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Abstract: This study undertakes a comprehensive analysis of vegetable production efficiency in China
using input–output data from 30 provinces spanning 2011 to 2017. By incorporating environmental
pollution costs as undesirable outputs alongside vegetable output value, we employ Data Envelop-
ment Analysis (DEA) with the Banker, Charnes, and Cooper (BCC) model and the Malmquist index
model. Our assessment reveals both annual and inter-period efficiency changes. The findings high-
light a modest overall efficiency in China’s vegetable production and significant regional disparities.
Technical progress emerges as a pivotal determinant of total factor productivity (TFP). Recognizing
these dynamics, we propose policy recommendations that prioritize technical innovation, sustainable
practices, rural infrastructure enhancement, and specialized cultivation methods. Implementing these
recommendations could bolster China’s position in international trade negotiations due to increased
exports and potentially drive broader environmental policy reforms. As vegetable production be-
comes more efficient and sustainable, there might be a shift in labor needs, potentially leading to
migration patterns or changes in employment structures. These insights contribute to the sustainable
development of China’s vegetable industry, offering a broader understanding of the dynamics of
agricultural efficiency in the context of environmental sustainability.

Keywords: vegetable; total factor productivity; Data Envelopment Analysis; technical progress;
environmental sustainability

1. Introduction

Increasing crops while decreasing pesticide and fertilizer use is a global challenge for
improving the sustainability of production systems [1]. Vegetables, as a vital functional food
for both urban and rural populations, hold significant importance in China’s agricultural
sector. The government, recognizing the importance of the vegetable industry, has been
proactive in its development. As delineated by The Notice of the General Office of the Ministry
of Agriculture and Rural Affairs on Carrying Out the Cultivation of High-Quality Farmers in
2022, it is vital to ensure a stable supply from the Vegetable-Basket Project in concert with
consistent grain and oil expansion. Consequently, the cultivation area for vegetables in
China has seen substantial growth, from 19,981,070 hectares in 2017 to 21,872,210 hectares
in 2021, at an average annual compound growth rate of 2.3%. Nonetheless, China’s agri-
cultural expansion for many years has largely depended on increased inputs [2], and high
fertilizer inputs considerably contribute to global agricultural greenhouse gas emissions [3].
These issues are further compounded by the low marginal contribution of land, underde-
veloped mechanization, and the overuse of pesticides and fertilizers. For a country like
China, grappling with constraints such as relative land scarcity, limited human capital, and
ecological pressures, such an extensive growth model, will not only inhibit the long-term
development of the vegetable industry but also exacerbate the tensions between industrial
development and environmental preservation. In this light, the agricultural supply-side
structural reform proposed by China in 2016 marked a shift toward correcting the input
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structure of vegetable industry factors, while the No. 1 Central Document in 2023 contin-
ued to endorse green agricultural development. The pressing need is to utilize vegetable
production resources effectively, reduce dependence on input factors, and ease ecological
pressures, thereby enhancing production efficiency. This constitutes an urgent challenge
for China’s vegetable industry.

Before delving into strategies to improve vegetable production efficiency and resource
utilization efficiency, it is pivotal to conduct thorough research on the various factors
contributing to the input process in vegetable production. The intricacies and hurdles
of vegetable production, particularly regarding material input factors, such as pesticides,
fertilizers, agricultural films, irrigation, land, and seeds, are widely recognized in the
existing literature.

Pesticide use in vegetable production is a subject of ongoing interest. Lechenet et al.
(2017) demonstrated that decreasing pesticide use does not necessarily correlate with
reduced crop yield [4]. This insight is pivotal in promoting sustainable farming practices,
considering that the long-term use of pesticides harms the environment and ultimately
renders the land non-arable, thereby reducing both land and productivity [5]. With a
propensity for developing resistant or tolerant strains and the increased awareness of
sustainable agriculture, biological control has been considered a valuable alternative to
chemical control [6].

Fertilizers are another major input. Tilman et al. (2002) highlighted the environmental
harm caused by an over-reliance on synthetic fertilizers [7]. The national greenhouse
agriculture area covers about 40 million mu (26,666.7 square kilometers), constituting more
than 80% of the world’s total greenhouse agriculture area, with over 80% being vegetable
cultivation [8]. As plastic-shed vegetable production expands in China, optimizing ex-
cessive nitrogen (N) input becomes increasingly crucial [9]. Previous research showed
that N2O emissions from plastic-shed production increase proportionally with the rate of
fertilizer N [10–12]. This is due to the fact that N2O is released during the conversion of
some of the N to nitrates when N fertilizers are applied to the soil. Moreover, the GWP of
N2O surpasses CO2 by a factor of approximately 298 [13,14]. Overall, chemical N fertilizer
application increased GHG emissions [15].

The utilization of agricultural mulch films, predominantly plastic mulches, is a topic
that has garnered substantial attention in research. These films, acting as a physical barrier
to soil, confer numerous benefits including the preservation of soil heat and moisture, the
mitigation of weed propagation, the protection of soil structure, and an ultimate increase
in crop yields [16,17]. On the other hand, the misuse of plastic mulching materials can
engender severe environmental pollution, prompting concerns about their usage [18]. Low-
density polyethylene (LDPE) is the most prevalent and effective material for agricultural
films due to its ready availability, chemical resistance, mechanical flexibility, and non-
toxicity [19]. A study by Tan et al. (2023) indicated that biodegradable films had the least
net impact on aquatic pollution and toxicity indicators, while 0.014 mm polyethylene films
excelled in mitigating global warming and fossil resource depletion [20]. Sani et al. (2023)
presented a discussion on using fruit and vegetable by-products to produce biopolymers
as alternatives to synthetic plastic polymers, applying these biopolymers in value-added
functional packaging films and coatings [21].

Irrigation, another critical factor in vegetable production, presents both opportunities
and challenges. While irrigation boosts yield by supplying ample water, it also leads to
elevated N2O emissions [22,23]. High-yield demands often necessitate significant agricul-
tural inputs, such as nitrogen fertilizers and irrigation, which contribute to an escalation
in greenhouse gas emissions [24]. In particular, during vegetable cultivation, large inputs
of nitrogen fertilizers and irrigation water augment total N2O emissions [25]. An optimal
irrigation strategy should cater to the water and fertilizer requirements of crops [26–28].
Negative pressure irrigation (NPI) is a subsurface irrigation technique that precisely and
continuously supplies water through negative water pressure when soil moisture content
diminishes due to evapotranspiration [29–31]. Li et al. (2023) employed two irrigation
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regimes (negative pressure irrigation and furrow irrigation) to assess two types of soil
moisture conditions, with results suggesting that NPI is a more optimal irrigation strategy
that can reduce NO emissions while augmenting vegetable yield [32]. Postel et al. (2001)
emphasized the importance of efficient water management and the development of sus-
tainable irrigation systems. This was echoed by Raza et al. (2021), who discussed precision
irrigation technologies and their potential for resource conservation [33,34].

