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Abstract: This study was conducted on the lesion-mimic mutant lm5, which was produced by
mutagenesis of WYJ21 (WT) using ethyl methane sulfonate (EMS). The mutant lm5 was short in the
seedling stage and displayed yellowish-brown disease-like spots on leaves that were yellowish-brown
when the plant was at the tillering stage. The disease-like spots gradually grew larger as the plant
grew until it reached maturity. Compared to WT, lm5 had considerably reduced the plant height,
ear panicle length, tiller number, and 1000-grain weight. A single recessive gene was found to be
in control of lm5, according to a genetic study. It was physically located 245 kb apart between the
RM21160 and RM180 markers on chromosome 7. Using RiceData and other websites, analyze and
sequence potential gene candidates. Exon 7 of LOC_Os07g10390 (OsLM5) was identified to have a
mutation that changed the 1560 base from G to A, changing the 788 amino acids from Arg to Lys. The
OsLM5 gene was found to be a new allele of the SPL5 gene, encoding the protein shear factor SF3b3.
Studies showed that OsLM5 was localized in the nucleus, and OsLM5 was significantly expressed in
leaves. Reactive oxygen species (ROS) accumulation occurred in the leaves and roots of mutant lm5,
and qPCR results showed abnormal expression of genes related to chloroplast development as well
as significantly increased expression of genes related to aging and disease course. The OsLM5 gene
may have a significant impact on the regulation of apoptosis in rice cells.

Keywords: rice; lesion-mimic mutant; root; ROS; splicing factor 3b subunit 3; RT-qPCR

1. Introduction

Rice is one of the important food crops in China [1], and its planting area accounts
for more than 30% of the national food crop area [2]. During the growing process of
rice, it is easy to be affected by external stress factors, such as climate, pests, diseases, etc.
These elements lead to the abnormal physiological activities of rice and ultimately affect
the yield and quality of rice. Lesion Mimic Mutant (LMM) is a type of mutant that is
characterized by the spontaneous formation of disease-like spots mediated by programmed
cell death (PCD) in the absence of pathogen infection, environmental stress, or mechanical
damage [3–5]. On the leaves, leaf sheaths, stalks, or seed shells of plants, disease-like spots
frequently manifest [6,7]. Early lesion-mimic mutants have been extensively reported in
Arabidopsis thaliana rice [8], maize [9], barley [10], wheat [11], tomato [12], and other crops,
with ongoing research. Meanwhile, it was found that most of the lesion-mimic mutants
were related to plant disease resistance, showing increased expression of defense-related
genes and activation of defense-related pathways. It exhibits heightened resistance to
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specific pathogens [13], and the lesion-mimic mutants are regarded as important materials
for studying the molecular mechanism of plant resistance, which is of great significance
for clarifying the molecular mechanism of plant resistance to external stresses such as
diseases and pests and also providing support for the breeding of high-resistance improved
varieties [14,15].

It was discovered that there were great differences in the shape and color of disease-
like spots in different mutants. Spl36 [16] and spl(Y181) [17] showed irregular shapes, while
spl24 [18,19] had regular shapes. The disease-like spots of SPL3 [20] and spl16 [21] were
black, and those of spl18 [22] and lil1 [23] were reddish brown. In addition, the stage of
appearance of disease-like spots is also different, as spl2 [24], spl3 [20], and other lesion-
mimic mutants will show disease-like spots at the seedling stage. The spl6 [25] mutant does
not show the phenotype of disease-like spots until the tiller stage and the booting stage.
With the growth and development of the plant, the phenotype of the lesion-mimic mutant
will become more and more severe and even spread to the whole plant.

