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Abstract: Accurate cattle pose estimation is essential for Precision Livestock Farming (PLF). Computer
vision-based, non-contact cattle pose estimation technology can be applied for behaviour recognition
and lameness detection. Existing methods still face challenges in achieving fast cattle pose estimation
in complex scenarios. In this work, we introduce the FasterNest Block and Depth Block to enhance
the performance of cattle pose estimation based on the RTMPose model. First, the accuracy of cattle
pose estimation relies on the capture of high-level image features. The FasterNest Block, with its
three-branch structure, effectively utilizes high-level feature map information, significantly improving
accuracy without a significant decrease in inference speed. Second, large kernel convolutions can
increase the computation cost of the model. Therefore, the Depth Block adopts a method based
on depthwise separable convolutions to replace large kernel convolutions. This addresses the
insensitivity to semantic information while reducing the model’s parameter. Additionally, the SimAM
module enhances the model’s spatial learning capabilities without introducing extra parameters. We
conducted tests on various datasets, including our collected complex scene dataset (cattle dataset) and
the AP-10K public dataset. The results demonstrate that our model achieves the best average accuracy
with the lowest model parameters and computational requirements, achieving 82.9% on the cattle test
set and 72.0% on the AP-10K test set. Furthermore, in conjunction with the object detection model
RTMDet-m, our model reaches a remarkable inference speed of 39FPS on an NVIDIA GTX 2080Ti
GPU using the PyTorch framework, making it the fastest among all models. This work provides
adequate technical support for fast and accurate cattle pose estimation in complex farm environments.

Keywords: cattle pose estimation; RTMPose; FasterNest Block; SimAM attention; Depth Block

1. Introduction

Intelligent agriculture technologies based on computer vision offer multiple advan-
tages, such as automation, efficiency, and non-contact interaction, significantly enhancing
animal welfare in livestock farming [1]. The deep learning methods are widely applied in
the animal farming industry [2]. Pose estimation refers to accurately locating the keypoints
of a target instance and connecting them according to a predefined logic to reconstruct a
complete skeletal structure. In animal husbandry, the health of animals directly impacts pro-
duction efficiency [3]. Accurate animal pose estimation is a crucial component of behavior
recognition and lameness detection, such as poultry behavior recognition [4] and lameness
detection in cattle [5]. Lameness typically occurs in older cows and adversely affects milk
production [6]. Cattle pose estimation is essential in Precision Livestock Farming (PLF).
Therefore, using computer vision technology to solve cattle pose estimations in complex
farm environments is highly meaningful.

In recent years, the application of computer vision technology in animal pose estima-
tion has garnered widespread attention among researchers. In 2019, Li et al. [7] applied
the convolutional pose machine model, the stacked hourglass model, and the convolution
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heatmap regression model to estimate the poses of dairy and beef cattle. They conducted
training and testing using 2134 cattle images and achieved an average PCKH value of
90.39%. In 2022, Liu et al. [8] introduced a high-resolution transformer model. They em-
ployed the efficient transformer architecture and designed a basic block with representative
batch normalization. Additionally, they incorporated four PoolFormer blocks after the
Multi-Branch Neural Network to balance the performance. Testing on the mammalian
public dataset, AP-10K demonstrated superior performance compared to lightweight net-
works, such as Lite-HRNet and HRformer-Tiny. In the same year, Gong et al. [9] proposed
a two-branch skeleton extraction network for multi-cattle pose estimation, conducting tests
on single-target and dual-target images under varying lighting conditions, with single-
cattle pose estimation achieving an accuracy of 85% during the day and 78.1% at night
while dual-cattle pose estimation accuracy reached 74.3% and 71.6%. In 2023, Fan et al. [10]
designed CoordConv and DO-Conv, which were applied to the bottleneck and basic block
of the HRNet network to improve cattle pose estimation performance. The results showed
that AP is 93.2% on 2432 complex environment images, parameters, and FLOPs, which
were remarkably decreased. In conclusion, computer vision technology has found extensive
applications in animal pose estimation. However, accurately and rapidly achieving cattle
pose estimations in complex farm environments is challenging.

Pose estimation algorithms can be divided into two categories: top-down (e.g., [11])
and bottom-up (e.g., [12]). In the top-down method, the object detection algorithm is first
used to detect object instances and generate bounding boxes. Next, the developed bounding
box regions are resized to the same shape. In the end, keypoint extraction networks are used
to create keypoints. Top-down methods are less sensitive to object instance size and offer
higher accuracy. On the other hand, bottom-up approaches first detect keypoints for all
objects and then group these keypoints into individual instances. Bottom-up methods have
faster detection speeds. In the past, traditional top-down approaches were considered more
accurate but slower, primarily because an additional detection process was introduced.
However, with the improvement in the performance of object detection algorithms, the
object detection component is no longer the inference speed bottleneck for the top-down
paradigm [13]. Therefore, we adopted the top-down paradigm in this study because it can
provide better pose estimation accuracy.