The significance of land as a factor in vegetable production has been comprehensively
documented. Foley et al. (2011) deliberated on the increasing challenges presented by land
scarcity, proposing strategies to enhance land-use efficiency [35]. Furthermore, intensive
farming practices have been found to diminish soil biodiversity [36–38], an element crucial
to ecosystem function [39–41]. Some studies have demonstrated the positive impact of
organic farming on soil biota [42]. A study by Yang et al. (2021) suggested that organic
vegetable production might experience enhanced soil fertility due to the increased popu-
lation densities of microbial feeding and omnivorous nematodes, although the threat of
plant parasitic nematodes to vegetable production necessitates further attention and the
development of control strategies [43].

Lastly, the role of seeds in vegetable production is irreplaceable. High-quality seeds can
considerably augment vegetable quality and yield [44,45]. Vernooy et al. (2017) emphasized
the significance of seed diversity and its effect on crop resilience [46]. Additionally, the
uniformity of vegetable seeds, particularly in terms of size and shape, plays a crucial role
in mechanized production, contributing to the implementation of mechanized sowing and
enhancing labor productivity [47]. Thakur et al. (2022) furnished an intricate discussion
on various seed priming techniques employed to boost the germination rate and vigor in
vegetable crops [48].

In conclusion, the extant literature underscores the critical role of these material inputs
in vegetable production, emphasizing the escalating focus on sustainable and efficient
resource utilization. The prevalent theme in research strategies for optimizing production
factor inputs tends to concentrate on providing generalized guidance on resource input
behavior [49], such as escalating investment in mechanization, curtailing the use of chemical
fertilizers, and reducing agricultural film inputs.

Scholars have conducted extensive research on crop production efficiency, building on
the in-depth study of factor inputs in the crop production process. Globally, a considerable
amount of research has been undertaken to estimate farm-level efficiency scores [50–57].
Xu et al. (2018) developed a technical efficiency evaluation system for vegetable produc-
tion aimed at informing decision-making in precision agriculture practices [58]. Akamin
et al. (2017) conducted an analysis of the technical efficiency of vegetable growers within
selected sites of the humid tropics of Cameroon, focusing on root and tuber-based farming
systems [59]. Their findings indicated that farmyard manure was the most productive
factor input, which was succeeded by farm equipment and labor. Singbo et al. (2015)
employed a sample of vegetable producers in Benin from 2009–2010 to analyze technical
efficiency and the value of the marginal product of production input, particularly in relation
to pesticide use [60]. The study aimed to measure the distribution efficiency of pesticide use
and production inputs. Their findings indicated that in terms of pesticide use, vegetable
producers demonstrated less efficiency compared to other input uses.

The topic of enhancing crop production efficiency has gained considerable traction
in academic research. Various strategies have been employed by scholars to improve the
productivity of texture-contrast soil, including the use of deep-rooting primer species and
crop rotation [61,62], as well as surface and subsurface drainage to mitigate intermittent
waterlogging [63].

Crucially, optimizing water and fertilizer inputs is instrumental in enhancing resource
use efficiency. Techniques such as deficit irrigation can conserve water while sustaining or
even augmenting yields by reducing water use in irrigation [64,65]. Furthermore, applying
fertilizers at or near plant roots during peak crop demand and in smaller, more frequent
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applications, can potentially minimize losses while maintaining or increasing yield and
quality [66].

However, it is important to note that optimal water and fertilizer inputs can vary
based on the fertigation method and crop type. For instance, Sun et al. (2013) demonstrated
that under furrow irrigation, the optimal factor input for tomato cultivation is 300 mm of
irrigation water and 150 kgNha−1 in autumn and winter, or 300 mm of irrigation water
and 250 kgNha−1 in spring and summer [67]. Meanwhile, Kuscu et al. (2014) established
that the optimal factor input under drip irrigation is 75% of the pan evaporation irrigation
regime and a 180 kgNha−1 supply [68].

Moreover, some researchers argue that specific production modes or systems can
boost vegetable productivity, thus aiding countries in achieving self-sufficiency goals.
For example, Song et al. (2022) reported that Singapore’s self-sufficiency in green leafy
vegetables could reach 80% if vertical farming with natural lighting (Vnat) is employed as
the primary local production system [69].

Other studies have indicated a significant correlation between grafting and increased
fruit yield in many fruits and vegetables, irrespective of the presence of certain soil-borne
diseases [70]. Similarly, Carlos et al. (2021) found that regardless of the transplant time
for chicory, intercropping it with collard greens yielded greater crop output and land
use efficiency index (LUE) compared to their monocultures, reaching a maximum value
(52% higher) when chicory was transplanted 42 days after collard greens [71].

In light of the ongoing degradation of natural ecosystems, researchers are increas-
ingly focusing on the environmental harm and resource wastage caused by agricultural
practices. Some argue that the large scale use of pesticides, synthetic fertilizers, and other
intensive management practices in vegetable farms often leads to environmental issues,
like soil degradation [72,73]. Beacham et al. (2019), for instance, discovered that vertical
farms utilizing artificial lighting tend to consume substantial energy, given their need for
electricity to power lighting. They maintain growth temperature, ventilation, and other
environmental controls [74].

Furthermore, the interplay between agricultural income and environmental considera-
tions has been investigated using diverse methodologies [75–82]. For example, Barbosa
et al. (2015) estimated that while hydroponic systems in heated greenhouses could yield
11 times more lettuce than traditional soil farming, they required 82 times more energy due
to their reliance on electricity [83].

Recently, the concept of environmental efficiency, which entails the production of
more goods and services with fewer resources while minimizing waste and pollution, has
ascended the research agenda. Numerous scholars worldwide are dedicated to measuring
environmental efficiency [84–89]. Farms with high productivity and high input usage
can adopt an “ecologization” strategy to decrease inputs while maintaining productivity
levels [1].

Upon reviewing the body of research to date, it is evident that significant progress has
been made, providing a relatively mature theoretical framework for the analysis presented
in this paper. However, there are still areas requiring supplementation and enhancement.

1. Most of the existing literature on the efficiency of vegetable production factor al-
location spans a relatively short time span, with some studies relying solely on
cross-sectional data. The results derived from data with an extended temporal span
would possess greater universality and practical significance;

2. A significant number of studies neglect the pollution caused by vegetable cultiva-
tion. While some researchers have used stochastic frontier analysis to investigate the
use of pesticides in agriculture and their impact on farm-level technical efficiency,
demonstrating that excessive pesticide application by farmers results in diminished
farm efficiency [90], very few have incorporated pollution from vegetable cultivation
into the system of calculating vegetable factor productivity. This neglect does not
accurately reflect the real efficiency of vegetable production in China;



Agriculture 2023, 13, 2021 5 of 25

3. Most studies only employ either the Data Envelopment Analysis with the Banker,
Charnes, and Cooper model (DEA-BCC) model or the DEA Malmquist index model,
lacking comparative analysis from both static and dynamic perspectives of vegetable
production efficiency.