The occurrence of regulatory disease-like spots in rice is influenced by a variety of
factors. With the mining, cloning, and functional research of more and more genes related
to these phenotypes, the mechanism of their occurrence is gradually understood. Impor-
tant signaling molecules called reactive oxygen species (ROS) are primarily formed in
organelles, including plant mitochondria, plasma membranes, chloroplasts, peroxisomes,
etc. Each plant cell has a redox pathway regulated by ROS, which regulates the physiologi-
cal processes of cells, including gene expression, aging and death, and metabolism. The
hydrogen peroxide (H2O2) produced by the respiratory chain and enzymatic reactions in
mitochondria will be transferred to the peroxisome and finally transported to the nucleus
and cytoplasm. The H2O2 formed in chloroplasts will eventually enter the nucleus and
cytoplasm [26]. PCD, which is closely related to hypertensive response (HR) [27], can be
caused by ROS. Studies have found that the Arabidopsis gene Lsd1 is a member of the
LSD1-like gene family, and its mutant lsd1 shows disease-like spots. The mutation of this
gene will cause the PCD and associated defense mechanisms to be activated [28]. Zeng
et al. [29] studied that ubiquitin ligase E3, a protein encoded by rice Spl11, negatively
regulates PCD and immune function in plants. Thus, it was found that the formation of
disease-like spots in plants was accompanied by PCD [30]. Excessive ROS accumulation
will cause damage to plant cells and eventually lead to cell death [31].

ROS can influence the development of disease-like spots in two separate ways. First,
they can react with a large number of biomolecules, causing irreversible cell damage and
ultimately cell death in plants [32,33]. In addition, ROS can also disrupt signal transduction
pathways and alter gene expression. Studies have found that ROS plays a crucial role in
pathogen defense, gene expression, and cell signal transduction in response to a variety of
pathogens [34]. Excessive accumulation of superoxide free radicals (O2) and H2O2 in plants
can disrupt the redox balance in cells and lead to severe oxidative damage to nucleic acids,
proteins, and lipid membranes [35,36]. In addition, the accumulation of ROS is closely
related to the occurrence of PCD. For instance, the formation of Arabidopsis [37], wheat [38],
rice [39,40], and other disease-like spots is accompanied by the accumulation of ROS and
the occurrence of PCD. SPL33, encoding the eEF1A protein, contains one non-functional
zinc finger domain and three functional EF-Tu domains. Wang et al. [41] found that the loss
of SPL33 function leads to the accumulation of H2O2, accelerated leaf aging, and PCD, and
finally produces reddish-brown lesions. ROS not only affects the formation of disease-like
spots but also plays an important role in root growth and lateral root formation [42–44].
ROS production and related signaling pathways are involved in root formation [45,46].
Tsukagoshi [42] and Silva-Navas [43] found that primary root growth was strictly regulated
by the differential accumulation of ROS at the apex. UPBEAT1 (UPB1) transcription factor
is independent of the auxin pathway by inhibiting peroxidase gene expression in roots and
regulating the distribution of H2O2 and O2− in the root elongation region and meristem [42].
Therefore, the study of the characteristics and regulatory mechanisms of rice lesion-mimic
mutants is helpful in revealing the molecular mechanism of PCD in plants.
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In this study, Wuyunjing21 was mutated by EMS to identify a mutant named lm5.
The mutant was short in plant height and had brown disease-like spots on leaves at the
tillering stage. This gene encodes the protein shear factor SF3b3. We identified the mutant
gene and discovered that the lesion-mimic phenotype of the lm5 mutant was caused by
the single base mutation of the OsLM5 gene, which is an allele of the OsLM5 gene and the
SPL5 gene [47]. Mutations in the OsLM5 gene disrupt the ROS balance in cells, disrupt
the structure of chloroplasts, and lead to local cell death at the lesion mimic. The results
suggest that OsLM5 plays an important role in regulating PCD and ROS balance in rice.

2. Materials and Methods
2.1. Plant Materials and Growing Conditions

Lm5 mutants were obtained from the Wuyunjing21 (WYJ21, WT) population by EMS
mutagenesis. All the plants were grown in April 2022 in the paddy field at Southwest
University of Science and Technology and in October 2022 in Lingshui, Hainan, under the
natural conditions of 28~37 ◦C. Field management follows standard agricultural practices.
Tests related to roots were completed in March 2023, measuring rice roots after 15 days of
growth. The cultivation condition of rice was 14 h light/10 h dark, and the light intensity
was 1200 µmol photons m−2·s−1.

2.2. Investigation of Chlorophyll Content

The leaves of WTand mutant lm5 at the tillering stage were collected, and chlorophyll
(Chl) content was determined. The concentrations of carotenoids (Car), chlorophyll a
(Chla), and chlorophyll b (Chlb) were determined by spectrophotometry using the method
described by Wellburn [48]. Simply put, the leaf samples were cut into pieces of about
0.5 cm, soaked in 80% acetone, and treated in dark conditions for more than 24 h. The
optical density (OD) of the extracts was measured by spectrophotometry at 663, 646, and
470 nm, with three biological replicates measured per sample.

