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Abstract: Precision agriculture hinges on accurate soil condition data obtained through soil testing
across the field, which is a foundational step for subsequent processes. Soil testing is expensive, and
reducing the number of samples is an important task. One viable approach is to divide the farm fields
into homogenous management zones that require only one soil sample. As a result, these sample
points must be the best representatives of the management zones and satisfy some other geospatial
conditions, such as accessibility and being away from field borders and other test points. In this
paper, we introduce an algorithmic method as a framework for automatically determining locations
for test points using a constrained multi-objective optimization model. Our implementation of the
proposed algorithmic framework is significantly faster than the conventional GIS process. While
the conventional process typically takes several days with the involvement of GIS technicians, our
framework takes only 14 s for a 200-hectare field to find optimal benchmark sites. To demonstrate
our framework, we use time-varying Sentinel-2 satellite imagery to delineate management zones and
a digital elevation model (DEM) to avoid steep regions. We define the objectives for a representative
area of a management zone. Then, our algorithm optimizes the objectives using a scalarization
method while avoiding constraints. We assess our method by testing it on five fields and showing
that it generates optimal results. This method is fast, repeatable, and extendable.

Keywords: optimization; soil sampling; benchmark sampling; representative site selection; precision
agriculture

1. Introduction

The productivity of agriculture depends on the soil nutrients, which are maintained
by fertilizers. To understand the health of the soil and apply the right amount and type of
fertilizer, a soil test is needed. This test helps to determine the deficiency of soil nutrients.
However, soil testing is expensive [1], and as a result, based on a report from the United
States Department of Agriculture (USDA), only around 30% of farms in the U.S. adopted
soil testing methods [2]. Therefore, it is essential to minimize the cost of soil testing by
minimizing the number of soil tests while trying to capture the overall soil condition across
the field [3]. The traditional methods of soil sampling include composite sampling and
grid sampling [4,5]. Composite sampling is the practice of collecting soil from various
random locations in the field and mixing those samples to make a composite sample.
This single composite sample is then sent to a laboratory for soil testing, which gives an
average understanding of the soil of the entire field. However, it is common to expect
a large variability of nutrients across fields. Therefore, composite sampling may not be
precise, particularly for larger fields. On the contrary, grid sampling gives a more accurate
understanding of the field (depending on the grid size) by subdividing the entire field into
many smaller regions (subfields) and sampling and testing each subfield. Depending on
the number of subfields, the main drawback of grid sampling is the higher cost due to
excessive testing.
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Precision agriculture relies on new technologies and various data to help us better
understand the soil structure and facilitate soil testing by carefully selecting a small number
of sites to test the soil [6]. This method increases crop yield and profitability while lowering
the levels of traditional inputs needed to grow crops, such as fertilizers [7]. One of the most
popular approaches in precision agriculture encompasses soil sampling within management
zones and site-specific crop management [6]. In employing this method, a field is divided
into several management zones (MZs), which are relatively homogeneous sub-units of
a farm field that can each be treated uniformly. The MZs are usually delineated by a
multilevel thresholding method (henceforth, simply referred to as thresholding) on a
performance function across the field (e.g., historical yield). Figure 1 shows an example of
a performance function across the field and how thresholding this function makes the MZs.
By establishing MZs, each MZ is considered homogeneous in the composite soil sampling
method. A composite sample is done per MZ, which lowers the cost of testing compared to
grid sampling by reducing the number of tests.

Figure 1. The process of MZ delineation from a performance function across the field.

Another practice of soil sampling is benchmark sampling. In this practice, the soil
is sampled from a benchmark site—which is a very small area within the entire field or
within each MZ—rather than making a soil composite [5]. Keyes and Gillund showed that
benchmark sampling can replace composite sampling without losing the test precision [8].
The benefit of benchmark sampling is that by sampling from the same benchmark sites
over the years, the trend of soil nutrient changes can be tracked [4]. Tracking the changes
in soil nutrients has applications in soil monitoring and soil nutrient management. For
this method of sampling, it is important to select a small area of the field as a benchmark
site that is representative of the soil of the field. Choosing a single benchmark site for the
entire field suffers again from the issue of not accounting for soil variability. Instead, using
the soil sampling management zone technique, benchmark sampling can be done per MZ,
and the result of the test applies to all parts of that MZ. This method of testing not only
provides precise information about the soil composition but also reveals the trend of the
nutrient changes for each MZ while remaining a cheap method of soil testing.

The main challenge of benchmark sampling is selecting a benchmark site within
each MZ that is a proper representative of that MZ. The criteria for the representative
area of the MZ depend on the method used for delineating the MZs. In general, several
distances, including the distance to boundaries of MZs and the distance to specific values
of performance functions, like the median or mean of MZs, are important. Moreover, some
non-representative or non-accessible areas usually must be avoided.

The process of selecting benchmark sites based on the criteria is cumbersome, re-
quiring integrating various datasets and manually comparing different values. Therefore,
the challenge is how to automatically satisfy all criteria and constraints using the avail-
able datasets. The proposed framework offers an automated and algorithmic approach
that integrates various data inputs, such as MZs, the digital elevation model, and field
boundaries into a multi-objective and multi-constraint optimization model. By solving this
optimization model, the framework generates benchmark sites that meet specific needs. In
this framework, for each MZ, several distance metrics are calculated and combined into
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a single-weighted error function. By minimizing this error function, the optimal area for
placing benchmark sites is determined. In cases where MZs are not available, any given
performance function, typically time-varying remote sensing measurements, can be used
instead. MZs can then be determined using a flexible thresholding technique.

The paper proposes an algorithmic framework that effectively automates the process
of selecting benchmark sites for a field, based on its georeferenced shape file and remote
sensing measurements in time. The framework is highly adaptable and can easily incorpo-
rate different measurements and site selection criteria. Compared to the conventional GIS
process, which typically takes several days with the involvement of GIS technicians, our au-
tomatic process of generating benchmark sites using the proposed algorithmic framework
takes only a few seconds. Therefore, the novelty of this work is defining a methodological
technique to integrate multiple layers of raster and vector data and making decisions by
defining multiple objectives and constraints. The paper also provides a comprehensive
evaluation and analysis of the resulting benchmark sites to confirm that our optimization
model works as expected. Furthermore, the paper demonstrates how our framework can
be leveraged to incorporate different criteria that are not considered in this work, making it
a highly adaptable tool for selecting benchmark sites for fields. To summarize, the main
objectives of this paper are as follows:

1. The primary objective of this work is to provide a framework to automate the process
of selecting benchmark sites by avoiding typical manual GIS processes like integrating
different layers of information and manually comparing the values of objectives for
selected points.