The main contributions of this paper are as follows:

1. This study endeavors to account for environmental pollution costs in the process of
vegetable cultivation, treating them as undesirable outputs. These costs are integrated
with the vegetable output value within our calculation system. By constructing a
joint output indicator, we aim to provide a more comprehensive reflection of the true
efficiency of China’s vegetable production. This approach offers practical recommen-
dations for enhancing the efficiency of the industry;

2. We enhance the precision of the Data Envelopment Analysis (DEA) outcome mea-
surements by improving the evaluation indicator system for vegetable production
efficiency, building on previous studies. Utilizing the BCC model and the Malmquist
index model of the DEA method, we calculate both the annual efficiency and inter-
period efficiency changes of vegetable production for each region;

3. Our research delivers an exhaustive examination of the spatiotemporal characteristics
of China’s vegetable production efficiency, scrutinizing it from both static and dynamic
perspectives. This dual approach allows for a more nuanced understanding of the
efficiency trends in China’s vegetable production.

In the rapidly evolving field of vegetable production efficiency, many studies have
provided insights into various aspects of the industry. However, this research introduces
a novel approach by integrating environmental pollution costs directly into the analysis,
treating them as undesirable outputs. This unique perspective not only offers a more
holistic understanding of the true efficiency of vegetable production but also bridges a
critical gap in the literature. By considering the environmental implications alongside
production metrics, we aim to present a more comprehensive picture of the industry’s
sustainability and efficiency, setting our work apart from conventional studies.

2. Materials and Methods

Figure 1 presents a structured flow of the research methodology employed in this study.
It begins with the “Identification and selection of input and output factors”, which forms
the foundation for the subsequent analysis. The second level, “Calculation of production
efficiency”, utilizes the DEA-BCC model, and the “Dynamic assessment” employs the DEA
Malmquist index to evaluate the temporal changes in efficiency. Based on the insights
derived from these analyses, the final level outlines the “Policy implications for optimizing
vegetable production”, providing actionable recommendations for stakeholders.
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2.1. Static and Dynamic Analysis Models
2.1.1. DEA-BCC Model

Efficiency measurement in production systems has been traditionally approached
using various methodologies, with stochastic frontier analysis (SFA) and Data Envelopment
Analysis (DEA) being the most prominent. While both methods have their merits, they
cater to different analytical needs and data structures.

SFA, a parametric method, assumes a specific functional form for the production
frontier and requires the specification of an error structure. It is particularly useful when
there is a need to account for statistical noise and when the dataset is large.

While SFA is a robust technique, it requires a specific functional form to be assumed for
the production function, which might not accurately represent the complex, multifaceted
processes involved in vegetable production across diverse contexts in China. Additionally,
SFA often necessitates more stringent assumptions about the distribution of efficiency and
error terms, which might not align with the empirical realities of our dataset. In contrast,
DEA-BCC is a non-parametric linear programming method that does not impose any func-
tional form on the production frontier. It envelops data points to form an efficiency frontier,
making it especially suitable for datasets where the functional form of the production
process is not well-defined or is complex. Furthermore, DEA’s ability to handle multiple
input and output variables without requiring a priori weightings makes it a versatile tool
for efficiency analysis in diverse settings.

Given the nature of our dataset, the complexities associated with vegetable production,
and the multiple variables we aimed to consider, DEA-BCC emerged as the most suitable
method for our study. Its flexibility in handling multiple inputs and outputs, without the
need for explicit assumptions about their distribution or functional form, provided a robust
framework for our analysis.

For readers interested in the technical intricacies and mathematical formulations of
DEA-BCC, we have provided a detailed exposition in Appendix A.1.

2.1.2. DEA Malmquist Index

The DEA-BCC model is a static measurement, which calculates the comprehensive
efficiency value of each DMU in each period. If one wants to analyze the dynamic efficiency
trend of each DMU over n periods, the DEA Malmquist index is required.

For readers interested in the technical intricacies and mathematical formulations of
the DEA Malmquist index, we have provided a detailed exposition in Appendix A.2.

2.2. Selection of Variables

In order to reflect the true performance of vegetable industry development and avoid
decision-making errors, this study considers resource elements and environmental elements
closely related to the sustainable development of the vegetable industry when selecting
input–output indicators for vegetables. The specific content is as follows (Table 1), in our
study, we categorize the input factors affecting vegetable production efficiency in China into
three distinct but interrelated layers. The first layer, “Resource Factors”, comprises land [91]
and water [92], which serve as the foundational elements for agricultural production. The
second layer, “Labor and Management Factors”, includes labor [92] and management
costs [93]. These factors are influenced by the availability and quality of resources from the
first layer and, in turn, impact the third layer. The third layer, “Technological and Material
Factors”, consists of basic agricultural inputs [94] like seeds, fertilizers, and pesticides,
as well as fixed assets [92], such as tools and materials. This layer is both influenced by
and exerts influence on the labor and management layer, as technological choices can
affect labor efficiency and management decisions. By structuring our input factors in
this manner, we aim to offer a nuanced understanding of the multiple components and
their interdependencies that contribute to vegetable production efficiency in China. The
comprehensive output indicator is obtained by subtracting the environmental pollution
cost from the vegetable output value. The usage of pesticides and fertilizers has been
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on the rise in recent years, resulting in significant harm to the water environment, such
as frequent algae blooms in some lakes and rivers, affecting the drinking water safety
of the surrounding population. Based on the principle of accountability, we referred to
the government document “Notice on the Pollutant Discharge Standard for the Use of
Ammonia Nitrogen and Total Phosphorus in the Taihu Lake Basin”. According to the
document, the agricultural key pollution source pollutant discharge units’ standard for
the use of ammonia nitrogen is CNY 6000/year per ton, and the standard for the use of
total phosphorus discharge is CNY 23,000/year per ton. We converted the environmental
pollution cost accounting into the sum of the usage fees for the amount of nitrogen and
phosphorus discharged during the vegetable cultivating process. Based on this, this paper
translates the accounting of environmental pollution costs into the sum of paid usage fees
for the amount of nitrogen and phosphorus emissions discharged during the process of
vegetable cultivation.

Table 1. Selection and composition of input–output indicators for vegetables.