2.3. Determination of Various Antioxidant Indexes

Superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and cata-
lase (CAT) from a catalase assay kit (visible light) were purchased from the Nanjing Jian-
jiancheng Bioengineering Institute. Enzyme activity is measured according to the methods
in the manufacturer’s instructions. All tests were carried out on leaves at the tillering stage
and roots at the seedling stage.

2.4. Real-Time PCR Analysis

Total RNA was extracted from rice leaves using the TIANGEN RNAprep Pure Plant
Kit and reverse-transcribed into cDNA using the Ecorry EvoM-MLV reverse transcription
kit. The ACTIN gene was used as the internal reference gene, and the gene expression was
detected by the SYBR Green Pro Taq HS premixed qPCR kit. There were three replicates
per sample. The housekeeping gene we use is Actin, and the primers used in qRT-PCR
analysis are shown in Supplementary Table S2.

2.5. Histochemical Label Staining

Nitrotetrazolium blue chloride (NBT) staining for superoxide anion accumulation
and DAB staining for H2O2 accumulation were tested [49]. In simple terms, the sample
is placed in diaminobenzidine (DAB) or NBT stain solution at 28 ◦C for staining, then all
materials are decolorized in 95% ethanol at 70 ◦C until there is no chlorophyll, and then
transferred to 70% glycerin for photographing. Trypan blue staining was used to detect
cell death [18]. The sample was soaked in a basin blue stain solution and kept in the dark
for more than 48 h, then all materials were decolorized in 95% ethanol at 70 ◦C and then
transferred to 70% glycerin for photography.

The DCFH-DA, 2′,7′-Dichlorodihydrofluorescein diacetate (H2DCFDA) experimental
scheme was modified according to Leshem’s method [50]. The leaves of WT and mutant
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lm5 growing in the same growth period were selected, and the leaves were cut into 1 cm
for incubation. Chlorophyll autofluorescence and oxidation of H2DCFDA were observed
by Nikon AXR laser confocal microscopy.

The roots of WT and mutant lm5 at the seedling stage were fixed with FAA. After
dehydration, transparency, and penetration, the samples were cut into thin slices with a
Lycra slicer. After paraffin eluting with xylene, the slices were stained with aniline blue
and then observed with a Lycra optical microscope.

2.6. Gene Mapping

In the genetic analysis, we hybridized with R498 using lm5 as the maternal parent
to obtain F1 offspring to self-breed and produce an F2 population. The phenotype of the
F2 generation population was identified, genetic analysis was conducted, and 40 mutant
phenotypic single strains were selected for mixing to obtain a mixing pool. Gene mapping
was performed by mapping cloning analysis. We used the software Primer5 for primer de-
sign and the software SnapGene for sequence alignment and peak mapping. The RiceData
(https://www.ricedata.cn/gene/ accessed on 17 March 2023) was used to search the genetic
information. The primers used for gene mapping are shown in Supplementary Table S3.

2.7. Subcellular Localization

The full-length OsLM5 coding sequence 4068 bp was inserted into PAN580-GFP to
construct the 35S::OsLM5::GFP vector, and the nuclear marker and the constructed vector
were transformed into rice protoplasts for transient expression. Fluorescence signals were
observed using a Zeiss LSM700 laser-scanning confocal microscope. Primers are shown in
Supplementary Table S4.

3. Results
3.1. Phenotypic Characteristics of Mutant lm5

The rice variety Wuyunjing 21 (wild-type, WT) was mutated by EMS (ethyl methyl-
sulfonate), and a leaf lesion mutant named lm5 was identified. The mutant was short in
plant size (Figure 1A). During the tillering stage, mutant lm5 showed yellowish-brown
lesions from the middle of the leaf to the tip of the leaf (Figure 1B,C). With the progress of
growth and development, the leaf lesions of the mutant became more and more obvious.
In addition, compared with WT, mutant lm5 had lower plant height at maturity and shorter
internode and panicle length than WT (Figure S1A,C), and the number of tillers, number
of branches, stems, seed setting rate, number of grains per panicle, and 1000-grain weight
were all decreased (Figure S1D–K). The grain width and length of lm5 mutants were signifi-
cantly smaller than those of WT (Figure S1B), suggesting that lm5 mutations may indirectly
affect grain size. These results indicated that the formation of disease-like spots seriously
affected the growth and development of lm5 mutants.