Recent technological advancements have significantly improved the performance
of computer vision-based methods in pose estimation. In 2019, Sun et al. [11] intro-
duced the HRNet network, which has found extensive applications, such as human pose
estimation [14] and semantic segmentation [15]. HRNet maintains high-resolution represen-
tations throughout its architecture while incorporating low-resolution representations and
multiple branches for information fusion, effectively capturing visual information within
the target. In 2021, Yuan et al. [16] proposed HRFormer, which combines the Vision Trans-
former (ViT) and HRNet. Using HRNet’s multi-resolution characteristics, basic modules
composed of local window self-attention and FFNs significantly improve the performance
of human pose estimation on the COCO dataset [17]. In 2022, Xu et al. [18] developed the
VitPose model based on the Vision Transformer, which has a simple, scalable, and flexible
structure and achieved state-of-the-art performance on the COCO dataset. While the above-
mentioned methods have achieved excellent accuracy in human pose estimation, applying
them to real-time environments for cattle pose estimation is challenging. Jiang et al. [13],
addressing issues in the industry, explored the critical factors in pose estimation and pro-
posed a high-performance real-time multi-person pose estimation framework: RTMPose.
Previous pose estimation methods typically treated keypoint localization as a coordinate
regression (e.g., [19,20]) or heatmap regression (e.g., [11,21]). Li et al. [22] addressed the
computational complexity, complex post-processing, and quantization errors associated
with 2D heatmap methods. They introduced a simple coordinate classification method for
human pose estimation; the method treats keypoint localization as a subpixel classification
of horizontal and vertical coordinates, eliminating the need for high-resolution intermediate
representations and costly upsampling. Furthermore, sub-pixel scale coordinate classifica-
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tion effectively mitigates quantization errors, enabling efficient keypoint localization [13].
The high accuracy and speed of RTMPose result from its efficient framework. SimCC* [13]
removed the costly upsampling layers from SimCC [22], reducing the complexity while
maintaining good accuracy. Its backbone network adopts CSPNext-m [23], making the
structure more efficient. Specifically, it requires simple consecutive downsampling, fol-
lowed by sub-pixel classification using k (number of keypoints) keypoint representations
for keypoint localization with SimCC*. However, RTMPose experiences performance
degradation when dealing with real-world complex environments, such as multiple cattle,
varying lighting conditions, and obstacles, such as rails and trough occlusions.

In this paper, we have built upon the efficient structure of RTMPose and optimized its
overall architecture. First, we have incorporated the FasterNest Block into the Backbone,
which contains three branches. This enhancement strengthens RTMPose’s utilization of
high-level image features, thereby improving the model’s feature learning capabilities. Sec-
ond, within the CSPLayer [13], channel attention has been replaced by the SimAM attention
module. This substitution addresses RTMPose’s lack of spatial learning capabilities. The
SimAM attention module effectively leverages spatial and channel information within the
feature maps, inferring three-dimensional attention weights and enhancing the model’s
spatial learning capabilities. Lastly, we have replaced the 7 × 7 large kernel convolutions
in RTMPose with the Depth Block, addressing the model’s insensitivity to semantic infor-
mation while enhancing network accuracy and decreasing parameters. We have tested
our method on the cattle and publicly available AP-10K datasets, and it exhibits a lower
parameter and computation cost than existing state-of-the-art models and maintains higher
model accuracy. In this study, our contributions are as follows:

• Efficient Keypoint Localization: This paper introduces an enhanced RTMPose method.
First, it leverages the highest-level image features. Then, it locates keypoints by
performing sub-pixel scale classification in the horizontal and vertical directions for
only k (number of keypoints). Compared to the RTMPose algorithm, our approach
significantly improves detection accuracy while maintaining inference speed.

• FasterNest Block with Three-Branch Structure: RTMPose utilizes the highest-level image
features as the basis for keypoint localization. To more effectively use these high-level im-
age features, we introduce the FasterNest Block. This three-branch structure is embedded
into the fourth stage of the backbone, enhancing the model’s feature learning capabilities.

• Integration of SimAM Attention: RTMPose exhibits limited spatial learning capabili-
ties. The SimAM attention module can infer three-dimensional attention weights for
feature maps. In the CSPLayer, channel attention is replaced with SimAM attention,
augmenting RTMPose’s spatial learning capabilities without additional parameters.