First-Level
Indicators

Second-Level
Indicators Composition of Indicators (per Mu) Symbol Reference

Input Indicators

Land Input Rental Cost of Transferred Land +
Opportunity Cost of Own Land Land [91]

Labor Input Opportunity Cost of Family Labor + Hired Labor Cost Labor [92]
Water Input Irrigation Expenses (Including Water Charges) Water [92]

Basic Agricultural
Input

Seed + Fertilizer + Farmyard Manure + Pesticides +
Plastic Film Cost + Machinery Operation Cost +

Technical Service Fee + Fuel Power Fee +
Other Direct Costs

Basic [94]

Fixed Assets Input Depreciation of Fixed Assets + Tools and Materials Fee
+ Repair and Maintenance Fee Assets [92]

Management Input Insurance Fee + Management Fee +
Financial Fee + Sales Fee Manage [93]

Comprehensive
Output Indicators

Value of Vegetable
Production Value of Main Product + Value of By-products Output [95]

Environmental
Pollution Cost

Pollutants (Nitrogen and Phosphorus) Equivalent ×
Paid Use Charge Standard [94]

Note: “Mu” is a traditional Chinese unit of area, and 1 Mu equals 666.67 square meters.

2.3. Data Source

The data for each input and expected output indicator come from the National Com-
pilation of Cost and Benefit Data of Agricultural Products (hereinafter referred to as the
“Compilation”) for the years 2012–2018. The primary vegetables counted in the “Com-
pilation” are open-field/greenhouse tomatoes, open-field/greenhouse cucumbers, open-
field/greenhouse eggplants, open-field/greenhouse peppers, open-field Chinese cabbages,
open-field round cabbages, open-field string beans, and open-field radishes. Starting in
2012, vegetable data statistics classified by province began to appear. When selecting the
research objects, because of differences in the input of basic information, technical means,
scale configuration, and management levels between greenhouse cultivation and open-field
cultivation, if we only use vegetables as the research object and do not explore the differ-
ences in vegetable production efficiency under different models, it will obviously lack depth
and detail. Therefore, we excluded Chinese cabbages, round cabbages, string beans, and
radishes. Furthermore, considering issues, such as the large variety in vegetable production
and discontinuity in regional samples, we excluded eggplants and peppers, which only
a few provinces plant in facilities. Finally, we selected tomatoes and cucumbers because
these two types of vegetables, whether grown in open-fields or facilities, cover a wide area,
evenly spanning most provinces in the country. Moreover, both the cultivation area and
output of tomatoes and cucumbers in China rank first in the world. Related literature often
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involves tomatoes and cucumbers as research objects, indicating their representativeness
and persuasive power.

Taking cucumbers and tomatoes from thirty provinces, autonomous regions, and
municipalities directly under the central government during the period from 2011 to 2017
as samples, six major regions were divided: Northeast China, North China, East China,
Central South China, Southwest China, and Northwest China according to the national
administrative division standards. To address a few cases of missing and abnormal data, we
used the mean replacement method. For instance, if the wage of hired labor for open-field
cucumbers is missing for just one year, we substitute the missing value with the arithmetic
mean of the adjacent two years. The descriptive statistics of each variable are presented in
Table 2.

Table 2. Descriptive statistical analysis of input–output variables of vegetables in China (unit: yuan).

Classification Variables Mean Standard
Deviation Minimum Maximum Sample

Size

Overall
Vegetables

Output 9588.10 2198.42 3838.00 16,921.00 210
Land 341.01 152.74 90.00 1040.00 210
Labor 3342.70 984.73 1252.00 6060.00 210
Water 64.01 48.48 5.00 347.00 210
Basic 1462.10 493.41 594.00 3123.00 210

Assets 445.23 237.61 41.00 1183.00 210
Manage 126.62 96.07 4.00 606.00 210

Greenhouse
Vegetables

Output 12,693.00 2269.49 7429.84 18,352.09 147
Land 409.23 157.07 172.79 1040.36 147
Labor 4211.20 1185.73 1403.83 6937.92 147
Water 96.42 60.28 6.99 347.47 147
Basic 2058.80 590.84 1052.22 3661.36 147

Assets 853.87 409.49 235.09 2064.65 147
Manage 163.54 137.05 8.19 651.13 147

Open-field
Vegetables

Output 7457.90 1911.02 3838.25 15,686.92 189
Land 276.55 107.07 90.34 724.48 189
Labor 2839.20 828.34 1053.92 5350.64 189
Water 49.62 35.55 0.42 151.09 189
Basic 1040.40 409.88 594.21 3037.64 189

Assets 180.47 93.20 28.56 447.50 189
Manage 96.34 80.61 4.17 590.36 189

Note: overall vegetables refer to open-field tomatoes, greenhouse tomatoes, open-field cucumbers, and greenhouse
cucumbers. Greenhouse vegetables refer to greenhouse tomatoes and greenhouse cucumbers. Open-field
vegetables refer to open-field tomatoes and open-field cucumbers.

3. Results and Discussion

To assess the adherence of the constructed DEA model in this study to the concept of
“isotonicity” (output expansion with input growth) between input and output variables,
a Pearson correlation coefficient test was employed using SPSS 18.0 software (SPSS Inc.,
Chicago, IL, USA) on vegetable input–output indicators across China. The test outcomes
revealed that the Pearson coefficient values between diverse inputs and output indicators
were satisfactory, with the majority meeting the criterion at the 0.05 significance level
(Table 3). This signifies that the choice of indicators is sound, and the data primarily comply
with the “isotonicity” condition. Subsequently, DEAP 2.1 software was utilized to carry out
the DEA-BCC efficiency computation and DEA Malmquist index analysis on the input and
output data of vegetables across distinct regions of China from 2011 to 2017, generating
technical efficiency and total factor productivity change and their decomposition values
over the years.
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Table 3. Pearson correlation of input–output indicators for vegetables in China.

Indicators Output Land Labor Water Basic Assets Manage

Output 1
Land 0.418 ** 1
Labor 0.530 ** 0.452 ** 1
Water 0.359 ** 0.202 ** 0.446 ** 1
Basic 0.425 ** 0.629 ** 0.391 ** 0.398 ** 1

Assets 0.500 ** 0.340 ** 0.412 ** 0.612 ** 0.577 ** 1
Manage 0.090 0.222 ** 0.147 * 0–0.040 0.201 ** 0.032 1

Note: *, ** indicate significant correlations at the 0.1, 0.05 levels, respectively.

3.1. Calculation Results of Production Efficiency Based on the DEA-BCC Model
3.1.1. Overview of General Traits

Considering resource and environmental constraints, the average production efficiency
for vegetable production in China from 2011 to 2017 stood at 0.747 on a national scale
(Figure 2). This modest level indicates considerable potential for enhancement, suggesting
that China could potentially curtail its vegetable production inputs by nearly 25% while
maintaining an equivalent output. The efficiency of overall vegetable production, as well
as open-field vegetable production, showed a general ascendant trend despite intermittent
fluctuations. The apex of average production efficiency for overall vegetables (0.838) was
noted in 2016. In contrast, greenhouse vegetables, despite possessing superior production
efficiency, displayed a stagnant trend with significant fluctuations.