https://www.ricedata.cn/gene/
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Figure 1. Phenotypic characteristics of lesion-mimic mutant lm5. (A,B) WT and lm5 phenotypes at
seedling and tillering stages, bar = 2 cm. (C) Phenotypes of WT and the disease-like spots of the
lm5 mutant in early tillering leaves, the red box is selected as the different phenotype at the tip and
middle of the leaves of WT and the lm5 mutant; on the right is an enlarged image, bar = 2 cm. (D) The
whole phenotype of WT and mutant lm5 at maturity, bar = 10 cm.

3.2. ROS Accumulation Occurred in lm5 Mutants

To further investigate the reason underlying the development of disease-like spots, we
measured ROS levels in lm5 mutants. Trypan blue (left in Figure 2A) and diaminobenzidine
(right in Figure 2A) were used to stain the lesion sites of WT and lm5 leaves. Leaves of
mutant lm5 were found to have an accumulation of dark blue and tan precipitates, which
were not detected in WT leaves (Figure 2A). These results indicate that the occurrence of
disease-like spots in lm5 is accompanied by PCD and peroxide accumulation. To explore
the accumulation of ROS in the leaves of mutant lm5, we measured the contents of H2O2
and MDA at the tillering stage (Figure 2B) and found that, compared with the WT, the
concentrations of H2O2 and MDA in mutant lm5 were significantly increased, and the
accumulation of MDA would aggravate membrane damage [51]. Therefore, MDA content
indirectly reflects the damage degree of mutant cells. We also measured the activities of
CAT and POD (Figure 2B). The POD activity in the leaves of mutant lm5 was lower than
that of the WT, and the activity of ROS scavenging enzymes and CAT enzymes decreased.
Abnormal ROS in the mutant and excessive accumulation of ROS and H2O2 may lead to
the occurrence of disease-like spots in the leaves.

We incubated the leaves of WT and mutant lm5 with an H2DCFDA fluorescent probe
to detect ROS accumulation and distribution in tissues (Figure 2C). Observations under
laser confocal microscopy showed that the probe’s green oxidation state fluorescence signal
was observed in lm5 mutants but not in the WT.

Since ROS levels are strictly regulated by the antioxidant system, we detected the
expression of genes related to ROS clearance and found that the expression levels of AOX1a,
AOX1b, APX2, SODA1, and CATB genes were increased (Figure 2D). The high expression of
ROS detoxification genes in mutant lm5 may be caused by the elevated level of ROS in cells.
Compared with WT, the expression levels of aging genes such as OsWRKY2, OsWRKY7,
OsNAC2, and SGR in lm5 mutants increased (Figure S2A), and the expression of disease-like
spots course-related genes PR10 and JIOsPR10 increased significantly (Figure S2B). The
above results indicate that the activity of ROS scavenging enzymes in lm5 is reduced,
the balance of the scavenging system is destroyed, resulting in a large accumulation of
ROS, lipid peroxidation, increased MDA content, and finally cell damage resulting in the
occurrence of disease-like spots.
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Figure 2. ROS accumulation in WT and lm5 mutants. (A) Trypan blue and DAB staining of leaves
of WT and mutant lm5, bar = 2 cm. (B) Determination of H2O2, MDA, CAT, and POD contents in
WT and mutant lm5. (C) Microscopic observation of H2DCF-DA in WT and mutant lm5, with green
representing oxidized H2DCFDA and red representing chlorophyll, bar = 20 µm. (D) Differences in
ROS-related gene expression levels between WT and lm5 at the tillering stage. *, p < 0.05; **, p < 0.01;
***, p < 0.001.

3.3. The Chlorophyll Content of the lm5 Mutant Decreased

The formation of disease-like spots caused the difference in leaf color, so the chloro-
phyll content of leaves was detected to determine whether it would affect the change in
pigment. It was found that the contents of chlorophyll a, chlorophyll b, carotenoid, and
total chlorophyll in the leaves of lm5 at the tillering stage were significantly lower than
those of WT. Among them, the chlorophyll content of mutant lm5 was 39.2% lower than
that of WT, the chlorophyll b content was 25.5% lower than that of WT, the total chlorophyll
content was 39.7% lower than that of WT, and the carotenoid content of mutant lm5 was
33% lower than that of WT. The results showed that the formation of disease-like spots in
mutant lm5 affected chlorophyll synthesis.