2. The framework should be flexible and allow for the integration of new data and
defining new objectives and constraints.

2. Background

Recent advances in remote sensing have proven to be useful for agricultural applica-
tions at various stages of crop production [6,9]. Various satellite and UAV-attached sensors,
such as light detection and ranging (LiDAR), thermal, and multi-spectral sensors have been
used to assess the topography, soil moisture, temperature, crop health (vegetation indices),
and other useful properties at both farm and larger scales [9]. It may not be feasible to
sample every point in a field; we have to determine the soil properties on the non-sampled
points based on the available soil samples [10]. Remote sensing helps us to understand the
variation in soil and fill in the gaps.

In this section, the previous work and the background knowledge required to under-
stand this paper are discussed. First, we discuss the main methods used for delineating the
MZs and the criteria used for selecting benchmark sites in the literature. Then, we introduce
the GIS platform used in this work, Discrete Global Grid System, in detail. Finally, the
general methods used to solve multi-objective optimization problems are presented.

2.1. Delineation of Management Zones

Management zones play an important role in our method. Therefore, we need to know
how they are constructed before discussing how to select the benchmark sites. Different de-
lineation methods for site-specific management zones exist based on different information,
usually yield maps, soil properties, topographic properties, electrical conductivity data, or
remote sensing and vegetation indices. Hornung et al. [11] have compared the soil-color-
based and yield-based methods. Both methods require the availability of agricultural maps,
such as soil color and texture maps, yield maps, and topography maps. Fraisse et al. [12]
proposed a method that relies on soil electrical conductivity data. However seasonal effects,
like weather, have an impact on the electrical conductivity, so the electrical conductivity
map of a field cannot be compared to one from another field.

Satellite imagery presents a great added value because of its availability and relatively
low cost. Georgi et al. [13] propose an automatic delineation algorithm based on only
satellite remote sensing data. In this method, they select satellite images of the field that
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show the spatial pattern of plant growth. Then, they extract the near-infrared (NIR) band
of the selected images and average them over years to form the performance function.

2.2. Benchmark Soil Sampling

Benchmark soil sampling involves taking soil samples from a designated benchmark
site, which is a small area within either the entire field or each MZ [4]. Research has shown
that benchmark sampling is comparable in accuracy to composite sampling in terms of test
precision [8]. The advantage of benchmark sampling is that by consistently sampling from
the same benchmark sites over time, changes in soil nutrient trends can be monitored [4].
Due to soil variability, different sampling designs attempt to find representative points
of a field with the help of different sensory information (e.g., electrical conductivity of
the soil) [14,15]. Another sampling scheme acts in multiple stages, where first, a large
number of points are generated and then filtered based on some criteria [16]. One study
introduces a method for identifying the representative sampled points from a set of already
sampled and tested points using clustering algorithms and calculating fuzzy membership
values for each point [17]. Overall, finding representative areas of the field remains a
challenge for benchmark sampling. Several studies have suggested that management
zone delineation provides a basis for benchmark soil sampling [18–22]. Although MZs
are assumed to be homogeneous for management purposes, the soil within each MZ still
varies by location. Therefore, it is important to carefully select representative areas rather
than making arbitrary choices. Different studies have used approximate measures to
manually select representative locations for benchmark sampling [23–25]. For example,
the benchmark sites in Alberta were selected to be representative of soil landscapes and
agricultural land use found in the agricultural area, under the Alberta Environmentally
Sustainable Agriculture (AESA) Soil Quality Monitoring Program [23].

Benchmark sampling is a practical and cost-effective method of soil sampling [26,27].
Typically, the benchmark sampling sites are selected by experts after field surveys, or by
farmers using some guidelines like in [5]. However, the literature lacks algorithmic methods
for selecting benchmark sites from MZs. This paper addresses this gap by introducing
an algorithm for the automatic selection of benchmark sites that relies solely on satellite
images and does not need any auxiliary data (e.g., electrical conductivity sensors).

2.3. Discrete Global Grid Systems

To support integrating different inputs, calculating various distances (e.g., to the MZ
boundaries) efficiently, solving the optimization problem, and automatically repeating this
process for various regions, a geographic information system (GIS) is needed. In recent
years, discrete global grid systems (DGGSs) have emerged as a promising next-generation
of GIS platforms, and are useful for the integration and analysis of remote sensing data [28]
as well as congruent geography applications [29].

A DGGS is a multi-resolution discretization of the earth that is used to address dif-
ferent limitations in traditional GISs [29–31]. Our automated algorithm leverages some
of the benefits of DGGSs. We use a DGGS as a common reference model to integrate the
different data needed for selecting the sampling site, including satellite imagery and digital
elevation models (DEMs) [32]. A DGGS not only facilitates the analysis by making the
data integration transparent but also by providing efficient tools and operations including
distance transform [33]. Distance transform is a tool that can be used to efficiently calculate
the geodesic distance of all the points of a region to the complex boundary of the MZs. A
DGGS naturally discretizes the earth into mostly regular shapes known as cells. Figure 2
depicts this discretization at different resolutions. The specific DGGS implementation that
is used in this work is a Disdyakis Triacontahedron DGGS, which is described in [34].
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Figure 2. Disdyakis Triacontahedron DGGS in the first 4 resolutions.

2.4. Solving a Multi-Objective Optimization Problem

A multi-objective optimization problem is not trivial to solve. The preferences of
objectives should be given for each specific optimization problem, otherwise, there is no
optimal answer to a multi-objective optimization problem. In this case, a set of answers
can only be Pareto optimal [35]. A Pareto optimal answer means you cannot make any
objective better without making other objectives worse. In general, methods for solving a
multi-objective optimization problem can be categorized into three categories: methods
with (1) a priori articulation of preferences, (2) posteriori articulation of preferences, and
(3) no articulation of preferences [35]. The most common and general method of solving
is to combine all objectives into a function to make it a single objective function, which
is called scalarization. However, different scalarization methods, such as global criterion,
achievement function, compromise function, and objective product, use different combina-
tions [35]. If these methods implement a weighting system for combination, they utilize a
method with a priori articulation of preferences.