• Lightweight Depth Block: Since 7 × 7 convolutions add computation parameters and
overhead to the RTMPose model, the Depth Block module based on depth separable convo-
lutions, which is more suitable for lightweight models than traditional convolutions, has
been designed in this paper. It replaces the conventional 7× 7 convolution in the Head, ad-
dressing the insensitivity of the model to semantic information while reducing parameters.

2. Materials and Methods
2.1. Data Collection and Data Annotation

The experimental data for this study were collected from the Ximenta’er Cattle Farm,
located in Huangjinbao Village, Huaihua City, Hunan Province, China. Raw experimental
data were acquired using a monocular camera, capturing Ximenta’er cattle. There were
43 cattle and 3036 images, with a resolution of 3456 × 2304 pixels, saved in JPEG format.
Additionally, 10 video segments, each approximately 15 min long, were selected to eval-
uate model inference speed. The experimental data were captured over seven days, with
images taken during daylight. The brightness of the images also varied with changing
lighting conditions. The dataset included images of individual cattle and groups of cattle
from multiple angles, with group sizes ranging from 2 to 4 cattle. To enhance the model’s
robustness, complex scenarios, such as numerous cattle, and obstructions, such as fences
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and feed troughs, were introduced (e.g., Figure 1a–c). These diverse scenarios may impose
limitations on the performance of deep models. A web-based tool called COCO-Annotator
was employed for accurate keypoint annotation for manual labelling. The dataset creation
process involved bounding box annotation and skeleton keypoint annotation. Bounding box
annotation was initially performed to train the object detector. The goal was to minimize
the area of the annotated bounding boxes, excluding irrelevant pixels that might negatively
impact the experiment. Subsequently, 17 skeletal keypoint annotations were made, which
included Nose, Left Eye, Right Eye, Shoulder, Tailbone, Front Left Leg, Front Right Leg, Front
Left Knee, Front Right Knee, Front Left Hoof, Front Right Hoof, Back Left Leg, Back Right Leg,
Back Left Knee, Back Right Knee, Back Left Hoof, and Back Right Hoof (labelled as points 0 to
16). These keypoint annotations enabled the depiction of the overall posture of the cattle from
various angles. Keypoint information is illustrated in Figure 1d, with red dots representing
visible keypoints and blue dots indicating keypoints that are not visible. After completing the
dataset annotation, a random split was performed with a ratio of 7:2:1, resulting in a training
set (2126 images), a validation set (607 images), and a test set (303 images).
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2.2. Public Dataset AP-10K

In addition to the cattle dataset created in this paper, we further validated the model’s
generalization and transferability by incorporating the publicly available dataset, AP-
10K [24]. The dataset contains 10,028 instances from 54 species of animals belonging to
23 different families, comprising 10,015 images. The number of keypoints and annotation
format for each animal species in the AP-10K dataset is the same as that of the COCO
dataset. The AP-10K dataset is split into a training set (7010 images), a validation set
(1002 images), and test set (2003 images). By combining the AP-10K dataset with the cattle
dataset, we can comprehensively evaluate the model’s performance on different animal
species, thereby validating its generalization and transferability.

2.3. Methods

This section explains the baseline model used in this study and the experimental
improvement strategies. Section 2.3.1 introduces the real-time pose estimation network’s
fundamental components and working principles, RTMPose. Section 2.3.2 presents our
final network architecture. Subsequently, Section 2.3.3, Section 2.3.4, and Section 2.3.5
describe the experimental enhancement approaches involving the FasterNest Block, SimAM
Attention Mechanism, and Depth Block, respectively.

2.3.1. RTMPose

RTMPose is a simple and efficient real-time human pose estimation framework, as
shown in Figure 2. To improve accuracy, previous networks (e.g., SimpleBaseline [25],
Hourglass Network [21]) have used costly deconvolution or unsampling to recover low-
resolution to high-resolution feature maps. restoring high resolution requires interpolation
calculations and pixel post-processing; the cost of unsampling is very high. In contrast,
RTMPose continuously downsamples the feature maps and uses k (number of keypoints)
keypoint representations as the subpixel scale classification basis for the head. This achieves
a streamlined feature extraction and coordinated classification process without unnecessary
operations. Specifically, RTMPose-m [13] employs the CSPNext-m [23] framework as the
image feature extraction component in the backbone. CSPNext-m utilizes 5 × 5 Depthwise
Convolutions, striking a balance between speed and accuracy. SimCC*, on the other hand,
removes the time-consuming upsampling layers present in SimCC while simultaneously
reducing complexity and maintaining good accuracy [13]. SimCC* treats human pose
estimation as two separate classification tasks in the vertical and horizontal coordinate
directions. This results in a straightforward and efficient coordinate classification. SimCC*
also employs a strategy that divides each pixel into several bins on average, thus achieving
smaller quantization errors. Compared to traditional 2D heatmap methods, SimCC* reduces
computation costs and improves keypoint localization accuracy. RTMPose-m consists of
a backbone used for feature extraction and a classification head. The backbone consists
of ConvModule, CSPLayer, and SPPFBottleneck. First, the ConvModule serves as the
basic module for network downsampling and channel adjustment, composed of Conv2d,
Batch Normalization, and the SiLU activation function. CSPLayer enhances the network’s
feature extraction capabilities through cascading. SPPFBottleneck pools the feature maps at
different scales to effectively capture semantic information in the image, thus improving
model performance. The head section comprises a 7 × 7 Convolution, FC (Fully Connected
layer), GAU (Gated Attention Unit), and a coordinate classifier. The 7 × 7 Convolution
layer reduces the 768 channels to k (number of keypoints) feature maps, which generate
representations for k keypoints. The FC layer expands the keypoints’ representations to the
desired dimension of 256, controlled by hyperparameters. The GAU leverages self-attention
to further incorporate global and local spatial information. Finally, the classifier performs
coordinate classification in horizontal and vertical directions on the representations of k
keypoints to achieve keypoint localization.
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2.3.2. RTMPose-FSD

