cumulative multiplication concerning the base period [55].

Table 1. Indicator system for measuring the food production comparative advantage.

Target Layer Criterion Layer Indicator Layer Calculation Method Category

Food production
comparative advantage

Land advantage (B1)

Arable land area (C1) Statistics Positive
Arable land area per

laborer (C2)
Arable land area/Number of

employees in the primary sector Positive

Grain sown area (C3) Statistical data Positive
Average area of grain

sown by labor (C4)
Grain sown area/number of

employees in the primary sector Positive

Labor advantage
(B2)

Rural human capital (C5) Average years of schooling in
rural areas Positive

Share of the agricultural
labor force (C6)

(Number of persons employed
in the primary sector in the

province/number of permanent
residents in the

province)/(Number of persons
employed in the primary sector

in the country/number of
permanent residents in

the country)

Positive

Average labor force food
production (C7)

Food production/number of
employees in the primary sector Positive

Capital advantage
(B3)

Rural transportation
facilities (C8)

Total road mileage/provincial
land area Positive

Agricultural power
facilities (C9)

(Electricity consumption × value
added of primary

industry/GDP)/crop sown area
Positive

Food patent output (C10) Data collection Positive
Level of agricultural

machinery (C11)
Total power of agricultural

machinery/crop sowing area Positive

Rural per capita
investment in fixed

assets (C12)

Investment in fixed assets of
farm households/number of

rural population
Positive

Water resources
advantage

(B4)

Precipitation
density (C13)

Precipitation/Provincial
Land Area Positive

Total water
resources (C14) Statistics Positive

Amount of underground
water resources (C15) Statistics Positive

River area (C16) Statistics Positive

The input factors in this study include land input, labor input, fertilizer input, pesticide
input, machinery input, plastic film input, and water input in grain production, and the
expected output includes grain yield and ecological value of food cultivation (measured
by Kangas et al. [56]), while the non-expected output includes agricultural surface source
pollution (measured by Sun et al. [57]) and carbon emission (measured by Liu and Yang [58]
combined with Liu et al. [59]). Indicators and calculation methods are detailed in Table 2.
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Table 2. Measurement indicators of green total factor productivity of food.

Variable Category Variable Calculation Method Unit

Expected output Ecological value of food cultivation Measured by ESV method None
Food yield Statistical data ×104 t

Unexpected output Area-source pollution Agricultural non-point source pollution × A ×104 t
Carbon emission Agriculture carbon emission amount × A ×104 t

Input element

Land input Food sown area ×103 hm2

Labor input Primary industry employees × B ×104 person
Fertilizer input Agricultural fertilizer application amount × A ×104 t
Pesticide input Amount of pesticide use × A ×104 t

Mechanical input Total power of agricultural machinery × A ×104 kW
Plastic film input Application amount of agricultural plastic film × A ×104 t

Water resources input Agriculture water consumption × A ×108 m3

A = grain sown area/total crop sown area; B = (A) × (agricultural output value/total agricultural, forestry, animal
husbandry, and fishery output value).

4.3. Variables Selection

The specific variable indicators and measurement methods are presented in Table 3;
these variables were selected based on existing studies.

Table 3. Variables and calculation methods.

Variable Category Variable Symbol Calculation Method Unit

Dependent variable Green total factor
productivity of food Gtfp Measured by the Global

Malmquist–Luenberger Index None

Independent variable Food production
comparative advantage Cagp Obtained by entropy-weighted

TOPSIS composite evaluation None

Mediating variables Technology effect Tech Number of food-related patents piece

Structural effect Stre Area planted with staple grains/area
planted with other grains None

Moderating variable Environmental
regulation Envi

Investment in environmental
pollution control as a proportion of

GDP × C
%

Control variables

Average size of arable
land per household Cult Arable land area/number of

rural households Household/hm2

Flood removal area Logg Statistics ×106 hm2

Industrial
structure level Stru

(Value added of secondary industry +
value added of tertiary
industry)/gross GDP

km/hm2

Rural fixed asset
investment Inve

Investment in fixed assets of rural
farm households/number of

rural population
×103 yuan/person

Disaster rate Disa Crop disaster area/total crop sown
area × 100% None

Food price fluctuation Pric Retail price index of food commodities None

C = (A) × (agricultural output/GDP total).

Dependent variable: Green total factor productivity of food. We refer to Yue et al. [25]
and combine the ecological value of grain cultivation with the expected output index to
maximize the economic value and ecological value of food production while minimizing
agricultural surface pollution, carbon emission, and other input factors to reflect the GTFP
of food more scientifically, accurately, and robustly.

Independent variable: Food production comparative advantage. The measurement
indexes of food production’s comparative advantage are based on the traditional com-
parative advantage theory and the comprehensive comparative advantage index method
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for improvement. A total of 16 indicators (including explicit and potential indicators)
are selected from four dimensions: land advantage, labor advantage, capital advantage,
and water resource advantage. The entropy-weighted TOPSIS evaluates each of the four
dimensions, and the overall comparative advantage index is calculated to proxy food
production’s comparative advantage variable.