A weighted scalarization method converts a multi-objective optimization problem into
a single-objective optimization problem. The typical method of solving a single-objective
optimization problem is solving for critical points directly if the mathematical expression of
the objective function is well-known and is differentiable (e.g., linear least squares) [36,37].
When the mathematical expression for the objective function is unknown, gradient-based
methods, such as gradient descent, Newton’s method, or the quasi-Newton method, can be
used [36,37]. These methods typically start from a random point and rely on the gradient
to find the direction of the steepest descent. The gradient is usually approximated by
numerical methods for the objective function. This process is iteratively repeated until
the algorithm converges. However, these methods may converge to a local minimum
depending on the starting point. If the domain of the objective function is discrete and
bounded (e.g., raster data such as satellite imagery), a complete search method can be
applied by evaluating the objective function for each value in the domain (e.g., each pixel in
the raster). This approach guarantees finding the global minimum but can be expensive if
the domain is large. A DGGS, as a data integration platform, is a discretization of the earth;
hence, it can be naturally used to evaluate and solve an optimization problem efficiently.
Moreover, we can control the size of the search space by changing the resolution of the
DGGS to tune the trade-off between performance and accuracy.

3. Methodology

The main challenge of benchmark sampling is selecting a benchmark site within
each MZ that is a proper representative of that MZ. The aim of this work is to provide a
framework for considering multiple requirements and finding the best benchmark sites
according to criteria. The criteria for the representative area of the MZ depend on the
method used for delineating the MZs. However, we chose a specific MZ delineation
method and set of criteria to build, test, and demonstrate our framework. In general, the
following criteria are important for a representative benchmark site [38]:

1. Being close to the median of the performance function used for MZ delineation within each
MZ: The median is statistically considered a good representative of a data set because
it is a robust measure describing the central tendency of the data. Therefore, it is



Agriculture 2023, 13, 1993 6 of 25

desired to select the benchmark site in a place where its performance function value is
close to the median of its MZ. Figure 3a shows a visualization for this criterion for
only one MZ in which blue regions have a smaller absolute difference to the median.

2. Being far from the boundary of the MZ: Areas close to the MZ boundaries are more
sensitive to input changes or year-to-year variation. To obtain more robust benchmark
sites, it is better to find areas away from the boundaries of each MZ. Figure 3b shows
this criterion for one MZ; locations with darker blue are farther from the boundary.

3. Being close to the anchor points (e.g., sampled points from previous years): To perform
benchmark sampling, if sampled points from previous years (or growing seasons) are
available, it may be desirable to select the new benchmark site close to the previously
tested points. These optional anchor points can be useful for scenarios in which the
trend of soil changes over the years should be analyzed. Also, this criterion can be
used if the growers, for any reason, prefer to find a benchmark site near some given
anchor points.

4. Steepness: The nutrient levels at steep areas may vary a lot from year to year. Moreover,
if an area is steep, it may not be accessible for the sampling truck. Therefore, it is
desired to select benchmark sites away from steep regions.

5. Avoiding headlands: Headlands are areas of the farm field where heavy agricultural
machines, such as combine harvesters, take turns. These areas might be affected
by denser soil and overlapping application of fertilizer. Hence, these areas are not
representative of the entire field and should be avoided.

6. Avoiding inaccessible areas : Inaccessible areas should be avoided so that sampling
trucks can collect samples.

7. Avoiding the proximity of benchmark sites in other MZs : The selected benchmark sites
in different MZs should be far away from each other to ensure the benchmark sites
do not all come from a small region of the field. Figure 3c shows an example of
benchmark sites that are concentrated in a small area versus benchmark sites that are
distanced from each other.

In various scenarios, all or a subset of these criteria must be satisfied.

(a) (b) (c)

Figure 3. Criteria for MZ representative area. (a) absolute difference to the median value of the
underlying function for MZ 2 (the numbers are in the unit of the performance function); (b) the
distance to the boundaries of MZ 2 is shown using a cool–warm color map (in meters); (c) blue
diamonds are benchmark sites concentrated in the lower right part of the field, while green circles are
benchmark sites that are distanced from each other.
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We formulate these criteria as a constrained multi-objective optimization problem.
Criteria that specify areas to avoid are our constraints and criteria that we want to optimize
for are objectives. One of the most common approaches to a constrained multi-objective
optimization problem is the weighted sum method, as follows [35]:

Minimize F(x) =
n

∑
i=1

wiF2
i (x)

subject to gj(x) ≤ 0, j = 1, 2, . . . , m

where Fi are objective functions that need to be optimized together and gj are constraints.
F is the global criterion, which is set to be minimized.

The main input data, which are performance function (usually comes from satellite
imagery or sensor measurement) and DEM, come in discrete space; hence, objective func-
tions are naturally calculated in discrete space too. Consequently, we need a common
discretization of space to store input data, calculate the objective functions, and solve the
optimization problem. We exploit the multi-resolution property of a DGGS to choose a
resolution as a discrete space.

Our automated process of selecting benchmark sites for a field is presented in Figure 4
in six steps. The process starts by loading the boundary of the field in step 1. In step 2, the
performance function and DEM are loaded either by downloading them or loading them
from a local cache. Step 3, constructs the MZs from the performance function for step 4.
The main contributions of this paper are in steps 4 and 5. In step 4, first, MZs, performance
function, and DEM data are resampled into DGGS cells at the target resolution, which
means that, for each DGGS cell, we know what the MZ, performance function value, and
elevation are. Next, we compute all of the objectives and constraints and store them back
in the DGGS cells. All of the objectives are computed on the centroid of DGGS cells. In
step 5, the objectives are normalized and combined in a single error function to solve the
optimization problem. A complete search in DGGS cells finds the optimum benchmark site.
Lastly, in step 6, the selected benchmark sites are saved in a GeoJSON format.
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Figure 4. The flowchart of selecting benchmark sites for a new field.

In Section 3.1, we explain the specific MZ delineation method used in our framework
(step 3 of flowchart), and in Section 3.2, we define a set of objectives and constraints and
explain how our framework is built to satisfy the objectives and constraints (steps 4 and 5
of flowchart).
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3.1. From Data to Management Zones

The performance function is the key to delineating the field to MZs. There are several
choices for the performance function. For example, Georgi et al. used the average historical
satellite imagery as a performance function [13]. We use a similar method to construct
the performance function from the normalized difference vegetation index (NDVI) as an
indicator for plant health [38]. Moreover, a recent study shows that both soil electrical
conductivity and NDVI are correlated to soil nutrients [39]. This performance function
is taken from [38] and is called the fertility index, which is important to this work but is
not the novelty of this work. The fertility index serves as a proxy measure to approximate
the fertility of the soil by monitoring the historical growth of plants. Higher fertility index
values indicate better growing conditions (i.e., soil fertility), as plants have historically
grown well in those areas. Similarly, in the final delineated MZs, lower MZs are regions of
the field that perform poorly while higher MZs correspond to better-performing regions.
We use Sentinel-2 bottom of the atmosphere (BOA) reflectance data obtained from Sentinel-
Hub data provider [40] in this delineation process. This delineation process is described in
three following steps:

1. Selecting images: One image as a good representative for each growing season is
selected from the recent years (e.g., 3 to 6 years). The criteria for selecting this image
stipulate that it should be both cloud- and haze-free and taken close to the harvest
time to optimally showcase the soil’s potential. We use the cloud probability layer
(CLP) with a threshold of 5% to ensure cloud-free images. This image represents the
variation in soil fertility through the visual growth of plants. Figure 5 presents an
example of the selected images for a given field. Note that, although these images are
displayed in RGB colors, red, and near-infrared (NIR) bands are used in calculating
performance function.