The leaf of mutant lm5 has disease-like spots, and the chlorophyll content in the leaves
is significantly reduced. The formation of disease-like spots in mutant lm5 may lead to
the destruction of chloroplast structure. We further quantitatively analyzed chloroplast-
related genes and chlorophyll-related genes in the leaves. The expression of chloroplast
genes depends on the activity of two RNA polymerases, plastid-encoded RNA polymerase
(PEP) and nucleus-encoded RNA polymerase (NEP) [52,53]. HSA1, OsFLN1, OsFLN2, Os-
TrxZ, POLP1, RpoA, and RpoB belong to plastid-dependent RNA polymerase genes [54,55].
Through the analysis of chlorophyll gene expression, it was found that, compared with WT,
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the expression of NYC4 and DVR genes in the leaves of mutant lm5 decreased while the
expression of NYC3 increased (Figure 3B), indicating that the change in chlorophyll content
of the mutant may be caused by the destruction of the chloroplast structure of the mutant.
Quantitative analysis showed that the expression levels of chloroplast development genes
HSA1, OsFLN2, OsTrxZ, POLP1, and FtsZ increased (Figure 3C), indicating that the dis-
turbance of chloroplast development gene expression interfered with PEP activity, thus
affecting chloroplast development.
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(A) Determination of chlorophyll content of WT, lm5, at the tillering stage. (B) Expression of WT and
lm5 and chlorophyll-related genes. (C) Expression of genes related to chloroplast development in WT
and lm5. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.4. Genetic Analysis and Candidate Gene Mapping of Macular Mutant lm5

To reveal the molecular mechanism behind the disease-like spots phenotype of the
mutant lm5, we hybridized with R498 using lm5 as the maternal parent to obtain F1
progeny for the self-breed F2 population. The phenotype of the F2 progeny population was
identified, and genetic analysis was conducted. It was found that there were 978 normal
strains and 342 mutant strains of lm5. The Chi-square test results show that the separation
ratio is 3:1 (χ2 = 0.58 < χ2

0.05 = 3.84), indicating that the phenotype of mutant lm5 was
controlled by a pair of recessive nuclear genes.

Linkage analysis of two parents of R498 and lm5 was performed by designing poly-
morphic markers, and lm5 was initially located between XT-1 and RM21309. A total of
320 recessive plaque single strains from the F2 population were used in this interval for
fine localization by screening new polymorphism primers. It was found that there were
three exchange single strains at RM21160 and two exchange strains at RM180. Finally,
lm5 was located between the markers RM21160 and RM180, with a physical distance of
245 kb (Figure 4A). By gramene, RiceData, and other websites analyzed the prediction
analysis of genes in the 245 kb location interval and found that there were 33 annotated
genes in the interval (Table S1). Of these, 16 encode expression proteins, and 14 genes
have been annotated for possible functions; By analyzing the phenotypes of the genes
encoding predicted splicing factor 3b subunit 3, encoding zeta-carotene dehydrogenase,
and encoding cysteine-rich alcohol-soluble gluten of the reported genes, it was found that
the phenotypes of the genes encoding predicted splicing factor 3b subunit 3 were similar
to this gene. Therefore, WT and the mutant lm5 were sequenced (Figure 4B). A difference
was found between WT and the mutant lm5, in which the 1560 base of exon 7 was mutated
from G to A, resulting in a change in the 788 amino acids (Arg to Lys). At the same time,
the F2 mutant material was also sequenced, which further confirmed that the gene had a
single base mutation (Figure S3). Therefore, LOC_Os07g10390 was taken as a candidate
gene and named OsLM5 (Lesion Mimic 5). The OsLM5 gene was found to be an allele of
the SPL5 gene through analysis [47].
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3.5. OsLM5 Expression Pattern Analysis

To understand the expression of the OsLM5 gene in different tissues, we collected
WYJ21 tissue materials and detected the expression level of the OsLM5 gene by qRT-PCR.
The OsLM5 gene was found to have the highest expression level in leaf tissues (Figure 5A),
followed by a higher expression level in roots, indicating that the OsLM5 gene plays a
major role in leaves. To determine the subcellular localization of the OsLM5 protein, we
constructed a 35S::LM5::GFP vector and performed a transient transformation assay with
nuclear marker-transformed rice protoplasts for co-expression. Confocal laser scanning
microscopy showed that the GFP signal of the 35S::LM5::GFP fusion protein was co-located
with the red fluorescence of nuclear markers in protoplasts (Figure 5B), and the OsLM5
protein may also play a role in the cytoplasm.
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3.6. OsLM5 Mutations Affect Root Development