The RTMPose-FSD structure is illustrated in Figure 3. First, this study introduced the
FasterNest Block into the backbone. The FasterNest Block’s three-branch design increased
the RTMPose model’s utilization of high-level image features, enhancing the model’s ability
to learn features. Next, in the CSPLayer [13], channel attention was replaced by the SimAM
attention module to address the issue of insufficient spatial learning capability in RTMPose.
The SimAM attention module leveraged feature maps’ spatial and channel information to
infer three-dimensional attention weights, enhancing spatial learning capability. Finally, the
7 × 7 large kernel convolution in RTMPose was replaced with the Depth Block to address
the issue of RTMPose’s insensitivity to semantic information. This achieved a lightweight
quality while improving network accuracy.

2.3.3. FasterNest Block

Chen et al. [26] introduced a novel convolution technique called Partial Convolution
(PConv). PConv reduces FLOPs while maintaining a high FLOPS, simultaneously reducing
computational redundancy and memory access, all without sacrificing the convolution’s
feature extraction capability. As shown in Figure 4, PConv applies regular convolution only
to a subset of consecutive channels to extract spatial features while the remaining channels
remain unchanged. The FLOPs calculation for PConv is as follows:

FLOPs = h×ω× k2 × cp
2, (1)
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where h,ω, and cp represent the input feature’s height, width, and kernel, respectively; cp
denotes the continuous cp channels that are taken as representatives for the entire feature
map during computation.
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For example, when cp = 1
2 c, PConv only occupies 1/4 of the FLOPs of regular

convolution, enabling better utilization of computational capabilities on the device. The
design of the FasterNet Block is depicted in Figure 5. To fully and efficiently utilize
information from all channels, PWConv (Pointwise Convolution) was added after PConv,
where the structure indicated that the T-shaped receptive field could focus attention on the
center position of the input feature map, as the center position often contained more critical
feature information than adjacent positions [26]. By combining PConv with PWConv,
not only was all channel information utilized, but also fewer computational resources
were consumed.
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The fourth stage of RTMPose’s backbone contains the highest-level feature information,
considered crucial for keypoint localization. Therefore, it is essential to use this high-level
feature information more effectively. As shown in Figure 6, in this paper, we designed the
FasterNest Block based on the FasterNet Block, specifically for the fourth stage of RTMPose,
to enhance the model’s ability to learn from features. Through the ablative study presented,
we demonstrated that our model provided superior performance without significantly
reducing inference speed.
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2.3.4. SimAM Attention Mechanism

In deep learning, the attention mechanism was initially proposed by Bahdanau et al. [27]
in their machine translation research in natural language processing, laying the foundation
for subsequent developments in attention mechanisms [28,29]. Inspired by neuroscience
theories [30], Yang et al. [31] introduced an optimized energy function to discover the
importance of each neuron. They proposed a simple and effective attention module
called SimAM, which simultaneously considers spatial and channel attention. Unlike
CBAM [28], it can refine features in both channel and spatial dimensions and apply the
inferred three-dimensional attention weights to all feature maps without increasing the
model’s parameters. The definition of the energy function is as follows:

et(ωt, bt, y,xi) =
1

M− 1

M−1

∑
i=1

(−1−(ωtxi + bt))
2 + (−1−(ωtxi + bt))

2+λω2
t , (2)

where i is the index along the spatial dimension,M = H×W represents the number of
neurons in that channel, i.e., there are M energy functions in each channel, t, and xi are the
target neuron and other neurons within a single channel of the input feature X ∈ RC×H×W,
respectively;ωt and bt are the weighted sum and bias transformation.