2. Calculating the performance function—fertility index (F-index): The normalized difference
vegetation index (NDVI) is calculated for each of the selected images using red and
NIR bands [41]. While the range of the NDVI is between [−1, 1], for the selected
images, the range of values is usually around [0.2, 0.95] with the mean around 0.8.
Then, the NDVI values of each image are normalized and scaled in a way that the
mean value M is a fixed number in the range [0, 255] (e.g., M = 100). Finally, the
normalized NDVI values are averaged and the resulting averaged normalized values
are referred to as F-index (see Figure 6).

3. Thresholding: To delineate the F-index into MZs, the next step is to divide the entire
range of the F-index into a certain number of bins B (e.g., B = 6). The F-index thresholds
are selected in a way that the area of the MZs forms a normal distribution. The
resulting map after thresholding is called F-Map (see Figure 6). The number of bins
(i.e., MZs) is usually chosen based on the area of the field. However, an arbitrary
number of bins can be constructed using this method.

Figure 5. An example of the selected satellite images for the delineation process.



Agriculture 2023, 13, 1993 9 of 25

Figure 6. An example of an F-index, F-Map, the histogram of the F-index, and the associated
thresholds.

Figure 6 presents an illustrative example of an F-index and F-Map along with a
histogram of the F-index and the thresholds used in the process. The histogram of the
F-index (see Figure 6 right) depicts the distribution of the performance function across
the field. Upon examining the histogram, we observe that roughly 70% of this field has
F-index values between 95 and 105. As a result, dividing the range of F-index values into
equal-length bins would yield MZs with a very small area. Likewise, if the field is divided
into equal-area MZs, some MZs will have a substantial variation in the F-index, while some
other MZs will have a very narrow range of values. To address this issue, the threshold
values are selected in a way that the areas of MZs follow a normal distribution.

3.2. Optimization Model

Once we have evaluated MZs (i.e., F-Map), the next question is how to identify the
optimal benchmark sites within each MZ. As discussed at the beginning of this section,
there are several objectives and some constraints that a site must meet to be considered a
good representative point of an MZ. Based on the discussed criteria, we chose the following
objectives and constraints in building our framework:

Objective F1, close to the value of the median F-index.
Objective F2, away from the MZ boundaries.
Objective F3, close to the anchor points (optional).
Objective F4, belongs to the flatter regions.
Constraint g1, avoids certain regions: In practice, it is desired to avoid locating the
benchmark sites in certain regions (e.g., inaccessible and unrepresentative areas).
Normally, the benchmark site should be at least DH meters (e.g., 30 m) away from any
headlands (headland condition).
Constraint g2, avoids the proximity of benchmark sites in other MZs

We formulate these requirements as a constrained multi-objective optimization prob-
lem. The objective functions F1 to F4 must be optimized together in consideration of
constraints g1 and g2. The objectives are distance-based and we aim to minimize all of them
as best as possible. The two constraints are binary concepts that must be adhered to within
the feasible space of site locations. However, some of the objectives can also be considered
as constraints. For example, we can maximize the distance to the MZ boundaries as an
objective (F2), or we can set a constraint that the benchmark site must be at least n meters
away from any MZ boundary. Although “being away from the boundary with a certain
distance" is sufficient, to keep our optimization model flexible and avoid adding another
parameter, we consider this property as a distance-based objective. The same thing can be
said about the steepness and distance to anchor points. If we set thresholds, we transform
our objectives into constraints that exclude any space that does not meet the threshold.
However, it is important to note that some of these spaces may still be valuable in terms
of other objectives and finding good thresholds to not end up with empty search spaces
is difficult.
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3.2.1. Computing the Objective Functions

The first step toward solving the optimization problem is calculating the values of
objective functions. In this section, we discuss how each of the objective functions F1 to F4
are calculated. The resolution of satellite data (and F-Map) is 10 m (10 m × 10 m square
pixels), while the DEM data comes in 12 m resolution. Thus, we use resolution 19 of
Disdyakis Triacontahedron DGGS [34], as the target resolution in which DGGS cells (Avg.
cell size = 61.8 m2) are a bit smaller than the input data sources. Then, the F-index, F-Map,
and DEM data are resampled into DGGS cells at the target resolution. Next, we compute
all of the objectives and store them back in the DGGS cells.

• Close to the value of the median F-index (F1): The first objective is to minimize
the distance between the F-index values of the MZ cells and MZ, the median of the
management zone Z. Let us denote the DGGS cells of Z by c1, c2, . . . , cn, and their
respective F-index values by f1, f2, . . . , fn. This objective is defined as:

F1(ci) = | fi −MZ|.

Figure 7 shows a visualization of this objective function. The blue colors in this
visualization show a smaller absolute difference between each cell’s F-index and the
median F-index.

Figure 7. Visualization of the absolute difference to the median F-index for MZ 3.

• Away from MZ boundaries (F2): We use the distance transform operator on top of the
DGGS [33] to compute the geodesic distance of each cell ci to S, the spatial boundary
of management zone Z. The distance transform efficiently calculates the geodesic
distance of all cells in a region to a given vector feature (i.e., the MZ boundaries). The
second objective F2 is to maximize this distance

F2(ci) = DS(ci)

where DS denotes the geodesic distance of ci to S. Figure 8 shows a visualization of
this objective function. The cooler the colors (darker blue) the farther the cell is from
the boundaries.



Agriculture 2023, 13, 1993 11 of 25

Figure 8. Visualization of the distance to boundaries of MZ 3. The farthest cell from the boundary is
87 m away from the boundaries.

• Close to anchor points (F3): Let Pz represent the anchor point for the management
zone Z (e.g., the sampled point from previous years). Again, using distance transform
[33], we determine the geodesic distance from the anchor point Pz to the centroid of
all cells within Z. The third objective, F3, is to minimize this distance

F3(ci) = DPz(ci)

where DPz denotes the geodesic distance of ci to the anchor point Pz. Figure 9 shows a
visualization of this objective function. The cooler the colors (darker blue), the closer
the cell is to the anchor point.