Figure 2. Average production efficiency of the overall vegetables, greenhouse vegetables, and open-
field vegetables in China from 2011 to 2017.

Upon analyzing variances in cultivation techniques, a divergence is observed in the
production efficiencies of greenhouse and open-field vegetables. Table 4 reveals that
the average production efficiency of greenhouse vegetables (0.838) from 2011 to 2017
outperformed open-field vegetables (0.797). When scrutinizing specific vegetable categories,
the ranking sequence was as follows: greenhouse cucumbers (0.872) > open-field tomatoes
(0.815) > open-field cucumbers (0.777) > greenhouse tomatoes (0.769). This demonstrates
that while greenhouse vegetables generally exhibit higher production efficiency than open-
field vegetables, certain greenhouse crops lag behind their open-field counterparts. This



Agriculture 2023, 13, 2021 10 of 25

discrepancy may be ascribed to the nascent stage of greenhouse tomato production, with
producers, driven by the mindset of “high input, high output”, engaging in production
without sufficient caution, leading to resource squandering. Hence, when factoring in
resource and environmental constraints, the production efficiency of greenhouse tomatoes
trails behind that of open-field tomatoes and open-field cucumbers.

Table 4. Mean production efficiency of the greenhouse/open-field overall vegetables, greenhouse/
open-field cucumbers, and greenhouse/open-field tomatoes from 2011 to 2017.

Cultivation Patterns Production
Efficiency

Overall Vegetables Cucumbers Tomatoes

Greenhouse 0.838 0.872 0.769
Open-field 0.797 0.777 0.815

3.1.2. Investigation of Regional Variations

An exploration from the vantage point of six major regions (Figure 3) unveils marked
regional discrepancies in the production efficiency of overall vegetables in China. South-
west China exhibited the pinnacle of average production efficiency at 0.799, while the
Northeast region displayed the nadir, barely reaching 0.653. The ranking of average pro-
duction efficiency for overall vegetables from 2011 to 2017 emerged as follows: Southwest
China > Northwest China > South Central China > North China > East China > Northeast
China. Southwest China consistently held the top spot for both greenhouse and open-field
cultivation when analyzing distinct cultivation methods. The starkest differences in veg-
etable production efficiency between the two cultivation methods were observed in East
China and Northwest China. East China topped the chart in terms of average produc-
tion efficiency for open-field vegetables, and it languished at the bottom for greenhouse
vegetables. Similarly, Northwest China secured the second spot for greenhouse vegetable
production efficiency but held the penultimate spot for open-field vegetable production
efficiency.

Agriculture 2023, 13, x FOR PEER REVIEW 11 of 27 
 

 

efficiency for open-field vegetables, and it languished at the bottom for greenhouse vege-
tables. Similarly, Northwest China secured the second spot for greenhouse vegetable pro-
duction efficiency but held the penultimate spot for open-field vegetable production effi-
ciency. 

 
Figure 3. Average production efficiency of the overall vegetables, greenhouse vegetables, and open-
field vegetables in the six major regions of China from 2011 to 2017, along with their respective 
regional rankings. 

3.1.3. Examination of Provincial Disparities 
According to the data depicted in Figure 4, the quintet of regions in China with the 

highest average overall vegetable production efficiency from 2011 to 2017 are Guangdong 
(0.995), Jiangxi (0.966), Chongqing (0.943), Tianjin (0.927), and Shaanxi (0.926). Conversely, 
the quintet of regions trailing the rest are Jiangsu (0.539), Henan (0.557), Jilin (0.560), Bei-
jing (0.606), and Inner Mongolia (0.607). More than half of the regions (16 out of 30) regis-
ter an average overall vegetable production efficiency beneath the national average, high-
lighting a deficiency in coordinated development that concurrently safeguards resources 
and the environment and escalates the vegetable production value. 

Figure 3. Average production efficiency of the overall vegetables, greenhouse vegetables, and open-
field vegetables in the six major regions of China from 2011 to 2017, along with their respective
regional rankings.



Agriculture 2023, 13, 2021 11 of 25

3.1.3. Examination of Provincial Disparities

According to the data depicted in Figure 4, the quintet of regions in China with the
highest average overall vegetable production efficiency from 2011 to 2017 are Guangdong
(0.995), Jiangxi (0.966), Chongqing (0.943), Tianjin (0.927), and Shaanxi (0.926). Conversely,
the quintet of regions trailing the rest are Jiangsu (0.539), Henan (0.557), Jilin (0.560), Beijing
(0.606), and Inner Mongolia (0.607). More than half of the regions (16 out of 30) register an
average overall vegetable production efficiency beneath the national average, highlighting
a deficiency in coordinated development that concurrently safeguards resources and the
environment and escalates the vegetable production value.
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3.2. Dynamic Assessment via the DEA Malmquist Index
3.2.1. Analysis of Aggregate Characteristics

The national trajectory (Figure 5) illustrates that the Tfpch of the overall vegetable
cultivation in China registered an increase of 3.9% in 2011–2012, 0.7% in 2014–2015, and
3% in 2016–2017. However, there were varying degrees of TFP contraction between 2013
and 2015, with a precipitous plunge of 9.7% in 2012–2013. The aggregate TFP value of
vegetables equates to 0.99, falling short of 1, suggesting an overarching downward trend
with an annual contraction rate of −1%. Upon dissecting the Malmquist productivity
index’s components, the yearly modifications in Effch and Techch of overall vegetables
averaged between 1.082 and 0.915, respectively. Technical efficiency increased positively
with an annual growth rate of 8.2%, while technical progress contributed negatively, with
an annual decline rate of −8.5%. These findings denote that exclusive reliance on technical
efficiency to propel TFP expansion is inadequate, and the dearth of technical progress
serves as the principal bottleneck in China’s overall vegetable TFP progression.
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From a temporal viewpoint (Figure 6), overall vegetables and greenhouse vegetables
in China initially manifested high TFP, with the steepest decrease occurring from 2012 to
2013, succeeded by an oscillatory recovery. Contrarily, open-field vegetables initiated with
a lower TFP unveiled a robust growth trend, particularly from 2013 to 2015, with the Tfpch
escalating from −7.1% to 4.3%.
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Evaluating greenhouse vegetables (Table 5), the mean TFP, efficiency, and technical
change indices were 0.992, 0.989, and 1.003, respectively. This indicates that a deficiency
in technical efficiency predominantly incites the decline in greenhouse vegetable TFP.
Conversely, for open-field vegetables (Table 5), the mean TFP, efficiency, and technical
change stood at 0.991, 1.056, and 0.945, respectively, suggesting that inadequate technical
progress chiefly catalyzes the decrement in TFP.