Mediating variables: Regarding the measurement method of the structural effect
(Stru), the area planted with the three staple grains of wheat, rice and corn/area planted
with other grains was selected for measurement; regarding the measurement method
of the technology effect (Tech), the number of food-related patents (pcs) was used for
measurement, considering that the R&D investment of financial support to agriculture
for food-related technologies is closely related to the output of food-related technological
achievements, and the data of this variable were obtained from the database of CNKI (a
website like Web of Science).

Moderating variable: Environmental regulation. This study accounts for the fact that
the strength of environmental regulation of food production, which in part reflects the
intensity of measures taken by local governments on the food production environment, can
increase the effect of building inputs per unit of food production comparative advantage
on GTFP of food. Therefore, we refer to Wang et al. [60] to assess the environmental
regulatory factors in food production by selecting the ratio of environmental pollution
control investment to GDP multiplied by the relevant weighting coefficients.

Control variables: The average household arable land size, de-flooded area, industrial
structure level, rural fixed asset investment, disaster rate, and food price change level were
chosen as the control variables in this study based on relevant research findings regarding
the factors influencing GTFP [61].

4.4. Empirical Model Design

Because the GTFP (Y) data type is [0, 1] truncated data, the Tobit regression model
was employed to test the following equation.

Y =

{
Y∗ it = σ + α1Dit + α2Xz,it + µi + ϕt + εit Y∗ it > 0
0 Y∗ it ≤ 0

(2)

Y =

{
Y∗ it = σ + α1Di(t−1) + α2Xz,it + µi + ϕt + εit Y∗ it > 0
0 Y∗ it ≤ 0

(3)

At Equations (2) and (3): Y* it is the explanatory variable, denoting the total factor
productivity of green factors in the region i during year t. Dit is the core explanatory variable
indicating the food production comparative advantage in region i in year t. Di(t−1) is the first-
order lagged term of food production comparative advantage; Xz,it is the control variable
representing other factors affecting GTFP in region i in year t; z = 1, 2,. . ., 6 represent the six
control variables of average household arable land size, de-flooded area, industrial structure
level, rural fixed asset investment, disaster rate, and food price volatility, respectively. σ
denotes the constant term of the equation; α denotes the coefficient corresponding to each
variable; µi denotes the unobservable provincial effect in each province; ϕt denotes the
fixed effect of the time trend, and εit denotes the random disturbance term. Equation (2) is
the baseline model for this study to test Hypothesis H1 on the influence of food production
comparative advantage on GTFP at the current time. Equation (3) incorporates the lagged
term of food production comparative advantage to examine the lagging effect of food
production comparative advantage on GTFP.

To overcome the effects of disturbances such as extreme values and error terms on
the estimation results and to describe the stage-specific differences more objectively and
thoroughly in the effects of food production comparative advantage on GTFP at different



Agriculture 2023, 13, 2058 10 of 23

quartiles, the following two-way stationary panel quantile regression model was developed.

Y∗ itτ = σ + β1τ Ditτ + β2τXz,itτ + µiτ + ϕtτ + εitτ Y∗ itτ > 0 (4)

In Equation (4) τ represents the quantile, and in this investigation, quantile regression
was performed with quantiles of 10%, 20%,. . ., and 90%.

In addition, approaches for boosting the GTFP of food under the specified level
of food production comparative advantage will be investigated. This study seeks to
examine the moderating effect of environmental regulation on the competitive advantage
of food production on GTFP by developing hierarchical regression analysis models, such
as Equations (5) and (6), to test Hypothesis H2.

Y =

{
Y∗ it = σ + λ1Git + λ2Mit + λ3Xz,it + µt + ϕi + εit Y∗ it > 0
0 Y∗ it ≤ 0

(5)

Y =

{
Y∗ it = σ + ξ1Git + ξ2Mit + ξ3Git ×Mit + ξ4Xz,it + µi + ϕt + εit Y∗ it > 0
0 Y∗ it ≤ 0

(6)

Mit in Equation (5) denotes the environmental control in area i during year t and
denotes coefficients corresponding to each equation.

To develop the mediating mechanism test model, Equations (7)–(9) are derived from
the stepwise regression method. In the first step, the structural and technological impli-
cations of food production comparative advantage are evaluated (Equation (7)). In the
second step, the effects of technological effect and structural effects on the total factor pro-
ductivity of food greens are examined (Equation (8)). In the third stage, the impacts of food
production comparative advantage and structural effect on food GTFP are investigated
independently, as are the effects of food production comparative advantage and technical
effect on food GTFP (Equation (9)). Three regression models were subsequently developed
to evaluate Hypotheses H3 and H4.