Figure 9. Visualization of the distance to the anchor point (the previous year’s point) for MZ 3. The
farthest cell from this previously sampled point is 1533 m away from it.

• Belongs to flatter regions (F4): The steepness of the cell ci (denoted by S(ci)) is calcu-
lated from the DEM of the field by calculating the gradient vector. The gradient vector
~G(ci) shows the direction of change of elevation, which is approximated using the
difference in elevation between neighboring cells. Steepness is then determined by

F4(ci) = S(ci) =
π

2
− arccos(~G(ci) · ~N(ci))
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where ~N(ci) is the normal vector of the cell ci. Figure 10 shows a visualization of
this objective function. The cooler (or darker blue) the colors, the flatter the region in
which the cell is located.

Figure 10. Visualization of the steepness for MZ 3. The legend shows the steepness in degrees. The
steepest point of this MZ is 7.8 degrees steep.

3.2.2. Computing the Constraints

In this section, we discuss how to determine the feasible space of the optimization by
calculating constraints for each cell inside the field.

• Avoid Certain Regions (g1) We trivially exclude any cells from the inaccessible and
unrepresentative regions by subtracting these regions from the entire field. For the
headland condition, we use the distance transform operation of DGGS [33] to calculate
a buffer of DH meters from the boundary of the field to avoid the areas under the
headland. Figure 11 shows the areas of the farm avoided due to headland.

Figure 11. The extracted headland of the farm field (DH = 50 m).

• Avoid the Proximity of Benchmark Sites in Other MZs (g2) Our goal is to select
benchmark sites that are from a larger region of the field to better represent the entire
field. To achieve this, we set a minimum radius DR between the sites (see Figure 12).
This global constraint is unique compared to other criteria that are local to their
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respective MZs. We begin by selecting a benchmark site in one MZ and then limiting
the areas in other MZs that are within the specified radius of this site. We continue
this process iteratively until we have chosen benchmark sites for all MZs. To do this,
we remove ci from the search space if Dt(ci) ≤ DR for all already selected sites t (see
Figure 12).
By using this method, the benchmark sites selected earlier have an advantage over
the ones chosen later, as the latter are subject to more constraints. If the DR is small,
the change of order has a minimal impact. However, for a larger DR, it makes sense
to prioritize MZs according to their level of importance. Therefore, we start with the
most important MZ in order to find a more optimal benchmark site for it, and then we
continue to select benchmark sites for less important MZs. The most important MZ
is the one that best represents the entire field. Hence, the most important MZ is the
one with its median F-index closest to that of the entire field. We sort the MZs based
on the distance of their median F-index to the median F-index of the entire field. The
radius mentioned above can be dynamically changed, but the default is set to be 15%
of the field’s diameter. Figure 12 shows how we use this radius to force the selected
benchmark sites to be at a reasonable distance from each other.

Figure 12. The enforced distancing between selected benchmark sites. t1 and t2 are the already
selected benchmark sites. When deciding on point ci in the next MZ, we only check the distances to
t1 and t2.

3.2.3. Solving the Optimization Problem

With all objective functions and constraints ready, we need to optimize them together.
To satisfy constraint g2, we solve the optimization for each MZ separately in the order of
importance discussed in Section 3.2.2. For each MZ, to accommodate the constraints, we
remove DGGS cells under constraint from our feasible search space. This not only ensures
that no point under constraint will ever be selected as a benchmark site but also makes the
optimization more efficient by reducing the search space. Next, to solve the multi-objective
optimization problem we use a scalarization method which is a common method that
transforms a multi-objective optimization problem into a single-objective optimization
problem [35]. Because we have calculated all of our objectives and constraints in the
discrete space of a DGGS (resolution 19 of Disdyakis Triacontahedron DGGS. Avg. cell
size = 61.8 m2 [34]), for a 200-hectare field, the total unconstrained search space will have
roughly 32,400 cells. This is a very small search space and modern personal computers
can evaluate the objective functions for the entire space within a fraction of a second.
Hence, to efficiently find the global minimum of the objective function, we perform an
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efficient complete search on the feasible search space (i.e., comparing objective functions
on c1, c2, . . . , cn). The tractability of the search space is the result of using DGGSs for
discretization and data integration. The size of the search space is controllable by utilizing
the hierarchy of the DGGS.

To transform our multi-objective optimization problem into a single-objective opti-
mization with a scalarization method, we use a weighted squared sum method. A weighted
squared sum enables us to control the effect of each objective function relative to each
other and also to penalize large errors. With this, we combine all of the objectives into a
global objective function or an error function. Before combining, we first normalize all the
individual objective functions. Without normalization, objectives with large values may
overpower and dominate the optimization process. To map the objective function Fj into
the range [0, 1], we use a simple linear mapping:

F̃j =
Fj −min(Fj)

max(Fj)−min(Fj)
.

Next, we define an error function Ej for each of the objectives, as follows:

Ej =

{
F̃j if the objective needs to be minimized (e.g., the distance to the median F-index)
1− F̃j if the objective needs to be maximized (e.g., the distance to MZ boundaries).

Now, we have a vector of error functions. In order to scalarize these errors into a single
error function, we combine them using the weighted sum of squares:

ET(ci) =
m

∑
j=1

wjE2
j (ci)

where wj is the weight of objective Fj, and m is the number of objectives (m = 4 in our case).
Figure 13 shows the visualization of the error function and the yellow star is the location of
the minimum of this function. For illustrative purposes, the constraints are not removed
from the search space in this figure.

Figure 13. Visualization of the error function for MZ 3. All weights are set to 1 (wj = 1, j = 1, 2, 3, 4)
in this figure. ET at the optimal point (denoted by the star) is 0.0279.

Figure 14 shows the final error function only for feasible search space considering
constraints for all MZs. The order of the MZ optimization in this figure is MZ 4, MZ 3,
MZ 5, MZ 2, MZ 6, and lastly MZ 1. The areas under the headland constraint (g1) and
distribution constraint (g2) are marked in pink.
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Figure 14. Visualization of the final error function for the entire field. All weights are set to 1 in
this figure.