Table 5. Average TFP change (Tfpch) and decomposition of China’s greenhouse vegetables and
open-field vegetables from 2011 to 2017.

Classification Effch Techch Tfpch

Greenhouse
Vegetables −10.1% 0.3% −0.8%

Open-field Vegetables 5.6% −5.5% −0.9%
Note: Effch is the abbreviation of efficiency change, Techch is the abbreviation of technical change, Tfpch is the
abbreviation of total factor productivity change.

From this analysis, it is clear that the strategic focus for open-field vegetable develop-
ment should gravitate toward augmenting technical investment and innovation, fostering
sustained technical progress. In contrast, greenhouse vegetables, currently displaying
advanced technical status, should prioritize optimizing operational scale and bolstering
operational efficiency.

3.2.2. Examination of Regional Disparities

An analysis of the six major regions (Figure 7) reveals that Southwest China, North
China, and Northeast China experienced an upward trend in average Tfpch from 2011 to
2017, registering growth rates of 5.60%, 3%, and 1%, respectively. Conversely, Northwest
China, Central South China, and East China demonstrated a decline in Tfpch, with annual
contraction rates of 1.40%, 2.4%, and 4.30%, respectively. In all six regions, the mean Effch
surpassed 0%, while the mean Techch value fell below 0%. This regional comparison
bolsters the notion that inadequate technical progress forms the primary hurdle to the
growth of overall vegetable TFP in China.
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While technical progress has been identified as the main hindrance to TFP growth,
it may also be inferred that the rate of adoption of new technologies and practices is
equally crucial. Education, training, and technology promotion practices contribute to
productivity enhancement [96]. When considering that these regions likely have access
to similar vegetable production technologies, it raises questions about why some regions
perform better than others. East China has robust scientific research strength in agricultural
colleges and universities, yet it ranks the lowest in Techch. This discrepancy might indicate
that Southwest China, for example, Guizhou province, has performed better in promoting
vegetable production technology. Guizhou province recently established a provincial-level
agricultural technology experiment demonstration base in Weining Autonomous County.
The initiative introduces new high-quality vegetable varieties, such as cabbages, from inside
and outside the province. It integrates accompanying cultivation technology, promotes
new varieties and techniques throughout the county, fosters the rapid transformation
of advanced agricultural technology, and enhances the public service capability of the
grassroots agricultural technology promotion system. Consequently, we propose that
regions that are more open to change and those that have established mechanisms for
technology transfer may exhibit more significant advancements.

Further comparing the fluctuations in technical efficiency and technical progress
between greenhouse and open-field vegetables in Southwest China (Figure 8) reveals that
the mean values for both Effch (3.1%) and Techch (4.1%) of greenhouse vegetables exceed
0%. For open-field vegetables, the mean Effch (8.5%) surpasses 0%, and the mean Techch
(0.972) falls short of 0%. Clearly, greenhouse vegetables in Southwest China outperform
open-field vegetables in terms of technical innovation. However, there persists a significant
problem of insufficient technical progress in Southwest China’s open-field vegetables.
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3.2.3. Analysis of Interprovincial Variations

Reviewing the provinces (Figure 9), 13 provinces in China observed an increase in
average overall vegetable TFP. The top five provinces are Tianjin (20.6%), Guizhou (10.2%),
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Chongqing (9.5%), Guangxi (4.4%), and Zhejiang (4.4%). Conversely, provinces with
negative TFP growth include Guangdong (−18.6%), Shanghai (−12.9%), Beijing (−9.3%),
Heilongjiang (−8.8%), and Jiangsu (−8.1%). Henan, Hunan, and Sichuan witnessed a
stagnation in average overall vegetable TFP. Evaluating the TFP change components, all
regions except Hainan accomplished growth in technical efficiency, while all regions barring
Tianjin, Shanxi, and Chongqing failed to register growth in technical progress. This further
ratifies that insufficient technical progress constitutes the primary obstacle to the growth of
the overall vegetable TFP in China.
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province of China from 2011 to 2017.

The role of external environmental factors, such as climate change and regional biodi-
versity, could have a notable influence on vegetable production efficiency. Climate change
is challenging vegetable production, and variations in seasonal patterns or extreme events
(e.g., heat waves, droughts, excessive rain, change in seasonal patterns) threaten both
yield and quality [97]. Tianjin and Guizhou lead in Effch, Techch, Sech, and Tfpch among
all provinces. Tianjin, located in the North Temperate Zone and affected by monsoon
circulation and experiences a monsoon climate with hot, rainy summers and cold, dry
winters. On the other hand, Guizhou belongs to the Subtropical Monsoon Climate Zone,
which is characterized by small temperature changes, no severe cold in winter, no extreme
heat in summer, and rich biodiversity. We surmise that regions with high biodiversity and
suitable climate conditions may exhibit superior overall efficiency due to the symbiotic
relationships within the local ecosystems and favorable weather conditions.
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3.3. Discussion

The findings of this study offer a comprehensive understanding of the vegetable
production efficiency landscape in China from 2011 to 2017. Several key insights emerge
from the analysis that have significant implications for policy formulation.

(1) The research underscores the pivotal role of technological innovation in shaping the
trajectory of the TFP in China’s vegetable industry. The observed modest average pro-
duction efficiency, particularly in open-field vegetables, is largely attributed to a lack
of technological progress. This insight suggests that for a substantial improvement in
TFP, there is an urgent need to prioritize and invest in technological advancements
tailored to the unique challenges in the vegetable sector.

This emphasis on technological innovation resonates with findings from other studies.
For instance, modernizing practices, such as adopting drip irrigation systems, have been
shown to efficiently deliver water directly to plant roots, thereby reducing water wastage
and enhancing crop productivity [98–100]. Furthermore, a plethora of research has delved
into the impact of various production technologies on the efficiency of agricultural products.
Techniques such as alternate partial root-zone irrigation [101], aerated irrigation [102], and
the use of treated wastewater for irrigation [103] have been explored for their effects on
yield, quality, water productivity, and greenhouse gas emissions across different crops,
including vegetables. The application of organic fertilizers [104] and specific planting
methods [105] have also been studied for their potential benefits. Notably, subsurface
drip irrigation has been identified as a significant technological advancement, leading to
increased yields, enhanced irrigation water productivity, and overall water productivity in
crops, vegetables, and fruits [106].

In light of these findings from the broader literature, it becomes evident that the
trajectory of the TFP in China’s vegetable industry can be significantly influenced by
embracing a range of technological innovations. By integrating these advancements,
there is potential not only for improved production efficiency but also for addressing
environmental concerns and ensuring sustainable growth in the sector.