T =

{
T∗k,it = β + β1Dit + β2Xz,it + µi + ϕt + εit T∗k,it > 0
0 T∗k,it ≤ 0

(7)

Y =

{
Y∗ it = γ + γ1Tk,it + γ2Xz,it + µi + ϕt + εit Y∗ it > 0
0 Y∗ it ≤ 0

(8)

Y =

{
Y∗ it = κ + κ1Tk,it + κ2Dit + κ3Xz,it + µi + ϕt + εit Y∗ it > 0
0 Y∗ it ≤ 0

(9)

where β, γ, κ denote the coefficients corresponding to each equation; T*k,it denotes the
technology effect (k = 1) and structural effect (k = 2) in region i in year t.

4.5. Data

The software used for data analysis in this study is STATA 17.0 and Matlab 2021b. The
raw data in this paper are obtained from statistics of 30 Chinese provinces from 2003 to
2019 (Hong Kong, Macau, Taiwan, and Tibet were not included in the study sample due
to missing data). It mainly contains the following statistical yearbooks. China Statistical
Yearbook, China Water Resources Statistical Yearbook, China Rural Statistical Yearbook,
China Water Resources Bulletin, China Agricultural Statistics, China Environmental Year-
book, China Land and Resources Statistical Yearbook, and China Fixed Asset Investment
Statistical Yearbook. (Every year, the Bureau of Statistics of the People’s Republic of China
compiles statistics on all aspects of China’s resources and makes a statistical yearbook
that is openly shared with the people). Specifically, the statistics on the most important
economic variables are adjusted to the price index with 2003 as the base year.
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5. Results and Discussion
5.1. Analysis of Measuring Results of the Food Production Comparative Advantage and Green
Total Factor Productivity
5.1.1. Analysis of Food Production Comparative Advantage Measurement Results

In China, the average value of the food production comparative advantage from 2003
to 2019 was 0.347, while the food production comparative advantage varied substantially
between areas (Table 4). In addition to the 13 major grain-producing regions, 3 provinces
in Guangdong, Zhejiang, and Xinjiang have a comparative advantage in grain produc-
tion that is significantly more than the national average of 0.347. The majority of the
16 administrative regions at the provincial level have a high arable land factor, agricultural
labor factor, agricultural capital factor, or water resource component, and hence have a
great capability for food production. Hainan, Qinghai, Shaanxi, Chongqing, Ningxia, and
Gansu, along with other provincial administrative regions, have a comparative advantage
in grain production that is lower than the national average of 0.347. The provinces of Qing-
hai, Shaanxi, Ningxia, and Gansu lack arable land, agricultural manpower, agricultural
capital, and water resources and hence have no food production comparative advantage.
Hainan and Chongqing have more water resources, but their food production comparative
advantage is diminished due to a shortage of arable land, agricultural workers, and agri-
cultural capital. In addition, based on the growth rate of comparative advantage in grain
production, the southwest administrative regions of Guizhou, Yunnan, and Chongqing in
China experienced the fastest increase in food production comparative advantage from
2003 to 2019. The northeast region is dominated by Heilongjiang; the Middle and Lower
Yangtze River regions are dominated by Hubei and Zhejiang; the south China region is
dominated by Guangxi, and the Huang–Huai–Hai region is dominated by Jiangsu. On the
one hand, it may be due to the rapid growth of agricultural capital investment in these
provinces in recent years, the rapid increase in agricultural mechanization, and the contin-
uous improvement of rural transportation facilities and comparative advantages in food
production, which have substantially increased these regions’ comparative advantages in
food production. On the other hand, due to the proliferation of new agricultural businesses
functioning on a moderate size, the output per unit of land has become more efficient.

Table 4. Regional characteristics and growth of food production comparative advantage, 2003–2019.

Area

Food Production
Comparative Advantage Area

Food Production
Comparative Advantage

Mean Growth Rate/% Mean Growth Rate/%

Beijing 0.320 1.32 Henan 0.411 5.17
Tianjin 0.299 −3.06 Hubei 0.352 31.06
Hebei 0.361 5.12 Hunan 0.396 6.42
Shanxi 0.334 2.69 Guangdong 0.421 17.45

Inner Mongolia 0.418 11.11 Guangxi 0.331 20.14
Liaoning 0.350 0.61 Hainan 0.241 3.32

Jilin 0.401 6.81 Chongqing 0.288 34.26
Heilongjiang 0.449 43.01 Sichuan 0.395 15.06

Shanghai 0.331 3.32 Guizhou 0.325 52.13
Jiangsu 0.435 19.08 Yunnan 0.332 34.94

Zhejiang 0.371 26.55 Shaanxi 0.271 25.55
Anhui 0.346 4.04 Gansu 0.301 5.63
Fujian 0.332 7.24 Qinghai 0.254 13.54
Jiangxi 0.351 12.82 Ningxia 0.296 3.75