4. Results and Evaluation

The method is implemented in C++ programming language and uses OpenGL for
rendering the graphical interface. The application provides two interfaces: a graphical user
interface (GUI) for illustration and debugging purposes and a command line interface (CLI)
to fully automate the process. The CLI version only takes a few seconds for a relatively
large field (see Table 1) and only needs the boundary of the field as input with a few
additional settings. In comparison, using the more traditional method, a GIS technician
must go through works such as drawing the field polygon, downloading the satellite
imagery, finding MZs, and many interactive measurements using GIS software to determine
benchmark sites. The interactive measurements include visually finding some candidate
points per MZ and calculating the values for each criterion (e.g., what is the distance of the
given point to the MZ boundaries? How close is the point’s performance to the median?)
to compare the candidate points. Not only this entire process using the traditional method
would take multiple days, but also in the end, this is only a rough approximation of the
desired sample points as it only uses some candidate points picked by the GIS technician.
Our introduced framework (steps 4 and 5 in Figure 4) is necessary to entirely avoid this
manual process. To demonstrate the repeatability of this automatic approach, and to show
that our algorithm works for different fields, we chose five different fields of varying sizes
across the Canadian provinces of Alberta, Saskatchewan, and Manitoba. The list of the
fields and the execution time of our algorithm is given in Table 1.

Figure 15 shows the selected benchmark sites for each field. To generate these results,
six years of satellite imagery (2017–2022) is used for MZ delineation, the headland (DH)
is set to 30 m, the DR for each field is given in Table 1, and the objective weights wj are
all set to 1. The effect of different weights on optimization is discussed later in the next
subsection. To demonstrate the correctness of the optimization, we calculated the statistics
of the objectives for each MZ for all fields. The statistics for field 1 are reported in Table 2
and the same statistics for other fields are presented in Appendix A. Each row of these
tables includes the mean and the range of each objective across the MZ along with the
best value for that objective, the objective value at the selected benchmark site, and the
percentage improvement relative to the mean ( benchmark site−mean

mean × 100).
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Table 1. The list of fields used for evaluation. The total execution time captures the entire process,
including loading data from the local cache (tested on a computer with an Intel Core i7-6700 CPU).

Field
Number Field Shape Location Area

(hectare)
Number of

MZs DR (meter)

Total
Execution

Time
(second)

Steps 4 and 5
Time

(second)

1

Southern
Alberta
(51.349,
−113.486)

198.2 6 350 22.91 13.82

2

Southern
Saskatchewan

(52.031,
−109.895)

102.3 6 269 13.76 7.37

3

Southern
Saskatchewan

(50.035,
−102.525)

59.1 5 218 8.22 3.20

4

Southern
Manitoba

(49.375,
−100.256)

43.9 5 169 7.88 3.16

5

Western
Alberta
(56.074,
−118.529)

36.5 4 141 8.87 3.13

(a) (b) (c)

(d) (e)

Figure 15. Selected benchmark sites for the field (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5.



Agriculture 2023, 13, 1993 17 of 25

Table 2. The range and average of the objectives are compared to the objectives of the selected
benchmark sites for field 1.

MZ Objective Benchmark
Site

Mean of All
Cells

Percentage
Improvement Best Range

1 Median F-index 1.359 1.966 30.9% 0.126 [0.126, 3.563]
Distance To
Boundary 23.910 7.916 202.1% 24.560 [1.238, 24.560]

Steepness 0.085 0.725 88.3% 0.007 [0.007, 1.826]

2 Median F-index 1.125 2.342 52.0% 0.001 [0.001, 8.562]
Distance To
Boundary 63.797 17.337 268.0% 77.104 [1.238, 77.104]

Steepness 0.358 1.234 71.0% 0.015 [0.015, 5.319]

3 Median F-index 0.037 1.586 97.7% 0.001 [0.001, 3.891]
Distance To
Boundary 80.167 19.285 315.7% 87.775 [1.238, 87.775]

Steepness 1.126 1.230 8.5% 0.010 [0.010, 5.179]

4 Median F-index 0.045 0.707 93.6% 0.000 [0.000, 1.715]
Distance To
Boundary 125.790 24.736 408.5% 141.578 [1.238, 141.578]

Steepness 0.943 0.953 1.0% 0.002 [0.002, 4.336]

5 Median F-index 0.038 0.899 95.8% 0.001 [0.001, 4.604]
Distance To
Boundary 81.755 14.912 448.3% 83.902 [1.238, 83.902]

Steepness 0.934 0.994 6.1% 0.004 [0.004, 4.322]

6 Median F-index 4.046 3.351 −20.7% 0.000 [0.000, 18.670]
Distance To
Boundary 29.766 12.167 144.6% 43.304 [1.238, 43.304]

Steepness 0.797 1.123 29.1% 0.015 [0.015, 3.804]

The alternative to benchmark sampling in the MZs is MZ composite sampling. If
composite sampling is done properly, the objectives of the composite sample should be
close to the mean of the objectives of the MZ. Hence, by reporting these statistics in Table 2
we show that the objectives of the selected benchmark sites are improved in comparison to
the composite sampling. This enables the farm manager to track the nutrient changes. In
all the fields we evaluated, the objective for the selected benchmark site is always better
than the mean of all the cells of the MZ except for a couple of cases in fields 1 and 3 that are
slightly worse. In both these cases, the problematic benchmark sites are in the first and last
MZs, which represent the smallest area of the field (see Figure 6). Selecting good benchmark
sites for the middle MZs—which represent the majority of the area of the field—at the cost
of slightly worse than mean benchmark sites for the first and last zones is reasonable. The
presented statistics show that in the middle MZs (i.e., MZs 3 and 4 out of the six total), the
objectives at the benchmark sites are significantly better than the mean.

Overall, our algorithm produces better benchmark sites than a composite sample
according to our criteria. Objective F3 (being close to the anchor points) is excluded from
our objectives because we did not have anchor points for any of the fields. Moreover,
we excluded cells under constraint from our mean and range calculations to obtain a fair
comparison. Lastly, our optimization constraints g1 and g2 are satisfied; no benchmark sites
are selected in headland (DH) or in proximity (DR) to other benchmark sites. Constraint g2,
in combination with objective F2, will result in a relatively good covering of the field by
benchmark sites which can be visually verified by looking at Figure 15.

To comprehensively summarize these tables, for each field, we report the mean percent-
age improvement over all MZs of the field. The mean percentage improvement is reported
in Table 3 for each objective. This aggregated result emphasizes how the representative site
objectives are improved when compared to composite sampling.
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Table 3. The mean percentage improvements of the selected benchmark sites.

Field Number Median F-index Distance to
Boundary Steepness

1 58.2% 297.9% 34.0%

2 46.2% 239.1% 40.6%

3 53.7% 210.2% 34.7%

4 66.4% 187.6% 55.4%

5 60.9% 191.6% 38.7%

4.1. Modularity and Extendability

One significant advantage of our framework is its modularity and extendability. Al-
though we chose a specific performance function, a specific MZ delineation method, and a
specific set of criteria to demonstrate our optimization model, our algorithmic framework is
flexible and defines a mathematical structure to be used in other scenarios as well. The data
integration in our framework is handled using a DGGS which allows additional datasets
such as different satellite imagery (e.g., thermal imagery or radar data), aerial imagery, and
wetland maps, to be integrated with the algorithm in the future as needed.