(2) The stark regional differences in vegetable production efficiency, with Southwest
China outperforming other regions, highlight the uneven distribution of resources,
expertise, and technological adoption across the country. Such disparities suggest
that a one-size-fits-all policy approach may not be effective. Instead, region-specific
interventions, considering the unique challenges and strengths of each region, could
yield better results.

This observation is in line with findings from Ito et al. (2023) [107], who noted
differential agricultural output growth across regions between 2001 and 2020. Specifically,
the eastern region experienced the lowest growth at 1.94%, while the western region saw
the highest at 3.98%. Notably, TFP growth accounted for about 40% of the annual output
growth across all regions, with technical change being the predominant contributor. This
pattern aligns with other empirical studies on Chinese agriculture [108–110].

Furthermore, the significant role of research and development (R&D) in bolstering
agricultural productivity is well-documented in various countries, and similar trends are
evident in Chinese agriculture [111–113]. Huang and Yang (2017) [114] emphasize that
China’s central government has substantially increased its investment in agricultural R&D
since the mid-2000s. This surge in investment is further evidenced by the OECD (2018) [115]
report, which indicates that China’s agricultural R&D expenditure in 2013 was nearly four
times that of 2000, adjusted for inflation. Given this backdrop, it is plausible to attribute
the technological progress observed between 2001 and 2020 to the government’s robust
commitment to scientific innovation in agriculture. This perspective is further supported
by studies, such as Diao et al., 2018 [109] and Wang et al., 2019 [116], who highlight the
rapid advancement of agricultural technology in the western region, thereby reducing the
technological disparities between regions.
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(3) The integration of environmental pollution costs in the analysis underscores the
significance of sustainable practices in vegetable production. The environmental
implications of vegetable cultivation, if not addressed, could offset the gains from any
improvements in production efficiency. This emphasizes the need for policies that not
only boost efficiency but also ensure the environmental sustainability of the industry.

Our observations concerning the environmental implications of vegetable cultivation
are further accentuated by the broader challenges posed by climate change. For instance,
greenhouse gas (GHG) emissions, which are exacerbated by certain agricultural practices,
threaten the long-term productivity of crops, such as rice [117]. This global perspective on
environmental sustainability resonates with our findings and underscores the urgency of
addressing these challenges.

Moreover, our findings align with studies from Uruguay [1] and worldwide [118],
which question the necessity of using large amounts of synthetic pesticides to achieve high
yields. This is particularly relevant given the growing body of literature advocating for a
transition to more sustainable agricultural systems [119–122]. As Scarlato et al. (2022) [1]
suggest, promoting sustainable agricultural production fundamentally requires a systemic
redesign at both the crop and farm levels. This involves engaging farmers in a collaborative
effort to modify deeply ingrained practices.

Furthermore, the debate between Agroecological Crop Protection (ACP) and Inte-
grated Pest Management (IPM) approaches is worth noting in the context of our study.
While IPM often centers around the reduced use of pesticides, ACP offers a more holistic
approach. ACP emphasizes the ecological health of agroecosystems by optimizing interac-
tions between various living communities, both below and above ground. This approach is
anchored in two main pillars: biodiversity and soil health [123].

(4) This study determined that the production efficiency of overall greenhouse vegeta-
bles surpasses that of open-field vegetables. This observation aligns with findings
from other scholars, notably Moursy et al. (2023) [124]. Specifically, Moursy et al.
(2023) [124] highlighted the advantages of greenhouse cultivation, noting its positive
impact on total yield [125], benefit–cost ratio, applied irrigation water, and water
productivity, using eggplants as a case study. These findings contrast with our obser-
vation regarding tomatoes, where greenhouse cultivation exhibited lower production
efficiency compared to open-field cultivation. A potential explanation for this discrep-
ancy lies in the inherent characteristics of greenhouse cultivation. Due to its enclosed
environment, greenhouse cultivation predominantly depends on irrigation as the sole
water source for tomato growth [126]. This reliance becomes particularly pronounced
given that tomatoes, when grown in greenhouses, are among the most water-intensive
vegetables and necessitate consistent irrigation throughout their growth cycle [127].

4. Conclusions
4.1. Conclusions

This study, utilizing the DEA-BCC and DEA Malmquist index models, analyzed the
comprehensive and temporal efficiency of China’s vegetable production from 2011 to 2017.
The findings indicate considerable variations in efficiency across different time periods,
regions, and cultivation methods. Also, the research explored the external factors affecting
comprehensive efficiency, yielding valuable insights into the sector’s efficiency dynamics.
The main conclusions are as follows:

(1) It was revealed that despite the constraints of resources and the environment, the
average production efficiency of vegetable production in China remains modest at
0.747. Furthermore, this study underscored the pivotal role of technological progress
(or the lack thereof) in shaping the trajectory of the TFP for vegetables in China. While
both greenhouse and open-field vegetable cultivation suffered from limitations in this
respect, the effect was most acute for open-field vegetable cultivation due to an acute
lack of technological progress;
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(2) A pivotal revelation of this research was the role of technological innovation, or rather
the absence of it, in the development of China’s vegetable TFP. It was observed that a
stark lack of technical progress, particularly in open-field vegetables, proved to be a
significant hindrance in the growth of TFP. This insight into the connection between
technological innovation and productivity growth could significantly guide future
policy decisions and strategies;

(3) Interestingly, the research showed stark regional differences in vegetable production
efficiency. Southwest China demonstrated the most efficient performance, followed
by Northwest, Central South, North, East, and Northeast China. However, the TFP
trend was not uniformly positive across these regions, with only Southwest, North,
and Northeast China experiencing an upward trend, while others experienced varied
levels of deterioration.

In conclusion, this research ventured into uncharted territories by intertwining envi-
ronmental costs with vegetable production efficiency. Our innovative approach of treating
pollution costs as undesirable outputs has shed light on the true efficiency of the vegetable
production landscape in China. This perspective, which diverges from traditional studies,
underscores the importance of sustainable practices in the industry. By offering a more
rounded view, we hope to pave the way for future research that equally values both pro-
duction efficiency and environmental sustainability, ultimately driving the industry toward
a more responsible and efficient future.