Shandong 0.345 16.34 Xinjiang 0.369 10.56

5.1.2. Analysis of Green Total Factor Productivity of Food Measurement Results

The findings of the measurements indicate that the mean level of green total factor
production of food is 1.346, indicating a significant disparity between provincial admin-
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istrative regions (Figure 1). The provinces of Ningxia (0.71), Guangdong (0.739), Gansu
(0.843), Guangxi (0.946), Tianjin (0.978), Qinghai (1.136), Liaoning (1.182), Hebei (1.26),
and Hainan (1.26) have the lowest green total factor production of food compared to the
national average (1.277). Conversely, Beijing (1.644), Hubei (1.783), and Heilongjiang are
the principal locations where GTFP of food exceeds the national average (1.841).
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Observing the Food GTFP Index (Figure 2), the average value of the national index
exhibited a fluctuating upward trend from 2003 to 2019; however, the regional growth index
exhibited notable distinguishing characteristics. In particular, the GTFP index for food in
the middle and lower reaches of the Yangtze River and the northeast region is greater than
the national average in most years and has a higher level and a quicker growth rate than
the other four regions. The cumulative growth index of GTFP of food in south China is
highly volatile, exhibiting a phenomenon of ups and downs from 2003 to 2010, and then
beginning to vary upwards from 2010 to 2019. The growth trends in the Southwest and
Huang–Huai–Hai regions are more similar, fluctuating up and down around the national
average. In contrast, the cumulative growth index of GTFP of food in the Northwest Region
varies at a lower level and has a negligible increasing tendency for an extended period.

5.2. Analysis of Empirical Test Results
5.2.1. Baseline Regression Results of Food Production Comparative Advantage Affecting
Green Total Factor Productivity of Food

Model (1) in Table 5 displays the control variable regression results on GTFP as
a reference for other regression models. Food production comparative advantage has a
favorable effect on GTFP, according to model (2). (based on Equation (2)). Each unit increase
in food production comparative advantage will result in a 2.053 unit increase in GTFP.
This indicates that food production comparative advantage has a positive effect on GTFP,
supporting the validity of H1. This is comparable to the results of Yao et al. [61]. Inputs of
food production factors are redundant relative to optimal output, and the degree of GTFP
loss in food varies across factor resource endowments. In an environment with limited
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factor resource endowment, food production raises the environmental and resource burden
while decreasing resource use efficiency [48]. In contrast, regions with greater comparative
advantages in food production are more likely to encourage efficient recycling of resources
and continuous optimization of resource ratios via large-scale, intensive, and specialized
production methods, therefore effectively reducing the redundancy of water resources,
arable land resources, and pesticide and fertilizer inputs per unit of food production. It
increases the economic efficiency of food production, on the one hand [62]. On the other
side, it minimizes the intensification and spread of agricultural surface source pollution
and enhances the ecosystem’s resilience, consequently encouraging the ongoing growth
of GTFP.
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The first-order lag term of food production comparative advantage is included in
the regression because the transmission of the effect of food production comparative
advantage on regional GTFP may take time. The regression result of the model (3) (based
on Equation (3)) indicates that the effect of food production comparative advantage on
GTFP is significant at the 1% level with a coefficient of 2.19%, indicating that each unit
increase in food production comparative advantage will result in a 2.19% increase in
GTFP the following year. Consequently, there is a time lag between food production
comparative advantage and regional green total factor output. This result resembles that of
Imasiku et al. [63]. It takes time for the flow of food production factors to reach the optimal
allocation, even though a gain in food production comparative advantage can optimize the
allocation of water and arable land resources and minimize agricultural surface pollution.
Thus, the influence of food production comparative advantage on GTFP has a lag effect.
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Table 5. Regression results of food production comparative advantage affecting the green total factor
productivity.

GTFP

(1) (2) (3) (4) (5)

Cagp 2.053 *** 2.399 *** 2.053 ***
(4.750) (7.891) (3.245)

L.Cagp 2.194 ***
(5.147)

Cult
1.465 *** 1.054 *** 1.081 *** 0.156 *** 1.054 ***
(7.291) (5.342) (5.465) (4.179) (3.159)

Logg 0.063 0.003 −0.036 0.009 0.003
(0.463) (0.026) (−0.286) (0.353) (0.030)

Stru
−0.413 ** −0.401 ** −0.375 ** 0.156 −0.401
(−2.208) (−2.172) (−2.059) (0.739) (−0.651)

Inve
−0.350 *** −0.381 *** −0.410 *** −0.201 *** −0.381 ***
(−5.381) (−5.931) (−6.344) (−4.817) (−5.064)

Disa
0.016 0.082 0.274 −0.371 ** 0.082

(0.074) (0.391) (1.271) (−2.093) (0.339)

Pric
−0.050 0.125 −0.114 −0.556 0.125

(−0.057) (0.143) (−0.129) (−1.531) (0.152)

_cons 0.986 0.515 0.757 0.331 0.515
(1.042) (0.553) (0.666) (0.752) (0.450)

Time YES YES YES YES YES
Ind YES YES YES YES YES
N 510 510 480 510 510

L.Cagp denotes the first-order lag term of Cagp. Time denotes time effect, and Ind denotes individual effect.
*** and ** represent significant at the 1% and 5% levels, respectively. The number in parentheses is the z value.