For example, our framework obtains an MZ map as input which can be constructed
from any performance function. Apparent soil electrical conductivity (EC) is a particular
performance function that is proven to highly correlate with soil nutrients and is useful for
MZ delineation [39,42]. To demonstrate that our framework works for other performance
functions as well, we used a real EC dataset for a field in Selbitz (Elbe), Germany [43].
For simplicity, we used the same thresholding method to delineate MZs from EC data.
The left column in Figure 16 shows the EC data and the F-index for this field in Germany
and the right column is the selected benchmark sites along with the delineated MZs. This
figure demonstrates that our framework is general and works for an arbitrary performance
function.

Figure 16. Using the apparent soil electrical conductivity map as a performance function.

Similar to the performance function and MZs, the representative site criteria can be
extended in both forms of objectives and constraints. For example, new constraints to
avoid power lines, pipelines, and other barriers are just other regions to avoid, much in the
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same way as the headland in g1. Additionally, more objectives can be added or the existing
objectives can be swapped with another one. For example, instead of F1, one may want to
use the first quantile and third quantile along with the median. In this case, one can easily
swap the F1 to another objective, which calculates the difference of the F-index to another
value (e.g., the first or third quantile or mean). Figure 17 demonstrates the application of
the first and third quantiles along with the median (second quantile) as a new objective,
which shows that our framework can be used to satisfy new criteria.

(a) (b) (c)

Figure 17. A visualization of the difference of the F-index of each cell with (a) first quantile, (b) second
quantile (median), and (c) third quantile of the F-index of each MZ.

4.2. Discussion

Our automatic benchmark site selection method is flexible in various aspects. Specif-
ically, the relative importance of the objectives and the number of MZs are tunable. The
following subsections discuss and demonstrate each of these flexibilities of our method.

4.2.1. Optimization Weights

One flexibility of our method is defining the importance of objectives relative to each
other by means of weights. The weights are available as a simple interface for the end
user to adjust if necessary. For example, if a field is very flat, assigning a lower weight for
steepness can help the algorithm to optimize better for other criteria. Looking at Table 4,
we observe that a lower weight for steepness helped the model lower the difference to the
median F-index by 1.124 units. Recalculating the error ET after changing the weights is
instant, which means that the user can quickly and efficiently test different configurations
to obtain the desired results.

4.2.2. Number of MZs

The number of MZs is usually set based on the area of the field. However, our
automated method is adjustable and can delineate a field to any number of MZs. For
example, if one wants to account for within-zone heterogeneity, one can divide each MZ
into multiple MZs, and the algorithm finds a test point for each refined MZ. This is practical
when a deep understanding of the variability of the soil of a field is needed. Figure 18
shows an example of a varying number of MZs on a field. Table 5 demonstrates that our
method remains fast and performant when the number of MZs increases. We intentionally
decreased the DR for the higher number of MZs because more benchmark sites have to
be fit in the same area. Moreover, for the results presented in Table 5, the DH is set to 0,
because in the higher number of MZs, the lower MZ ends up completely in the headland.
In practice, the MZs with very tiny areas are not worth sampling.
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Table 4. The effect of weights on objectives. This table is based on MZ 2 on field 1.

Objective Median F-index (F1) Distance to
Boundary (F2) Steepness (F4)

Range [0.001, 8.562] [1.238, 77.104] [0.015, 5.319]

Best 0.001 77.104 0.015

Mean of all cells 2.342 17.337 1.234

w1 = 1, w2 = 1,
w4 = 1 1.125 63.797 0.358

w1 = 1, w2 = 1,
w4 = 0.5 1.143 64.655 0.766

w1 = 1, w2 = 0.5,
w4 = 0.5 0.933 61.139 0.535

w1 = 1, w2 = 0.25,
w4 = 0.01 0.446 48.915 0.867

w1 = 1, w2 = 0.01,
w4 = 0.01 0.001 38.603 0.289

w1 = 0.5, w2 = 1,
w4 = 0.1 1.460 66.111 1.353

(a) (b) (c) (d)

Figure 18. Delineating a field into (a) 6, (b) 12, (c) 20, and (d) 30 MZs results in the same number of
the selected benchmark sites.

Table 5. The mean percentage improvement for field 1 when the number of MZs varies between 6
and 30 MZs.

Number of MZs DR (meter) Execution Time
(second)

Mean
Percentage

Improvement

6 350 22.54
Median F-index 62.9%
Distance To Boundary 337.2%
Steepness 36.2%

12 320 28.74
Median F-index 74.8%
Distance To Boundary 326.0%
Steepness 38.0%

20 215 32.75
Median F-index 77.2%
Distance To Boundary 355.8%
Steepness 47.6%

30 165 37.61
Median F-index 67.9%
Distance To Boundary 354.1%
Steepness 32.4%

5. Conclusions and Future Work

In this paper, we introduce an automated framework to solve the constrained multi-
objective optimization problem of selecting benchmark sites. To demonstrate our frame-
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work, the optimization includes four different objectives: close to the value of the median
F-index, away from MZ boundaries, close to anchor points, and belonging to flatter regions.
Two constraints, avoiding certain regions and avoiding the proximity of benchmark sites
in other MZs, are also included in the optimization. We showed that this optimization
problem can be efficiently solved on a DGGS and the produced benchmark sites are better
than an MZ composite sample. The repeatability of the method is shown by testing the
algorithms on five different fields. This algorithm takes between 9 and 23 s for tested fields
in comparison to a manual process by a GIS technician, which takes days. We discussed
the generality and flexibility of our method.

Our framework allows additional datasets, such as different satellite imagery (e.g.,
thermal imagery or radar data), aerial imagery, and wetland maps, to be used within our
algorithm. We showed that different performance functions, including EC and different
delineation methods, can be used within our framework. This enables our framework to
be suitable for many applications where the MZs are used for soil monitoring, nutrient
leaching, and greenhouse gas emissions. However, the usage of this framework in other
applications is not explored in this paper and constitutes an area for future research.

Moreover, for future research, it is advisable to apply this method in an environment
where there is access to a comprehensive dataset, including a wide range of soil characteris-
tics resulting from dense grid sampling. This approach will facilitate a thorough evaluation
of how well the algorithm identifies the representative areas of management zones when
compared to each soil parameter. Ultimately, this will lead to a more precise assessment of
how well they truly represent those zones.
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MZ management zone
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GIS geographic information system
AESA Alberta Environmentally Sustainable Agriculture
UAV unmanned areal vehicle
LiDAR light detection and ranging
DEM digital elevation model
GUI graphical user interface
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EC electrical conductivity
BOA bottom of the atmosphere

Appendix A

Table A1. The range and average of the objectives are compared to the objectives of selected bench-
mark sites for field 2.