An active neuron may suppress the activity of neighboring neurons, a phenomenon
known as spatial inhibition [30]. In visual processing, neurons that exhibit significant
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spatial inhibition effects should be given higher priority (i.e., importance) [31]. The energy
calculation for each neuron e∗t is shown in Equation (3), where the target neuron is assigned
a higher importance compared to surrounding neurons.

E∗t =
4
(
σ̂2+λ

)
(t−µ̂)2+2σ̂2+2λ

, (3)

where µ̂ and σ̂2 are the mean and variance computed across all channel neurons, with
µ̂ = 1

M ∑M
i=1 xI, σ̂2 = 1

M ∑M
i=1(xi − µ̂)2 being the minimum energy for a neuron. The impor-

tance of each neuron can be obtained through 1/e∗t . Equation (3) shows that the lower the
energy e∗t , the more distinct the target neuron t is from its surrounding neurons, indicating
its higher importance for visual processing. The entire process can be represented as:

~
X= sigmoid

(
1
E

)
� X, (4)

where E groups all e∗t values along the channel and spatial dimensions. The Sigmoid
function is used to limit excessively large E values, so it does not heavily impact the relative
importance of each neuron. The symbol � represents element-wise multiplication. To ad-
dress the weak spatial learning capabilities in RTMPose and enhance the network’s ability
to learn features, as shown in Figure 7, we replaced channel attention in the CSPLayer mod-
ule with the SimAM attention module while utilizing the feature map’s three-dimensional
weight information.
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2.3.5. Depth Block

Depthwise separable convolution [32] is a method that decomposes the conven-
tional convolution into Depthwise Convolution and Pointwise Convolution, achieving
lightweight feature extraction and processing. Compared to traditional convolution op-
erations, depthwise separable convolution reduces the computational and parameter re-
quirements of the network, thereby reducing model complexity and storage demands.
As large-kernel convolutions are less sensitive to semantic information, we designed a
Depth Block based on depthwise separable convolution to replace the 7 × 7 conventional
large-kernel convolution. The Depth Block is shown in Figure 8, where green represents
feature maps, red components are MaxPool, and the time complexity is defined as follows:

O(MaxPool) = K2CWH. (5)

where C, W, and H represent the input features’ channel, width, and height, respectively. K
represents the size of the MaxPool convolution kernel.

The Depth Block consists of two sets of 3 × 3 Depthwise Convolution and 1 × 1 Point-
wise Convolution combined in the depth dimension, effectively utilizing the network’s
semantic information. Using feature map channels efficiently during the module instantia-
tion process is essential. First, the first 1 × 1 Pointwise Convolution reduces the number of
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feature map channels to 384, and then, the second 1 × 1 Pointwise Convolution reduces it
to ‘k’ (number of keypoints). The experiments demonstrate that this module reduced the
network’s computational and parameter requirements and improved network accuracy.
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2.4. Evaluation Indicators and Experimental Environment
2.4.1. Evaluation Indicators

In our work, we used Object Keypoint Similarity (OKS) as the evaluation metric:

OKS =
∑i e

−d2
i

2s2k2
i δ(vi> 0)

∑i δ(vi> 0)
. (6)

where di represents the Euclidean distance between the predicted keypoint and its cor-
responding ground truth; vi indicates whether the ground truth keypoint is visible; s
is the object scale; and ki is a per keypoint constant that controls falloff. We used the
OKS-defined thresholds to calculate AP (Average Precision) and AR (Average Recall). The
standard Average Precision (AP) and Recall (AR) scores include AP (the average of AP
scores at 10 positions with OKS = 0.50, 0.55, . . ., 0.90, 0.95), AP50 (AP at OKS = 0.50), AP75,
and AR [17].

2.4.2. Experimental Setup

This study was conducted on an Ubuntu 20.04 operating system using hardware with
an Intel Core i7-9700 processor, RTX 2080 Ti graphics card, and 32 GB of RAM. The pro-
gramming language used was Python 3.8.0, and the deep learning framework was PyTorch
2.0.1. Below are the training details for the object detection and pose estimation algorithms:

Object Detection Algorithm Training: The training of the object detector employed
horizontal flipping and Masic data augmentation. Each input image had a size of 640× 640.
The batch size was set to 8, and 200 epochs were conducted. We used the SGD optimizer
with an initial learning rate of 4× 10−4 and a weight decay of 0.001. The learning rate was
then reduced to 1× 10−4 after 130 epochs. The experiments were conducted from scratch.