In addition, the sample data may suffer from heteroskedasticity problems, which
could lead to estimate bias in the typical panel Tobit model. Therefore. To adjust for
estimate bias caused by heteroskedasticity and intra-group autocorrelation issues, the
Poisson pseudo-maximum-likelihood (PPML) was utilized for parameter estimation in
this study. PPML As demonstrated by model (4) in Table 5, food production comparative
advantage has a positive influence on GTFP, which is consistent with the results of the
benchmark regression. In addition, we believe that the accuracy of the parameter estimation
test is tightly tied to the setting of the parameter form; nevertheless, it is difficult to assess
whether the parameter model setting is right based solely on a theoretical debate. If there is
a nonlinear correlation between the dummy water variable for food imports and the water
stress variable for food production, the model’s regression findings will be inaccurate. Thus,
the robustness of the benchmark model was evaluated using nonparametric estimating
Bootstrap (1000 extractions). In Table 5, the results of the nonparametric estimating model
test are displayed in column model (5). Significant at the p < 1% level, the effect of
food production comparative advantage on GTFP has a coefficient of 2.053. This again
demonstrates that food production comparative advantage has a favorable effect on GTFP;
hence, the regression results of the reference model are generally more accurate.

5.2.2. Quantile Test of the Impact of Food Production Comparative Advantage on the
Green Total Factor Productivity

To exclude the influence of confounding effects such as extreme values and error
terms on the estimate findings, a panel quantile regression with 10%, 20%,. . ., and 90%
quantile was conducted in this study to assess inter-regional heterogeneity and test the
robustness of the regression results (based on Equation (4)). Based on the regression results
of Equation (4), see model (6) in Table 6, the coefficients and significance of the effect of
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food production comparative advantage on GTFP vary at different quartiles. Except for
model 10%, which is not significant, the coefficients of model 20−90% are significantly
positive, and the coefficient values of comparative advantage from 20% to 90% quartiles
continue to increase rapidly.

Table 6. Regression results of the quantile of food production comparative advantage on the green
total factor productivity.

GTFP (6)

10% 20% 30% 40% 50% 60% 70% 80% 90%

Cagp −0.025 1.494 ** 1.991 *** 2.496 *** 2.693 *** 2.611 *** 3.059 *** 3.684 *** 5.399 ***
(−0.043) (2.442) (3.562) (3.520) (3.589) (3.103) (3.233) (4.299) (5.435)

Cult
0.056 0.005 0.025 0.154 0.273 ** 0.415 *** 0.449 *** 0.386 ** 0.373 *

(0.702) (0.056) (0.292) (1.433) (2.451) (3.726) (3.313) (2.562) (1.914)

Logg 0.027 0.079 0.095 ** 0.092 ** 0.062 0.021 0.093 0.277 ** 0.363 ***
(0.670) (1.548) (2.436) (2.154) (1.322) (0.370) (1.070) (2.451) (3.234)

Stru
−0.022 0.132 0.349 0.227 0.108 0.635 1.571 1.717 2.649 *

(−0.077) (0.402) (0.818) (0.365) (0.136) (0.698) (1.609) (1.443) (1.916)

Inve
−0.104 * −0.168 * −0.298 ** −0.523 *** −0.662 *** −0.757 *** −0.850 *** −0.913 *** −0.785 ***
(−1.660) (−1.731) (−2.471) (−4.219) (−5.835) (−6.444) (−6.686) (−6.384) (−4.237)

Disa
−0.177 0.214 0.354 0.264 0.210 0.159 0.252 0.321 0.833

(−0.908) (0.930) (1.380) (0.909) (0.585) (0.367) (0.480) (0.550) (1.177)

Pric
0.026 −0.537 −0.660 −1.173 −1.430 −0.855 −3.420 −3.876 −5.806 *

(0.044) (−0.634) (−0.621) (−0.830) (−0.820) (−0.440) (−1.585) (−1.624) (−1.912)

_cons 0.725 0.766 0.598 1.345 1.819 0.901 2.734 3.071 3.858
(1.109) (0.836) (0.518) (0.865) (0.946) (0.423) (1.149) (1.178) (1.133)

***, ** and * represent significant at the 1%, 5%, and 10% levels, respectively. The number in parentheses is the
z value.

To visualize the findings of the quantile regression of food production comparative
advantage on GTFP more intuitively. As shown in Figure 3, the coefficient of the influence
of food production comparative advantage on GTFP is minor at 10% and did not pass the
significance test. Due to the scarcity of arable land resources, agricultural labor resources,
agricultural capital, and water resources, etc., the growth of food production comparative
advantage in regions with very low food production comparative advantage (Hainan,
Qinghai, Shaanxi, Ningxia, Gansu, and other provincial administrative regions) does
not contribute to GTFP. The expansion of food production comparative advantage does
not create optimal conditions for scale, specialization, and intensification [64]. Second,
the impact coefficients of food production comparative advantage are all positive and
significant in the 20–60% quantile but grow more slowly, indicating that in regions with a
medium food production comparative advantage (e.g., provincial administrations such as
Hubei, Fujian, Shanxi, Guangxi, and Yunnan), as food production comparative advantage
increases, the effects brought about by economies of scale gradually emerge and begin
to promote the promotion of exports. In regions with high food production comparative
advantage (Hunan, Sichuan, Jilin, Henan, Inner Mongolia, Guangdong, Jiangsu, and
Heilongjiang provincial administrative regions), the conditions for large-scale, specialized,
and intensive food production are already in place, and the ecological and economic
benefits of food production comparative advantage are already being realized.
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5.2.3. The Test of the Moderating Role of Environmental Regulation