MZ Objective Benchmark
Site

Mean of All
Cells

Percentage
Improvement Best Range

1 Median F-index 13.393 18.202 26.4% 0.000 [0.000, 47.910]
Distance To
Boundary 27.535 16.483 67.0% 48.759 [1.263, 48.759]

Steepness 2.207 2.843 22.4% 1.395 [1.395, 4.932]

2 Median F-index 2.920 4.453 34.4% 0.017 [0.017, 18.161]
Distance To
Boundary 40.850 9.775 317.9% 43.235 [1.263, 43.235]

Steepness 1.010 3.405 70.3% 0.021 [0.021, 10.844]

3 Median F-index 0.013 1.550 99.2% 0.000 [0.000, 4.431]
Distance To
Boundary 56.517 12.870 339.1% 56.517 [1.259, 56.517]

Steepness 1.046 2.700 61.3% 0.006 [0.006, 11.680]

4 Median F-index 0.140 1.075 87.0% 0.000 [0.000, 2.610]
Distance To
Boundary 55.644 12.011 363.3% 59.418 [1.259, 59.418]

Steepness 1.173 2.040 42.5% 0.003 [0.003, 9.167]

5 Median F-index 0.720 1.000 28.0% 0.002 [0.002, 2.917]
Distance To
Boundary 29.709 10.057 195.4% 41.810 [1.259, 41.810]

Steepness 1.863 2.226 16.3% 0.013 [0.013, 10.052]

6 Median F-index 3.272 3.351 2.4% 0.000 [0.000, 13.995]
Distance To
Boundary 23.627 9.387 151.7% 33.618 [1.259, 33.618]

Steepness 2.146 3.095 30.7% 0.108 [0.108, 8.438]

Table A2. The range and average of the objectives are compared to those of the selected benchmark
sites for field 3.

MZ Objective Benchmark
Site

Mean of All
Cells

Percentage
Improvement Best Range

1 Median F-index 4.590 2.883 −59.2% 0.126 [0.126, 8.487]
Distance To
Boundary 23.519 11.948 96.8% 27.191 [1.298, 27.191]

Steepness 2.163 3.028 28.6% 0.260 [0.260, 6.357]

2 Median F-index 0.681 2.145 68.3% 0.000 [0.000, 6.899]
Distance To
Boundary 44.390 18.374 141.6% 60.355 [1.291, 60.355]

Steepness 0.868 2.521 65.6% 0.031 [0.031, 8.747]

3 Median F-index 0.268 1.939 86.2% 0.000 [0.000, 4.174]
Distance To
Boundary 86.394 18.537 366.1% 91.327 [1.291, 91.327]

Steepness 1.759 2.137 17.7% 0.026 [0.026, 9.368]

4 Median F-index 0.344 1.834 81.2% 0.000 [0.000, 5.624]
Distance To
Boundary 48.860 13.752 255.3% 53.131 [1.291, 53.131]

Steepness 1.863 2.167 14.0% 0.002 [0.002, 9.731]
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Table A2. Cont.

MZ Objective Benchmark
Site

Mean of All
Cells

Percentage
Improvement Best Range

5 Median F-index 0.144 1.805 92.0% 0.022 [0.022, 3.604]
Distance To
Boundary 17.555 6.031 191.1% 18.800 [1.295, 18.800]

Steepness 1.158 2.205 47.5% 0.849 [0.849, 4.675]

Table A3. The range and average of the objectives are compared to the objectives of the selected
benchmark sites for field 4.

MZ Objective Benchmark
Site

Mean of All
Cells

Percentage
Improvement Best Range

1 Median F-index 1.450 1.861 22.1% 0.000 [0.000, 4.030]
Distance To
Boundary 24.923 11.987 107.9% 34.016 [1.305, 34.016]

Steepness 0.917 1.132 19.0% 0.115 [0.115, 2.264]

2 Median F-index 1.341 1.829 26.7% 0.019 [0.019, 6.067]
Distance To
Boundary 34.657 11.745 195.1% 53.336 [1.302, 53.336]

Steepness 0.163 1.116 85.4% 0.023 [0.023, 3.109]

3 Median F-index 0.149 1.326 88.8% 0.000 [0.000, 3.028]
Distance To
Boundary 44.455 12.907 244.4% 49.212 [1.298, 49.212]

Steepness 0.280 1.125 75.1% 0.018 [0.018, 3.517]

4 Median F-index 0.003 1.398 99.8% 0.003 [0.003, 4.184]
Distance To
Boundary 30.103 9.557 215.0% 34.657 [1.302, 34.657]

Steepness 0.737 1.093 32.6% 0.014 [0.014, 3.374]

5 Median F-index 0.034 0.626 94.6% 0.034 [0.034, 1.158]
Distance To
Boundary 15.860 5.758 175.5% 18.325 [1.302, 18.325]

Steepness 0.318 0.899 64.7% 0.043 [0.043, 2.574]

Table A4. The range and average of the objectives are compared to the objectives of the selected
benchmark sites for field 5.

MZ Objective Benchmark
Site

Mean of All
Cells

Percentage
Improvement Best Range

1 Median F-index 2.340 5.078 53.9% 0.294 [0.294, 14.785]
Distance To
Boundary 18.382 10.907 68.5% 32.534 [1.216, 32.534]

Steepness 0.451 0.665 32.3% 0.029 [0.029, 1.712]

2 Median F-index 2.361 2.469 4.4% 0.000 [0.000, 10.209]
Distance To
Boundary 85.619 22.106 287.3% 87.502 [1.216, 87.502]

Steepness 0.510 0.934 45.4% 0.010 [0.010, 4.003]

3 Median F-index 0.168 1.441 88.4% 0.000 [0.000, 3.680]
Distance To
Boundary 105.288 26.053 304.1% 109.590 [1.212, 109.590]

Steepness 0.347 0.857 59.5% 0.004 [0.004, 3.446]
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Table A4. Cont.

MZ Objective Benchmark
Site

Mean of All
Cells

Percentage
Improvement Best Range

4 Median F-index 0.101 3.439 97.1% 0.000 [0.000, 16.610]
Distance To
Boundary 27.363 13.264 106.3% 44.053 [1.216, 44.053]

Steepness 0.861 1.045 17.7% 0.050 [0.050, 3.369]
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