Pose Estimation Algorithm Training: Data augmentation techniques included hori-
zontal flipping, random retention of either the upper or lower body, scaling in the range of
[0.6, 1.4], and rotation in the range of [−80, 80]. Each input image had a size of 192 × 256.
We used the AdamW optimizer with a learning rate of 5× 10−4 and weight decay of 0.05.
The batch size was set to 32, and 250 epochs were conducted. A warm-up strategy was
applied for the first 500 iterations, gradually increasing the learning rate from 5× 10−5

to 5× 10−4 as iterations increased and then reducing it to 2× 10−4 over 180 epochs. All
experiments were conducted from scratch.

3. Results
3.1. Validation Set Results

To validate the effectiveness of our model, we compared it with seven other models,
namely Vgg-16 [33], Resnet-50 [34], Resnet-101, HRNet-w32, VitPose-S, HRFormer-B, and
Swin-T [35]. We evaluated the performance of the models using five standard metrics: AP,
AR, GFLOPs (Giga floating-point operations per second), Parameters, and FPS (Frames Per
Second). GFLOPs and Parameters assess the model’s computational complexity and storage
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requirements. FPS indicates the model’s inference speed. Table 1 summarizes the perfor-
mance of the cattle validation set. For all networks with an input size of 192 × 256, our
improved RTMPose model has the fewest Params and GFLOPs, with values of 14.2 M and
2.0G, respectively. At the same time, it achieves an AP value as high as 88.6%, surpassing
all other models.

Table 1. The validation results of different pose estimation models on the cattle validation set are
presented. We only report the metrics for the pose estimation models and omit the object detection
models. The best results are highlighted in bold.

Methods Input Size Params (M) FLOPs (G) AP AP50 AP75 AR FPS

Vgg-16 192 × 256 19.1 16.3 84.5 95.9 88.2 86.5 19
Resnet-50 192 × 256 34.1 5.5 84.8 92.3 88.3 87.0 33
Resnet-101 192 × 256 53.1 9.2 85.1 94.9 89.6 87.2 27

HRNet-w32 192 × 256 28.6 7.8 87.0 96.8 89.7 90.0 16
VitPose-S 192 × 256 24.3 5.4 86.6 96.2 89.5 88.4 32

HRFormer-B 192 × 256 43.3 13.3 86.6 96.5 88.9 88.5 16
Swin-T 192 × 256 32.8 6.2 79.8 95.7 85.4 82.0 30
Ours 192 × 256 14.2 2.0 88.6 96.8 92.0 90.4 39

To demonstrate the effectiveness of our model, we compared it with other top-down
paradigm models. Taking the HRNet network as an example, it consists of different
resolution branches, incorporating both high-resolution positional information and low-
resolution semantic information, making it an efficient and competitive network. Compared
to HRNet, our model requires only 49.7% of its GFLOPs and 25.6% of its parameters, while
achieving a 1.6% higher AP.

Furthermore, using the PyTorch framework, our model achieves a detection speed
of 39 frames per second (FPS), making it the fastest detection speed. Figure 9 shows that
with increased training epochs, the AP on the validation set gradually rises and eventually
converges. In the end, our improved RTMPose achieved the highest AP value.
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3.2. Test Set Results

Table 2 presents the evaluation results of the cattle test set. Similarly, our model
outperforms all other models in all metrics. Specifically, our model outperforms the second-
ranked model by 1.5 in AP, 0.2 in AP50, 1.8 in AP75, 1.9 in AR, and 6 in FPS while having
the least number of model parameters and FLOPs. Table 3 presents the evaluation results
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of the AP-10K test set. Similarly, our model outperforms all other models in all metrics.
Specifically, our model outperforms the second-ranked model by 1.5 in AP, 1.1 in AP50,
2.1 in AP75, and 1.0 in AR. In other words, RTMPose-FSD achieves better results with the
fewest Params and FLOPs.

Table 2. The evaluation results of the cattle test set are provided. We only report the metrics for the
pose estimation models and omit the object detection models. The best results are highlighted in bold.

Methods Input Size Params (M) FLOPs (G) AP AP50 AP75 AR FPS

Vgg-16 192 × 256 19.1 16.3 78.2 95.1 84.6 81.3 19
Resnet-50 192 × 256 34.1 5.5 78.8 96.1 84.3 82.3 33
Resnet-101 192 × 256 53.1 9.2 79.6 96.3 85.1 83.4 27
HRNet-32 192 × 256 28.6 7.8 81.4 96.5 88.4 83.9 16
VitPose-S 192 × 256 24.3 5.4 80.7 95.5 86.6 83.6 32

HRFormer-B 192 × 256 43.3 13.3 81.2 96.5 86.5 83.6 16
Swin-T 192 × 256 32.8 6.2 70.1 94.2 74.6 73.4 30
Ours 192 × 256 14.2 2.0 82.9 96.7 90.2 85.8 39

Table 3. The evaluation results of the AP-10K test set are presented. We only report the metrics for
the pose estimation models and omit the object detection models. The best results are highlighted
in bold.