To further exploit its role in promoting the development of regional food GTFP in
the context of existing food production comparative advantage, this study empirically
examines the moderating role of environmental regulations in food production compara-
tive advantage affecting food GTFP. Food production comparative advantage has a strong
positive effect on GTFP, as shown by the model (8) in Table 7. (based on Equation (5)).
After adding the interaction term between environmental regulation and food production
comparative advantage to model (9), the regression coefficient of the interaction term on
GTFP of food is 1.124 and passes the significance test at the 1% level, indicating that environ-
mental regulation moderates the effect of food production comparative advantage on GTFP
(based on Equation (6)) in a positive way. Assume that H2 is supported. As environmental
regulation increases, so does the contribution of regions with food production comparative
advantage to green total factor output.

By increasing the “compliance cost” of food production, environmental regulation
forces producers with a low food production comparative advantage to gradually lose
their ability to operate sustainably and be eliminated from the market, while producers
with a comparative advantage benefit from higher GTFP in food production to survive [65].
It can compel producers to embrace green production techniques and lower the number
of pesticides and fertilizers used, thus reducing agricultural surface pollution, carbon
emissions, and water waste, therefore enhancing its ecological benefits [66]. Regions with
comparative advantages in food production can use their structural effect to lower the
adoption of green production technologies and emission costs, thus reducing food produc-
ers’ “compliance costs” and increasing their economic efficiency [67]. As environmental
regulation strengthens, regions with a competitive advantage in food production are better
able to contribute to the GTFP of food.
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Table 7. Regression results of the moderating effect of environmental regulation.

GTFP Low Group-GTFP High Group-GTFP

(7) (8) (9) (10) (11) (12) (13) (14) (15)

Cagp 3.229 *** 1.282 *** 3.567 *** −0.192 1.428 *** 1.158 **
(8.174) (2.688) (6.542) (−0.292) (2.974) (2.026)

Envi
0.290 *** −0.073 0.375 *** −0.600 *** 0.214 *** 0.162 **
(11.403) (−1.218) (7.475) (−4.771) (8.471) (2.538)

Cagp × Envi 1.124 *** 2.318 *** 0.180
(6.640) (8.281) (0.868)

Cult
1.465 *** 0.545 *** 0.325 ** 2.118 *** 0.614 *** 0.426 ** −0.317 −0.486 ** −0.517 **
(7.291) (3.393) (2.099) (7.433) (2.832) (2.429) (−1.381) (−2.227) (−2.311)

Logg 0.063 0.046 0.155 −0.041 0.122 0.213 ** −0.144 −0.226 −0.202
(0.463) (0.438) (1.512) (−0.252) (1.105) (2.292) (−0.637) (−1.220) (−1.064)

Stru
−0.413 ** −0.368 ** −0.331 ** −3.744 *** −3.355 *** −2.345 *** −0.042 −0.017 −0.019
(−2.208) (−2.223) (−2.087) (−5.441) (−5.595) (−4.293) (−0.267) (−0.119) (−0.137)

Inve
−0.350 *** −0.473 *** −0.452 *** −0.291 *** −0.374 *** −0.282 *** −0.277 *** −0.398 *** −0.398 ***
(−5.381) (−8.160) (−8.127) (−3.465) (−5.045) (−4.215) (−3.055) (−4.863) (−4.872)

Disa
0.016 0.085 0.039 0.221 0.090 −0.022 −0.394 −0.277 −0.273

(0.074) (0.453) (0.217) (0.805) (0.371) (−0.100) (−1.393) (−1.089) (−1.073)

Pric
−0.050 0.027 −0.227 0.332 0.544 0.267 −1.379 −1.055 −1.064

(−0.057) (0.035) (−0.304) (0.307) (0.557) (0.307) (−1.024) (−0.886) (−0.895)

_cons 0.986 0.216 1.088 2.560 * 1.607 2.409 ** 3.709 *** 2.804 ** 2.888 **
(1.042) (0.259) (1.343) (1.917) (1.365) (2.294) (2.641) (2.252) (2.316)

Time YES YES YES YES YES YES YES YES YES
Ind YES YES YES YES YES YES YES YES YES
N 510 510 510 255 255 255 255 255 255

***, ** and * represent significant at the 1%, 5%, and 10% levels, respectively. The number in parentheses is the
z value.