4.2. Policy Implications

Based on the research findings, several policy recommendations are proposed to boost
China’s vegetable production efficiency, aiming for a robust, efficient, and sustainable
development of the industry:

(1) Central to elevating TFP in the vegetable industry is an integrated approach that
prioritizes technical innovation and the assimilation of modern agricultural practices.
Establishing a collaborative innovation ecosystem, encompassing government, indus-
try, academia, and research, is crucial. This initiative should be complemented by an
effective extension service system to promote a culture of innovation within farming
communities. Simultaneously, a shift toward scientifically managed, knowledge-
intensive farming practices will leverage technical innovations for improved stan-
dardization, scalability, and efficiency;

(2) Given the environmental implications of vegetable cultivation, the integration of
sustainable practices is vital. This goal encompasses the mitigation of non-point
source pollution through measures like the recycling of agricultural waste, the use
of low-toxicity pesticides and biological products, and the adoption of water con-
servation technologies. Complementing these practices, policies promoting circular
agriculture (a system that minimizes waste and optimizes the use of resources) and
those enhancing regional biodiversity could collectively ensure the environmental
sustainability of the vegetable industry;

(3) The government should enhance infrastructure and industry policies. A strategic
focus on rural infrastructure development and an efficient insurance system could
create a favorable environment for the vegetable industry. Industry policies should
aim to alleviate the various natural, social, and economic risks that vegetable pro-
ducers encounter, subsequently spurring productivity. Furthermore, considering the
environmental implications and the global shift toward sustainable energy, we recom-
mend that the government initiate policies to replace diesel-powered machinery with
machines powered by clean energy sources. The adoption of machinery powered by
renewable energy, such as solar or wind, or at the very least, biofuels, can significantly
reduce the carbon footprint of the agricultural sector;

(4) Given the distinct differences between greenhouse and open-field vegetable cultiva-
tion, specialized policies and technical support systems could enhance the respective
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TFP more effectively. For instance, greenhouse vegetable cultivation could benefit
from subsurface drip irrigation (SDI), which is a water-saving irrigation technology.

4.3. Limitations of This Study

The primary data source for this study is the publicly available National Compilation of
Cost and Benefit Data of Agricultural Products. While this provides a broad overview, it lacks
the granularity of targeted field research data, potentially missing nuances of production
efficiency at the micro-level for individual vegetable growers. Additionally, our empirical
approach might not capture all environmental pollution sources in vegetable cultivation.
For instance, harmful gases from straw burning and soil compaction due to improper
agricultural film handling were not factored in, possibly leading to an underestimation of
the environmental impacts.

Furthermore, the proposed approach, while theoretically sound, has not been empiri-
cally validated in real-world scenarios. Testing its effectiveness and practicality using field
data from actual vegetable growers would offer a more robust assessment. The study’s
focus is on specific regions and contexts, and its adaptability and scalability to different
settings, both within China and internationally, remain unexplored.

Lastly, while our study provides insights into vegetable production efficiency, there
is potential for interdisciplinary collaborations. Integrating perspectives from related
research areas could offer a more holistic view of the challenges and solutions in sustainable
vegetable production.
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DEA Data Envelopment Analysis
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CCR Charnes, Cooper, and Rhodes
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TFP Total Factor Productivity
Tfpch Total Factor Productivity Change
Effch Efficiency Change
Techch Technical Change
Pech Pure Efficiency Change
Sech Scale Efficiency Change

Appendix A

Appendix A.1. DEA-BCC Basics

Using linear programming techniques, DEA provides a suitable way to estimate
a multiple inputs/multiple outputs empirical efficient function as described by Farrell
(1957) [128,129]. The common theoretical models in DEA include the Charnes, Cooper,
and Rhodes (CCR) model and the BCC model. The difference between the two lies in



Agriculture 2023, 13, 2021 20 of 25

that the CCR model assumes constant returns to scale, while the BCC model assumes
variable returns to scale. In actual production, most decision-making units are not in
the optimal scale of production, revealing the drawbacks of the CCR model. Since the
vegetable industry belongs to the industry with variable returns to scale, it usually strives
to maximize output with the least resource input, so the input-oriented BCC model is used
to study the production efficiency of vegetable production in China. It is assumed that
there are n DMUs, each with m inputs xik (i = 1, 2, . . ., m) and s outputs yjk (j = 1, 2,. . ., s).
The formula for the DEA-BCC model is as follows:

min

[
θ − ε

(
s

∑
j=1

s+j +
m

∑
i=1

s−i

)]

s.t.
n

∑
k=1

µkxik + s−i = θxik0

n

∑
k=1

µkyjk − s+i = θyjk0

n

∑
k=1

µk = 1, µk ≥ 0

s−i ≥ 0, s+i ≥ 0 (A1)

In Formula (A1), θ (0 < θ ≤ 1) is the comprehensive efficiency indicator, µk is the
weight variable, s+j , s−j are slack variables, and ε is the non-Archimedean infinitesimal. The
larger the value of θ, the higher the production efficiency of vegetable production. When
θ = 1, it indicates that the decision-making unit has reached the optimum, that is, it is on
the production frontier and is DEA efficient. If θ < 1, it implies DEA inefficiency.

Appendix A.2. DEA Malmquist Index Basics

Färe et al. (1992) developed a DEA-based Malmquist productivity index, which
measures the productivity change over time [130]. The DEA Malmquist index method,
based on the DEA method, allows for reflecting dynamic changes in efficiency over time,
thereby avoiding the influence of the arbitrariness of time selection. It decomposes the
Malmquist TFP into efficiency change and technical change, as specifically expressed in
Formula (A2):

Mt
(

xt, yt, xt+1, yt+1
)
= E f f ch × Techch (A2)

In this equation, Mt represents the Tfpch; E f f ch represents the efficiency change; and
Techch represents technical change. Efficiency change can further be decomposed into Pech
and Sech, as follows:

E f f ch = Pech × Sech (A3)

The specific formulas are as follows [131,132]:

Mt
(

xt, yt, xt+1, yt+1
)
= Dt+1

(
xt+1, yt+1

)
/Dt(xt, yt)

×
[(

Dt
(

xt+1, yt+1
)

/Dt+1(xt, yt)× Dt(xt, yt)/Dt+1
(

xt+1, yt+1
)] 1/2

(A4)

Dt+1
(

xt+1, yt+1
)

/Dt(xt, yt) = Dt
(

xt+1, yt+1
)

/Dt(xt, yt)× Dt+1
(

xt+1, yt+1
)

/Dt
(

xt+1, yt+1
)

(A5)

In Formulas (A4) and (A5), E f f ch = Dt+1(xt+1, yt+1)/Dt(xt, yt), Techch =[(
Dt(xt+1, yt+1)/Dt+1(xt, yt)× Dt(xt, yt)/Dt+1(xt+1, yt+1)] 1/2, Pech = Dt(xt+1, yt+1)/
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Dt(xt, yt), Sech = Dt+1(xt+1, yt+1)/Dt(xt+1, yt+1).xt, xt+1 represents the input quantity
in period t and period t + 1; yt, yt+1 represents the output quantity in period t and period t
+ 1; Dt(xt, yt), Dt+1(xt+1, yt+1) represents the input distance function of the decision unit
compared with the frontier surface in periods t and t + 1, and Dt(xt+1, yt+1), Dt+1(xt, yt)
represents the input distance function of the decision unit compared with the frontier
surface in periods t and t + 1.
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