Methods Input Size Params (M) FLOPs (G) AP AP50 AP75 AR FPS

Vgg-16 192 × 256 19.1 16.3 66.3 91.5 72.4 70.3 19
Resnet-50 192 × 256 34.1 5.5 66.5 91.7 72.7 70.4 33
Resnet-101 192 × 256 53.1 9.2 67.2 91.9 73.4 70.9 27
HRNet-32 192 × 256 28.6 7.8 70.5 93.0 77.6 74.2 16
VitPose-S 192 × 256 24.3 5.4 67.6 91.9 73.6 71.1 32

HRFormer-B 192 × 256 43.3 13.3 70.3 92.9 75.1 73.9 16
Swin-T 192 × 256 32.8 6.2 57.8 87.0 61.4 62.3 30
Ours 192 × 256 14.2 2.0 72.0 94.1 79.7 75.2 39

To better apply it to large-scale farms, we combine RTMDet-m with RTMPose-FSD to
achieve multi-cow pose estimation. Figure 10 illustrates the prediction results of RTMPose-
FSD on the cattle test set. Visual results demonstrate that even in complex scenarios,
it accurately identifies the keypoints of each target. Additionally, Figure 11 shows the
prediction results on the AP-10K public dataset, accurately estimating the poses of animals
of various species at different scales. This suggests that our network architecture suits cattle
pose estimation tasks and applies to other animals.

Figure 12 shows prediction results for state-of-the-art pose estimation algorithms,
from top to bottom: HRNet-32, VitPose-S, Swin-T, HRFormer-B, and our method. Com-
parable results demonstrate that our approach exhibits the highest accuracy in detecting
17 keypoints, providing a more accurate depiction of the overall posture of cattle. Based
on the experimental results, the improved RTMPose algorithm proposed in this paper is
an excellent method for cattle pose estimation, demonstrating practical value. Our model
achieves high accuracy and offers faster detection speeds, making it suitable for various
applications, including commercial livestock farming.
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Figure 12. The prediction results of different state-of-the-art pose estimation algorithms. From top to
bottom: HRNet-32 algorithm, VitPose-S algorithm, Swin-T algorithm, HRFormer-B algorithm, and
our method. (Meaning of line colors: pure blue represents the head; green represents the neck and
back; cyan represents the front left leg and back left leg; deep blue represents the front right leg and
back right leg.)

3.3. Ablation Experiments

On the cattle test set, we conducted a series of ablation experiments to test the impact
of each improvement on the model’s performance. Table 4 shows the results of the ablation
experiments with an input size of 192 × 256. Based on the baseline model, we divided
our study into seven stages, individually testing each block and their combined effects to
demonstrate their respective effectiveness. First, including the FasterNest module slightly
increased model parameters and computations but led to a 0.5 AP improvement. The three-
branch structure of the FasterNest Block enhances the utilization of high-level feature maps
in the RTMPose model, improving its feature learning capacity. Next, by using the SimAM
module to infer three-dimensional attention weights based on the spatial and channel
information of feature maps, we gained a 0.3 AP improvement in spatial learning capacity
without adding any parameters or computations. Finally, the Depth Block replaced the
7 × 7 large kernel convolution in the head for a lightweight design, reducing the model’s
parameters by 1.1M while increasing the AP by 0.4. We also tested the combined effect of
using both methods, and the results showed that their combined action was better than
using a single process (82.3 AP, 8.25 AP, and 82.2 AP compared to 82.0, 81.8, and 81.9).
Ultimately, our improved network benefits from the combination of the FasterNest Block,
SimAM, and Depth Block, achieving an overall improvement of 1.4AP without a significant
decrease in inference speed. To demonstrate the effectiveness of the proposed methods,
we visualized the results, as shown in Figure 13. From top to bottom, they represent the
RTMPose algorithm and our method. The results show that when we added the FasterNest
Block, SimAM, and Depth Block, the model’s attention was more focused, and the deeper
colours indicated higher confidence in detected keypoints.
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Table 4. The impact of FasterNest Block, SimAM, and Depth Block on the model in terms of
Parameters, GFLOPs, AP, and AR on the cattle test set is summarized. We only report the metrics for
the pose estimation models and omit the object detection models.