In addition, it investigates the heterogeneity of the regulating role of environmental
regulations in various regions with varying food GTFP. Based on the median of the regional
average GTFP of food, 30 provinces in China were categorized into low and high GTFP
groups in this study. We evaluated the degree of the moderating influence of environmental
regulation in the two groups independently to confirm the robustness of the results while
evaluating regional heterogeneity (Table 7). In the low food green TFP group, i.e., Models
(10) to (12), the interaction term between environmental regulation and food production
comparative advantage on green TFP has a regression coefficient of 2.318 and passes the
1% significance test. In contrast, in the high food green TFP group, i.e., Models (13) to (15),
the interaction term between environmental regulation and food production comparative
advantage on green TFP is not statistically significant. This indicates that environmental
regulations moderate the influence of food production comparative advantage on GTFP
more strongly in regions with lower GTFP than in regions with higher GTFP. This may be
because the “compliance cost” environmental cost resulting from environmental regulation
exerts additional pressure on producers in regions with already poor green total factor out-
put [68]. Each unit improvement in the food production comparative advantage increases
the marginal effect of lowering the cost of environmental governance. In regions with
greater GTFP, however, the marginal benefit of food production comparative advantage is
smaller in terms of reducing the “cost of compliance”.

5.2.4. The test of the Mediating Mechanism of Food Production Comparative Advantage
on Green Total Factor Productivity

In Table 8, Models (17) and (19) illustrate the regression outcomes based on Equation (7).
The effect of food production comparative advantage on the technology effect passes the
significance test at the 1% level, as does the effect of food production comparative advantage
on the structure effect, and the regression coefficients are positive. This indicates that the
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food production comparative advantage benefits both technological and structural effects.
The influence of the structural effect on food GTFP is significant at the 1% level, the effect
of technological effect on food GTFP passes the 1% significance test, and the regression
coefficients are positive. This demonstrates that both the technology effect and the structural
effect have a favorable impact on the total factor productivity of food greens.

Table 8. Mediation effect of technology effects and structural effects.

Tech Stre GTFP

(16) (17) (18) (19) (20) (21) (22) (23)

Cagp 23.195 *** 0.509 *** 1.726 *** 1.817 ***
(8.245) (7.220) (3.800) (4.030)

Tech
0.022 *** 0.014 **
(3.604) (2.245)

Stre
0.775 *** 0.460 *
(3.024) (1.742)

Cult
−0.564 −2.335 *** 0.042 −0.029 1.446 *** 1.107 *** 1.407 *** 1.072 ***

(−0.697) (−3.193) (1.461) (−1.136) (7.297) (5.535) (7.174) (5.448)

Logg 3.175 *** 2.433 *** 0.091 *** 0.068 *** −0.080 −0.072 −0.028 −0.040
(4.752) (4.618) (3.629) (3.358) (−0.579) (−0.558) (−0.203) (−0.309)

Stru
−0.313 −0.119 −0.019 −0.015 −0.401 ** −0.395 ** −0.397 ** −0.393 **

(−0.224) (−0.091) (−0.584) (−0.465) (−2.168) (−2.153) (−2.140) (−2.137)

Inve
−1.208 ** −1.418 *** −0.017 −0.023 ** −0.329 *** −0.363 *** −0.339 *** −0.371 ***
(−2.567) (−3.225) (−1.478) (−2.101) (−5.102) (−5.623) (−5.250) (−5.763)

Disa
−1.327 0.078 0.016 0.037 0.039 0.087 −0.004 0.065

(−0.848) (0.053) (0.428) (1.054) (0.185) (0.413) (−0.019) (0.307)

Pric
0.216 2.003 0.135 0.179 −0.073 0.083 −0.158 0.041

(0.033) (0.319) (0.884) (1.216) (−0.084) (0.096) (−0.181) (0.047)

_cons −0.093 −7.127 −0.143 −0.275 * 1.074 0.641 1.131 0.648
(−0.013) (−1.080) (−0.873) (−1.758) (1.150) (0.690) (1.205) (0.695)

Time YES YES YES YES YES YES YES YES
Ind YES YES YES YES YES YES YES YES
N 510 510 510 510 510 510 510 510

***, ** and * represent significant at the 1%, 5%, and 10% levels, respectively. The number in parentheses is the
z value.

The results of regression based on Equation (9) are displayed in Models (21) and
(22). (23). Comparing Models (2) and (21) reveals that the coefficient of the effect of food
production comparative advantage on GTFP falls from 2.053 to 1.726 after the addition of the
technological effect variable but still passes the significance test. This demonstrates that the
effect of technology partially mediates the effect of food production comparative advantage
on GTFP, therefore supporting Hypothesis H3. Comparing Model (2) to Model (23), it is
discovered that the coefficient of the effect of food production comparative advantage on
GTFP decreases from 2.053 to 1.817 but still passes the significance test, indicating that the
structural effect partially mediates the effect of food production comparative advantage on
GTFP. Assume that H4 is supported.