Compared with WT, mutant lm5 had short growth and short root length (Figures 6A
and S4A,B). Expression profile analysis found that the OsLM5 gene was active in roots
(Figure 5A). Paraffin sections were performed on the roots of WT and mutant lm5, and
obvious changes were found in root cell morphology. Compared with WT, the root cells of
mutant lm5 became smaller, the number of cells increased, and the size of single cells in
the root crown, meristem zone, elongation zone, and mature zone decreased significantly
(Figure S4D). Previous studies have found that ROS accumulation in roots can affect root
growth. DAB and NBT staining were performed on taproots of WT and mutant lm5, and
grayscale analysis of NBT staining was performed, and it was found that mutant lm5 roots
were dyed brown more deeply by DAB (Figure 6D). NBT staining and grayscale analysis
showed that O2− in mutant lm5 roots was higher than WT (Figures 6E and S4E), indicating
ROS accumulation in mutant lm5. The H2O2-related indexes of roots of WT and lm5 were
determined, and it was found that the H2O2 content and MDA content of mutant lm5 were
significantly higher than those of WT, the H2O2 scavenging ability of CAT and POD was
significantly reduced (Figure 6F), and the catalytic capacity of SOD to generate H2O2 was
significantly increased. OsLM5 mutations lead to H2O2 accumulation in roots, which affects
root development.
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NBT, bar = 100 µm. (F) Determination of H2O2, MDA, POD, CAT, and SOD contents in the roots of
WT and mutant lm5 at the seedling stage. **, p < 0.01.

4. Discussion
4.1. The Formation of Leaf Lesions Affected the Agronomic Traits of Mutant lm5

The appearance of disease-like spots on rice leaves will reduce the chlorophyll content
and photosynthetic rate of rice leaves, affect the photosynthesis and dry matter accumu-
lation of rice leaves, and then affect the agronomic traits of rice mutants. Qiao et al. [56]
reported that the chlorophyll content and photosynthetic system II efficiency of the spot-
like mutant spl28 decreased, and the yield decreased. Studies on the lesion-mimic mu-
tant lmm8 found that its chlorophyll content and PSII efficiency decreased, and the final
thousand-grain weight and seed-setting rate were significantly reduced [57]. The main
agronomic characters of spl36, such as plant height, effective panicle number, panicle length,
kernel number per panicle, seed setting rate, and 1000-grain weight, were significantly
decreased [6]. Ma et al. [58] studied the mottle leaf mutant spl35 and found that due to the
emergence of reddish-brown lesions, chloroplast development was abnormal, resulting in
a decrease in the seed setting rate and 1000-grain weight of the mutant spl35. Consistent
with the above studies, the mutant lm5 appeared with yellow-brown lesions from the early
tillering stage and lasted until maturity (Figure 1). Some agronomic traits of mutant lm5,
such as plant height, effective panicle number, 1000-grain weight, and seed setting rate,
were significantly lower than those of WT due to the appearance of disease-like spots,
which ultimately led to a decrease in its yield (Figure S1).