No. Baseline FasterNest Block SimAM Depth Block Params (M) FLOPs (G) AP AR FPS

1
√

13.6 1.9 81.5 84.4 40
2

√ √
14.6 2.0 82.0 85.3 39

3
√ √

13.6 1.9 81.8 84.9 39
4

√ √
12.5 1.9 81.9 85.1 42

5
√ √ √

14.6 2.0 82.3 85.6 39
6

√ √ √
14.3 2.0 82.5 85.7 40

7
√ √ √

12.5 1.9 82.2 85.6 40
8

√ √ √ √
14.2 2.0 82.9 86.0 39
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4. Discussion

In this study, we proposed an improved RTMPose network for cattle pose estimation
in complex environments, offering the advantages of speed and high accuracy. First,
we designed the FasterNest Block with a three-branch structure, enhancing RTMPose’s
utilization of high-level feature information at different scales to improve the model’s
feature learning capabilities. Experimental results demonstrated that the FasterNest Block
achieved excellent performance with minimal additional parameters while maintaining
high inference speed. Next, the SimAM module was able to infer three-dimensional
attention weights for the current layer, enhancing RTMPose’s spatial learning abilities in
complex real-world environments without the need for additional parameters. Finally,
the Depth Block replaced the 7 × 7 large kernel convolution in RTMPose, improving
the model’s ability to learn semantic information and achieving a lightweight network
while enhancing accuracy. Ablation experiments in groups 5, 6, and 7 demonstrated
strong synergy between the FasterNest Block, SimAM, and Depth Block. Compared to our
model, HRNet achieved the second-highest accuracy thanks to its efficient parallel multi-
branch design and full-resolution feature representation throughout. Although HRNet
achieved advanced performance, it suffers from redundancy and requires computationally
costly intermediate high-resolution layers and upsampling. Our network optimally utilizes
computational resources, maintaining high accuracy while achieving faster inference speeds.
Therefore, this study can provide reliable technical support for efficient and rapid cattle
pose estimation in complex farms.

In recent years, artificial intelligence technology has seen widespread successful ap-
plications in agriculture [36,37]. Deep learning-based pose estimation algorithms have
been applied to various animal scenarios. In reference [10], a concise multi-branch net-
work was constructed for cattle pose estimation. Improved bottlenecks and basic blocks
enable precise localization of multiple cattle keypoints even in complex environments.
Reference [38] employs the CenterNet algorithm and the proposed HRST algorithm for
keypoint detection in standing pigs. The CenterNet algorithm is used for recognizing the
pose of pigs, followed by applying the HRST algorithm for detecting the joint points of pigs.
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Reference [39] introduced the RFB-HRNet algorithm and designed a framework consisting
of three parts: target screening, animal pose estimation model, and extraction of animal
gait parameters for quadruped animals. First, target screening is performed using object
detection algorithms. Then, the RFB-HRNet algorithm is applied to extract keypoint data
of the animals. Finally, the gait parameters of quadruped animals are derived using the
keypoint data. HRNet-W48 and U-net algorithms are employed for detecting pecking
injuries in turkey hens. The HRNet-W48 algorithm classifies injury locations, while the
U-net algorithm precisely locates the affected areas [40]. Table 5 compares our proposed
method with other animal pose estimation approaches.

Table 5. We present a performance comparison of our method and relevant animal pose estimation
methods under the same evaluation metrics.

References AP AP50 AP75 AR

[10] 93.2 94.9 93.2 96.4
[38] 77.4 95.9 90.4 82.8
[39] 75.0 95.8 81.8 78.1
[40] 32.2 73.5 24.6 38.3

Ours 82.9 96.7 90.2 85.8

The method proposed in this paper achieves, to some extent, fast and accurate cattle
pose estimation. However, the congestion within cattle farms and variations in lighting
conditions can make specific challenges to cattle pose estimation. Therefore, overcoming
congestion among cattle to enable rapid and precise nocturnal pose estimation is important.
Additionally, learning structural information about keypoints in cattle is crucial for pose
estimation algorithms. Hence, future work needs further improvements and optimizations
to enable pose estimation algorithms to understand the structural information of keypoints
in cattle, enhancing keypoint localization capabilities, especially in congested situations.

5. Conclusions

To achieve cattle pose estimation in complex scenarios. based on RTMPose, this paper
introduces the FasterNest Block and Depth Block, incorporating the SimAM attention
module to achieve fast and accurate cattle pose estimation. Multiple test sets indicate
that our model achieves the best results on the cattle test set with the lowest number
of parameters and computational costs, surpassing the second-best (HRNet, Resnet-50)
by 1.5 in the average accuracy and 6.0 in the inference speed. Ablation experiments
demonstrate an improvement of 1.4 AP without significantly compromising the model’s
inference speed. Our model can be applied in complex farm environments, providing
accurate and rapid inference of multiple cattle poses. In future work, we plan to enhance
the representative capacity of the cattle further pose estimation model and construct a more
extensive, comprehensive dataset for cattle pose estimation.
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