Nevertheless, some researchers argue that mediation effects may exist even if the
coefficients β1 and γ1 are not statistically significant, whereas the stepwise regression
method needs the coefficients β1 and γ1 to be statistically significant, hence diminishing
the statistical power. To assess the robustness of the test results for Hypotheses H3 and
H4, this research employs the Bootstrap mediation test, which has no limits on the sample
distribution and excellent statistical validity. The Bootstrap test found (Table 9) that the
mediating effect of technology effectively in the effect of food production comparative
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advantage on food GTFP was 2.282, and the mediating effect of structural effect was 4.616.
Both the bias-corrected test and the percentile test value did not contain 0 at the 95%
confidence interval, indicating that the effect was significant. This again confirms the
accuracy of Hypotheses H3 and H4, and the results are identical to those obtained from the
stepwise regression method, demonstrating that the test for the mediating effect is robust.

Table 9. Bootstrap mediation effect test results.

Path Mediation Effect
Bias-Corrected Percentile

95% Confidence Interval 95% Confidence Interval
Lower Upper Lower Upper

Food production comparative advantage
→ Technology effects→ Green total

factor productivity
2.282 1.004 3.773 0.869 3.718

Food production comparative advantage
→ Structural effects→ Green total

factor productivity
4.616 3.410 5.938 3.319 5.861

6. Conclusions and Policy Implications
6.1. Conclusions

This study investigates the mechanism underlying the association between food pro-
duction comparative advantage and GTFP using panel data from 30 provinces in China
from 2003 to 2019. First, the entropy-weighted TOPSIS method is used to measure the
food production comparative advantage. Second, the system of measuring food GTFP
indicators is constructed based on the perspective of the ecological value of food cultiva-
tion and measured using the GML index. In conclusion, the Tobit panel model, Poisson
pseudo-maximum likelihood, nonparametric estimation, quantile regression, mediating
effect model, and moderating effect are employed to examine the influence mechanism
of food production comparative advantage on GTFP. This study verifies the effect of
food production comparative advantage on green total factor productivity, as well as the
transmission mechanism of this effect. Previous studies on the GTFP of food have been
conducted mainly from the perspectives of carbon emissions [69], surface pollution [69],
and food crop consumption [3]. These studies have confirmed the important role of GTFP
in ensuring national food security. This study builds on these studies to further explore
and demonstrate the positive impact of food production comparative advantage on GTFP.
Meanwhile, Zhai et al. argue that policy factors such as environmental regulation are
the main factors affecting GTFP, which diverges from the results of this study [8]. This
study finds that food production comparative advantage is the main factor affecting GTFP
and that food production comparative advantage increases GTFP mainly by improving
technological and structural effects. Environmental regulation, in contrast, acts as a reg-
ulator in the relationship between comparative advantage in food production and GTFP.
It can be said that this study explains the mechanism of the relationship between food
production comparative advantage and green total factor productivity more comprehen-
sively while expanding the previous research on green total factor productivity. This helps
to explore the ecologically sustainable production of food in China and is also useful in
guiding government policy planning to further enhance the comparative advantage of
regional food production. However, there are some limitations of this study that need to be
explored in the future. Heterogeneity in the effect of comparative advantage on the green
total factor productivity of food producers of different scales is not further considered in
this study. This is because the current Chinese almanacs and statistical databases do not
allow for a comprehensive collection of annual provincial panel data information for food
producers of different scales, such as large, medium, small, and micro. We suggest that in
the future, with the construction and improvement of the database, we can try to collect
and supplement the relevant information data of food producers of different scales and,
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furthermore, empirically explore the heterogeneous effects of comparative advantage on
the green total factor productivity of food producers in different scales.

6.2. Policy Implications

The following findings present some suggestions for improving green TFP. First, the
government might enhance financial subsidies and market guidance for food scale and
specialist growers to fix land fragmentation and develop field road layouts. The gov-
ernment should promote agricultural outsourcing services by offering preferential policy,
capital, and taxation measures to optimize the level of agricultural outsourcing services
and eliminate information asymmetry to attract external investment for large-scale food
agriculture. Second, scientific, reasonable, and flexible environmental laws and regulations
should promote environmentally friendly food production policies, advocate the use of
bio-organic fertilizers and biodegradable agricultural films, and subsidize the development
and application of ecological food production technologies. Various regions need different
environmental regulations. Increase environmental laws in regions with poor GTFP of
food (Qinghai, Jiangsu, Sichuan, Jiangxi, Shandong, and other provinces) to coordinate the
ecological and economic development of food. Third, maximize structural and technical
effects to boost food GTFP. Green technical efficiency and technological progress boost food
GTFP. The government should optimize the internal cultivation structure of food in regions
with comparative advantages in food production, promote staple food specialization, and
play to the structural effects of food production to boost the GTFP of food. The government
should strengthen R&D investments in food production science and technology projects in
regions with comparative advantages in food production, encourage the combination of
resource endowment characteristics and technological progress in food production regions,
improve the conversion rate of scientific and technological achievements, and increase the
GTFP of food as much as possible.
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