4.2. ROS Accumulation Led to the Formation of Disease-like Spots in Mutant lm5

The accumulation of PCD and ROS around leaf lesions can lead to oxidative damage
to plants, which is a way for plants to resist external infection [20,59]. Many studies have
shown that plants have their own ROS clearance mechanism, and the production of ROS
in plant cells is clearly in dynamic equilibrium to balance their own ROS [3,34,40]. ROS
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accumulation has been detected in more than 40 kinds of rice lesion-mimic mutants that
have been cloned [60]. A large amount of ROS accumulates around the leaf lesion of
mutant spl28 [56]. ROS within the normal range are important signals in response to stress,
regulation of plant growth and development, and PCD [61]. Mutant ell1 accumulated a
large amount of ROS and a large amount of H2O2 accumulation, and the presence of dead
cells was found in ell1. Gene expression related to oxygen binding and ROS clearance was
upregulated. Abnormal PCD occurred in the ell1 mutant, and excessive ROS accumulation
can mediate cell death [3]. Our study had similar results. Through the determination
of Trypan blue and DAB staining on the leaves of mutant lm5 and related physiological
indexes (Figure 2A), it was found that a large number of ROS accumulated and cell death
existed in the leaves of the lesion-mimic mutant, and the activities of CAT- and POD-related
H2O2 protective enzymes were significantly reduced, while the activity of SOD, which
catalyzed H2O2 generation, was significantly increased, possibly due to the increase in
H2O2 content (Figure 2B). The clear mechanism of ROS is disturbed, and the cell structure
is destroyed. The increase in MDA content aggravated the damage to the membrane of
mutant leaves. At the same time, it was also found that there was cell death around the leaf
lesions of mutant lm5, indicating that excessive accumulation of ROS caused the death of
leaf cells.

ROS is a key signal in the process of plant root elongation and differentiation. Studies
in Arabidopsis have shown that a decrease in O2− concentration reduces root elongation,
but the removal of H2O2 can promote root elongation [62]. RITF1 overexpression can induce
the ROS signal downstream of RGF1 (enhanced O2− signal in the meristem region) and pro-
mote root meristem development [60]. Interestingly, we also found an accumulation of ROS
and O2− in mutant lm5 roots, which inhibited the root elongation of mutant lm5. The elec-
tron transport chain of plant mitochondria has multiple pathways, mainly the cytochrome
pathway (CP) and alternative respiratory pathway (AP). The alternate respiratory pathway
is a branch of the main respiratory chain that contains an alternative oxidase (AOX), the
terminal oxidase in the respiratory chain [63], which is consumed in the form of heat energy
to reduce oxidative damage, maintain oxidative balance in mitochondria, and limit the
production of ROS [64]. AOX has an important relationship with stress resistance [65], re-
sistance to high temperature stress [66], and maintenance of metabolic balance [67]. Related
studies have reported that AOX1a and AOX1b [68] participate in alternate oxidase through
respiration, and APX2 [69] is related to the gene of ascorbate peroxidase, which mainly acts
to clear ROS. OsCATA and OsCATB [70] are genes involved in the H2O2 metabolic pathway.
In this study, aging, disease course, and ROS-related quantification were performed on the
macular mutant lm5, and it was found that the expression of ROS genes AOX1a, AOX1b,
SODA1, and CATB of the mutant were significantly up-regulated (Figure 2D), indicating
that the accumulation of ROS in the mutant lm5 induced the expression of AOX1 and other
genes to affect the occurrence of cyanogen-resistant respiration. At the same time, the ex-
pression levels of aging genes OsWRKY2, OsWRKY7, OsNAC2, and SGR were up-regulated,
indicating that the accumulation of ROS could stimulate senescence-related mechanisms
and accelerate the aging and death of plants. Due to the formation of disease-like spots, the
plant’s defense mechanism is activated, and the expression of PR10, JIOsPR10, and other
resistance genes in mutant lm5 is increased (Figure S2A,B). The mutation of OsLM5 affects
a series of resistance gene expressions in rice. Therefore, OsLM5 is of great significance in
theoretical research and disease-resistance breeding. The above studies indicated that the
lesion-mimic mutant would be accompanied by ROS accumulation and cell death during
the disease-like spot formation process, resulting in the phenotype of mutant lm5. OsLM5
can regulate ROS metabolism in leaves and roots, thereby affecting the formation of leaf
lesions and root elongation.

4.3. Effects of Mutant lm5 on Photosynthetic Function in Leaves

It was found that the chlorophyll content of rice spot-like mutant spl41 gradually
decreased with the increase of the spot-like phenotype, indicating that the formation of
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disease-like spots would affect chlorophyll synthesis and lead to premature plant aging [71].
Ma et al. [57] found that the leaf mutant spl35 with spotted leaves showed decreased
pigment content and increased ROS accumulation. It was found that the phenotype of
mutant llm1 was induced by light, the content of photosynthetic pigment was significantly
decreased, the number of chloroplasts in the mutant mesophyll cells was reduced, and
the chloroplast structure was destroyed [13]. In this study, the chlorophyll content of the
leaf after the formation of the morphed mutant lm5 was detected, and it was found that
the chlorophyll content of the mutant lm5 was significantly lower than that of WT. In
mutant lm5, chloroplast development genes HSA1, OsFLN2, OsTrxZ, FtsZ, POLP1, and
other genes were up-regulated, and the expression of chlorophyll-related genes NYC4 and
DVR decreased while NYC3 expression increased (Figure 3), indicating that the formation
of disease-like spots in mutant lm5 affected chloroplast development and chlorophyll
synthesis. Chloroplast damage was caused by the leaf lesion of the mutant, which affected
the normal photosynthesis of the plant.

4.4. OsLM5 Is a New Allele of SPL5

OsLM5 is a new allele of the SPL5 gene encoding SF3b3, belonging to the SF3b3 splic-
ing family. SF3b3, a 130-kDa protein, is a component of a multi-subunit complex identified
as a splicing factor that required the addition of U2 snRNP during pre-spliceosome forma-
tion [72]. As an important component of the U2 snRNP, SF3b3 is involved in the recognition
of pre-messenger RNA branch sites in the splice, which is crucial for the accurate excision
of pre-messenger RNA introns in yeast [73]. Menon et al. [74] found that SF3b3 is related to
the cullin-RING E3 ubiquitin ligase, which plays a role in stabilizing the genome during the
cell cycle. Yamasaki et al. [75] found that SF3b3 can bind to C-type lectin in macrophages to
form receptors, induce the production of some inflammatory cells, such as neutrophils, and
enter damaged tissues to induce cell death. In mice, the SF3b3 gene can induce significant
downregulation of the early sac apoptosis gene of the embryonic stem cell sac [76]. Chen
et al. [47] discovered that the Spotted mutant Spotted leaf 5 (spl5), which appeared for the
first time in rice, was missing a G-base in exon 7, leading to a frameshift mutation and
an advanced stop codon. Ge et al. [77] discovered a new spl5 allele, OsSL5, which has a
single base mutation at site 3647, resulting in amino acid changes. The plant height, ear
length, and stem number of the sl5 mutant were significantly lower than those of the WT.
Sl5 mutants begin to develop disease-like spots at the tip of the leaf at the seedling stage,
and these spots spread throughout the leaf as they grow [77]. In the later stages of growth,
the size and number of spots increased further, and SPL5 may be involved in the apoptosis
of rice cells. The lm5 mutant obtained in this study is a mottle leaf spot mutant, whose
phenotype first appeared at the tillering stage and gradually expanded with the growth
process until maturity. Our study found that the OsLM5 gene may be involved in apoptosis
regulation by encoding the SF3b3 protein. It is a new allelic mutant of SPL5, which has
a single base mutation on the 1560th base of the gene, resulting in an amino acid change
(Figure 4). The mutation site is located in an important conserved domain of the gene, so
the single base mutation causes the mutant lm5 to produce very severe disease-like spots.
By studying roots, we found that this gene mutation can regulate the size of root cells
through ROS (Figure 5 and Figure S4), indicating that OsLM5 not only affects the leaves’
development but also affects the elongation of roots through ROS.

There have been no reports on the involvement of SF3b3 in rice defense response, and
the specific regulatory mechanism of splicing involved in this gene in rice remains unclear
and needs to be further explored. Therefore, lm5 mutants can be used as an effective tool
to study the regulatory mechanism of SF3b3 defense in plants and molecular breeding for
crop disease resistance.

5. Conclusions

In this study, we discovered that mutations in the OsLM5 gene disrupt the ROS balance
in cells, disrupt the structure of chloroplasts, and lead to local cell death at disease-like
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spots on leaves. OsLM5 plays an important role in regulating cell death and ROS balance
in rice. The OsLM5 gene encodes the protein splicing factor SF3b3. Currently, there are no
reports on the involvement of SF3b3 in defense responses in rice. The specific regulatory
mechanism of splicing involved in this gene in rice remains unclear, and further exploration
is needed. Therefore, lm5 mutants can be used as an effective tool to study the regulatory
mechanism of SF3b3 defense in plants and molecular breeding for crop disease resistance.
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Figure S3: F2 generation sequencing analysis; Figure S4: Root differences between WT and mutant
lm5; Table S1. Candidate genes of mutant lm5; Table S2. Primers used for qRT–PCR analysis in this
study; Table S3. Primers for polymorphism screening; Table S4. Primers used for PCR amplification
and plasmid constructions.
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